首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用热重分析仪对杨木刨花板进行热解,结合Coats- Redfern法分析热重曲线,探讨了反应机理.结果表明:杨木刨花板的热解过程分为失水干燥、快速热解和慢速热解3个阶段;升温速率的提高使热解最大失重速率增大,热解的各个阶段向高温方向横向偏移.快速热解阶段的反应机理满足D3模型,热解的活化能(E) 107.24 kJ/mol;5、10和20℃/min 3种速率下的指前因子(A)值分别为2.09×105、6.57×105和3.22×105 s-1.  相似文献   

2.
应用热重分析方法研究了黑龙江地区10种常见树叶的热解行为。利用TG-DTG曲线分析它们的热解特性,了解到木质素、半纤维素及纤维素的热解特性和温度、失重量以及失重速率之间的关系。结果表明:在空气气氛下10种树叶的热解均经历水分析出、快速热解、炭化3个主要阶段;在主要的快速热解阶段样品的热解动力学参数可以由Arrhenius反应方程和Coats-Red fem模型求得,计算得出樟子松、黑皮油松具有较好的防火性能,着火温度、活化能分别是:274.69℃、39.420KJ/mol,274.90℃、42.9110KJ/mol。。  相似文献   

3.
核桃壳与煤共热解的热重分析及动力学研究   总被引:1,自引:0,他引:1  
利用热重分析在不同升温速率(5~50 K/min)和氮气气氛下对核桃壳、褐煤以及核桃壳-褐煤(质量比1∶1)混合物的热解失重行为进行了研究,求取了热解动力学参数。实验结果表明,随着升温速率的提高,3种原料的失重率下降,热失重速率升高;核桃壳与褐煤共热解时存在协同作用;三者的平衡热解温度分别为568.9、709.9和571.0K。应用Coats-Redfern方法进行热解动力学过程分析表明,3种原料均可由一级反应过程描述。核桃壳快速热解和残余物缓慢热解阶段的平均活化能分别为50.6、17.3 kJ/mol,褐煤的平均活化能为21.1 kJ/mol,核桃壳-褐煤混合物快速热解和残余物缓慢热解阶段的平均活化能分别为34.2和14.5 kJ/mol。  相似文献   

4.
利用热重分析在不同升温速率(5 ~50 K/min)和氮气气氛下对核桃壳、褐煤以及核桃壳-褐煤(质量比1∶1)混合物的热解失重行为进行了研究,求取了热解动力学参数.实验结果表明,随着升温速率的提高,3种原料的失重率下降,热失重速率升高;核桃壳与褐煤共熟解时存在协同作用;三者的平衡熟解温度分别为568.9、709.9和571.0K.应用Coats-Redfern方法进行热解动力学过程分析表明,3种原料均可由一级反应过程描述.核桃壳快速热解和残余物缓慢热解阶段的平均活化能分别为50.6、17.3 kJ/mol,褐煤的平均活化能为21.1 kJ/mol,核桃壳-褐煤混合物快速热解和残余物缓慢热解阶段的平均活化能分别为34.2和14.5 kJ/mol.  相似文献   

5.
采用热重分析仪研究稻壳、松木屑和玉米秸秆在热解终温600℃下的热解过程,并运用TG-FTIR研究其热解过程中挥发分气体的析出规律。结果表明:随热解温度升高,其热解反应固体残余率逐渐减少,产量具有较为明显的差异:稻壳(41.8%)玉米秸秆(29.3%)松木屑(20.8%)。有机气体在FTIR图谱中主要集中在1 000~2 000cm~(-1),醛类和酸类是吸光度峰值最大的气相产物。生物质热解油的主要形成阶段主要集中在300~520℃,为增大生物质热解油产量,最佳制油温度应控制在450℃左右。分别运用DAEM和F-W-O法对10、20、30、50℃/min下松木屑的热解进行动力学计算,求解的平均活化能分别为144.92kJ/mol和146.01kJ/mol,当转化率达到0.70时,对应的热解温度为450℃左右。  相似文献   

6.
核桃壳热解行为及动力学研究   总被引:4,自引:4,他引:0  
利用热重分析在不同升温速率(5~50 K/min)和氮气气氛下对核桃壳的热解失重行为进行了研究。实验结果表明,核桃壳的热解过程可分为失水干燥、预热解、快速热解和残余物缓慢分解等4个阶段;快速热解阶段和残余物缓慢分解阶段的失重率分别为55%和32%左右,它们均可由一级反应过程描述,根据一级反应由Coats-Redfern方法计算核桃壳快速热解阶段和残余物缓慢分解阶段的平均活化能分别为50.7和17.3 kJ/mol。实验结果还表明加热速率越大,热解速率越快。  相似文献   

7.
为实现生物质原料的能量回收,研究以杨木、水杉、椿木木屑为原料,在30~900℃的惰性气氛下,以10、20、30、40℃/min不同的升温速率进行热重试验,计算不同木屑类生物质热解过程中的动力学和热力学参数。动力学参数采用Flynn-Wall-Ozawa(FWO)、Kissinger-Akahira-Sunose(KAS)和Distributed-Activation-Energy-Mode(l DAEM)模型进行计算,并用主函数图法确定反应机理。结果表明:热稳定性从高到低依次为:椿木、水杉、杨木。3种方法计算杨木的热解活化能变化范围为139~157 kJ/mol,水杉为106~163 kJ/mol,椿木为147~200 kJ/mol;木屑类生物质主要反应机理为低转化率范围内三维扩散模型(D3)、高转化率范围内的R1和Avrami-Erofeev模型(A1,A2,A3,A4);3种木屑中,杨木的吉布斯自由能(ΔG)均值为149.57 kJ/mol,水杉为150.40 kJ/mol,椿木为162.84 kJ/mol。热解过程中的焓变(ΔH)均为正,熵变(ΔS)最小负值为71.07 J(/mol·K),最大正值为47.17 J(/mol·K)。研究为生物质热化学转化技术和开发提供了重要的基础数据。  相似文献   

8.
为了研究烘焙预处理对油茶果蒲热解过程的影响,揭示烘焙温度对油茶果蒲理化性质、热解特性的影响机制,通过选取210℃、240℃、270℃三种不同烘焙温度进行油茶果蒲烘焙实验,并对烘焙前后样品进行理化性质分析和热重分析。结果表明:烘焙预处理能提高油茶果蒲热值和能量密度;烘焙温度的提高使得最大失重速率对应的温度提高,残炭率提高,同时改变热解过程的主要反应机理;随着烘焙温度的提高,热解过程的表观活化能由195.17 kJ·mol-1逐步提高到232.33 kJ·mol-1;烘焙预处理对油茶果蒲热解产生了显著影响。  相似文献   

9.
利用热重-微商热重(TG-DTG)分析漆树提取物(RWE)在氮气氛围中的热分解曲线,运用Kissinger、Flynn-Wall-Ozawa(FWO)、Friedman、Coats-Redfern和Achar法对第一步热分解过程进行动力学分析,计算热分解的表观活化能(E_a)和指前因子(A),并根据E_a和A计算热力学参数和推算漆树提取物的贮存期。研究结果表明:随着升温速率的增大,漆树提取物的热分解温度逐渐升高;漆树提取物的失重分为2个阶段(10 K/min):第一阶段189.09~266.59℃,第二阶段266.59~377.79℃,这两步热分解对应DTG曲线有2个主要的失重峰,最大热失重速率对应的温度分别为248.3和306.2℃,总失重率为57.94%。漆树提取物第一阶段热分解的机制函数为Avrami-Erofeev方程(随机成核和随后生长,n=3/4),积分形式g(α)=[-ln(1-α)]~(3/4),微分形式f(α)=4/3(1-α)[-ln(1-α)]~(1/4)。计算得到E_a=101.353 kJ/mol,lnA=25.092 8,A=7.9×10~(10) min~(-1);ΔG=77.799 kJ/mol,ΔH=96.978 kJ/mol,ΔS=36.446 J/mol;可以推断漆树提取物在室温(25℃)氮气氛围下贮存的话,贮存期为1.5~2年。  相似文献   

10.
在10℃/min的慢速升温条件下对竹柳热解过程进行分析,并利用FTTR对其热解产物及析出过程进行在线检测.结果表明:竹柳热解过程大致可分干燥失水阶段、快速热解阶段和炭化阶段3个阶段,其中主要阶段发生在127~ 587℃的温度区间内,该阶段的质量损失率高达73.77%;587℃以后试样质量维持缓慢变化,最后的残余质量为17.62%.根据红外谱图分析得出竹柳热解气体产物以CO2、CO、H2O等为主,并可能含有少量的酸酐类、酯类、酸类、酰胺类、烃类等物质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号