首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The aromatic profile of Jura flor-sherry wines (also called "yellow wines") has been little studied. Only acetaldehyde, diethoxy-1,1-ethane, and sotolon have been described as key odorants. In the present work, three wines (vintages 2002 and 2003) were investigated by gas chromatography-mass spectrometry and gas chromatography-olfactometry (GC-O) aroma extract dilution analysis. The goal was to assess the relative impact of varietal, fermentation, and oak-barrel compounds by using two complementary extraction procedures. No grape terpenoids were found after the long barrel aging (6 years and 3 months). On the other hand, two candy/fruity esters issued from yeast exhibited high flavor dilution factor (FD) values: ethyl isobutyrate (64-1024) and ethyl isovalerate (128-1024). As expected, many oak-related odorants were found in the XAD 2 flavor extracts, mainly homofuraneol [2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone] (cotton candy, FD = 16-256) and cis-β-methyloctalactone (butter, woody, FD = 256). Most probably issued from oxidation of the grape constituent theaspirane, an exceptional grenadine odor was perceived by GC-O up to dilution 64-1024. Chemical oxidation experiments and GC-high-resolution mass spectrometry (HRMS) allowed us to identify it as 4-hydroxy-7,8-dihydro-β-ionone (RI(CPsil5CB) = 1373), a hydrolysis-derived product of dihydrodehydro-β-ionone. With an extraction dedicated to hydrophilic compounds, the key role of sotolon was confirmed (112-387 μg/kg; FD = 256-1024). This procedure enabled us to also evidence its ethyl analogue, abhexon (31-74 μg/kg; FD = 64-256).  相似文献   

3.
This study was conducted to determine the composition of kumquat (Fortunella japonica Swingle) cold-pressed peel oil and to determine which volatile components are primarily responsible for the aroma of this oil. Eighty-two compounds were identified in the oil by GC and GC-MS. The major compounds were limonene (93.73%), myrcene (1.84%), and ethyl acetate (1.13%). Flavor dilution (FD) factors and relative flavor activities (RFA) of volatile constituents were evaluated by aroma extract dilution analysis with gas chromatography-olfactometry (GC-O). Camphene, terpinen-4-ol, citronellyl formate, and citronellyl acetate showed high FD factors (>/=5) and RFA (>20). Citronellyl formate and citronellyl acetate were regarded as the characteristic odor components of the kumquat peel oil from the results of FD factor, RFA, and GC-sniffing. Citronellyl acetate is considered to be the odor component most similar to kumquat by organoleptic evaluation with GC-O.  相似文献   

4.
The unique flavor of Oscypek, a Polish ewe's milk smoked cheese, is described as slightly sour, piquant, salted, and smoked. In this paper with the application of gas chromatography-olfactometry (GC-O) and combination of aroma extract dilution analysis (AEDA) 20 potent odorants of this cheese have been identified within the flavor dilution factor (FD) range of 4-2048. Among them, 2-methoxyphenol, 2-methoxy-4-methylphenol, 4-methylphenol, and butanoic acid showed the highest FD factors. Quantification results based on labeled standard addition followed by calculation of odor activity values (OAV) of 13 compounds with the highest FD factors revealed that 11 compounds were present at concentrations above their odor threshold values and therefore mostly contribute to the overall aroma of smoked ewe's milk cheese. Six of those compounds were represented by phenolic derivatives, with the highest OAV for 2-methoxyphenol (1280). Analysis of key odorants of an unsmoked cheese sample showed that the smoking process had a fundamental influence on Oscypek aroma formation.  相似文献   

5.
Four Spanish aged red wines made in different wine-making areas have been extracted, and the extracts and their 1:5, 1:50, and 1:500 dilutions have been analyzed by a gas chromatography-olfactometry (GC-O) approach in which three judges evaluated odor intensity on a four-point scale. Sixty-nine different odor regions were detected in the GC-O profiles of wines, 63 of which could be identified. GC-O data have been processed to calculate averaged flavor dilution factors (FD). Different ANOVA strategies have been further applied on FD and on intensity data to check for significant differences among wines and to assess the effects of dilution and the judge. Data show that FD and the average intensity of the odorants are strongly correlated (r(2) = 0.892). However, the measurement of intensity represents a quantitative advantage in terms of detecting differences. For some odorants, dilution exerts a critical role in the detection of differences. Significant differences among wines have been found in 30 of the 69 odorants detected in the experiment. Most of these differences are introduced by grape compounds such as methyl benzoate and terpenols, by compounds released by the wood, such as furfural, (Z)-whiskey lactone, Furaneol, 4-propylguaiacol, eugenol, 4-ethylphenol, 2,6-dimethoxyphenol, isoeugenol, and ethyl vanillate, by compounds formed by lactic acid bacteria, such as 2,3-butanedione and acetoine, or by compounds formed during the oxidative storage of wines, such as methional, sotolon, o-aminoacetophenone, and phenylacetic acid. The most important differences from a quantitative point of view are due to 2-methyl-3-mercaptofuran, 4-propylguaiacol, 2,6-dimethoxyphenol, and isoeugenol.  相似文献   

6.
Application of aroma extract dilution analysis (AEDA) on the volatile components of low-, medium-, and high-heat-treated nonfat dry milks (NDM) revealed aroma-active compounds in the log(3) flavor dilution (log(3) FD) factor range of 1 to 6. The following compounds contributed the highest log(3) FD factors to overall NDM flavor: 2,5-dimethyl-4-hydroxy-3(2H)-furanone [(Furaneol), burnt sugar-like]; butanoic acid (rancid); 3-(methylthio)propanal [(methional), boiled potato-like]; o-aminoacetophenone (grape-like); delta-decalactone (sweet); (E)-4,5-epoxy-(E)-2-decenal (metallic); pentanoic acid (sweaty); 4,5-dimethyl-3-hydroxy-2(5H)-furanone [(sotolon), curry]; 3-methoxy-4-hydroxybenzaldehyde [(vanillin), vanilla]; 2-acetyl-1-pyrroline and 2-acetyl-2-thiazoline (popcorn-like); hexanoic acid (vinegar-like); phenylacetic acid (rose-like); octanoic acid (waxy); nonanal (fatty); and 1-octen-3-one (mushroom-like). The odor intensities of Furaneol, butanoic acid, methional, o-aminoacetophenone, sotolon, vanillin, (E)-4,5-epoxy-(E)-2-decenal, and phenylacetic acid were higher in high-heat-treated samples than others. However, the odor intensities of lactones, 2-acetyl-1-pyrroline, and 2-acetyl-2-thiazoline were not affected by heat treatment. Sensory evaluation results also revealed that heat-generated flavors have a major impact on the flavor profile of NDM.  相似文献   

7.
The sensorial representativeness of the headspace solid-phase microextraction (HS-SPME) aroma extract from commercial Sherry vinegars has been determined by direct gas chromatography-olfactometry (D-GCO). Extracts obtained under optimal conditions were used to characterize the aroma of these vinegars by means of GCO and aroma extract dilution analysis (AEDA). Among the 37 different odorants determined, 13 of them were identified for the first time in Sherry vinegars: 2 pyrazines (3-isopropyl-2-methoxypyrazine, 3-isobutyl-2-methoxypyrazine), 2 sulfur compounds (methanethiol, dimethyl trisulfide), 1 unsaturated ketone (1-octen-3-one), 1 norisoprenoid (β-damascenone), 1 ester (ethyl trans-cinnamate) and 6 aldehydes (2- and 3-methylbutanal, octanal, nonanal, (E)-2-nonenal and (E,E)-2,4-decadienal). The determination of the odor thresholds in a hydroacetic solution together with the quantitative analysis-which was also performed using the simple and fast SPME technique-allowed obtaining the odor activity values (OAV) of the aromatic compounds found. Thus, a first pattern of their sensory importance on commercial Sherry vinegar aroma was provided.  相似文献   

8.
Application of a comparative aroma extraction dilution analysis on unroasted and roasted Criollo cocoa beans revealed 42 aroma compounds in the flavor dilution (FD) factor range of 1-4096 for the unroasted and 4-8192 for the roasted cocoa beans. While the same compounds were present in the unroasted and roasted cocoa beans, respectively, these clearly differed in their intensity. For example, 2- and 3-methylbutanoic acid (rancid) and acetic acid (sour) showed the highest FD factors in the unroasted beans, while 3-methylbutanal (malty), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), and 2- and 3-methylbutanoic acid (sweaty) were detected with the highest FD factors in the roasted seeds. Quantitation of 30 odorants by means of stable isotope dilution assays followed by a calculation of odor activity values (ratio of the concentration/odor threshold) revealed concentrations above the odor threshold for 22 compounds in the unroasted and 27 compounds in the roasted cocoa beans, respectively. In particular, a strong increase in the concentrations of the Strecker aldehydes 3-methylbutanal and phenylacetaldehyde as well as 4-hydroxy-2,5-dimethyl-3(2H)-furanone was measured, suggesting that these odorants should contribute most to the changes in the overall aroma after roasting. Various compounds contributing to the aroma of roasted cocoa beans, such as 3-methylbutanoic acid, ethyl 2-methylbutanoate, and 2-phenylethanol, were already present in unroasted, fermented cocoa beans and were not increased during roasting.  相似文献   

9.
Aroma compounds in Chinese "Wuliangye" liquor were identified by gas chromatography-olfactometry (GC-O) after fractionation. A total of 132 odorants were detected by GC-O in Wuliangye liquor on DB-wax and DB-5 columns. Of these, 126 aromas were identified by GC-mass spectrometry (MS). Aroma extract dilution analysis (AEDA) was further employed to identify the most important aroma compounds in "Wuliangye" and "Jiannanchun" liquors. The results showed that esters could be the most important class, especially ethyl esters. Various alcohols, aldehydes, acetals, alkylpyrazines, furan derivatives, lactones, and sulfur-containing and phenolic compounds were also found to be important. On the basis of flavor dilution (FD) values, the most important aroma compounds in Wuliangye and Jiannanchun liquors could be ethyl butanoate, ethyl pentanoate, ethyl hexanoate, ethyl octanoate, butyl hexanoate, ethyl 3-methylbutanoate, hexanoic acid, and 1,1-diethoxy-3-methylbutane (FD > or = 1024). These compounds contributed to fruity, floral, and apple- and pineapple-like aromas with the exception of hexanoic acid, which imparts a sweaty note. Several pyrazines, including 2,5-dimethyl-3-ethylpyrazine, 2-ethyl-6-methylpyrazine, 2,6-dimethylpyrazine, 2,3,5-trimethylpyrazine, and 3,5-dimethyl-2-pentylpyrazine, were identified in these two liquors. Although further quantitative analysis is required, it seems that most of these pyrazine compounds had higher FD values in Wuliangye than in Jiannanchun liquor, thus imparting stronger nutty, baked, and roasted notes in Wuliangye liquor.  相似文献   

10.
Isolation of the volatile fraction from cocoa powder (50 g; 20% fat content) by a careful extraction/distillation process followed by application of an aroma extract dilution analysis revealed 35 odor-active constituents in the flavor dilution (FD) factor range of 8-4096. Among them, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), 2- and 3-methylbutanoic acid (sweaty, rancid), dimethyl trisulfide (cooked cabbage), 2-ethyl-3,5-dimethylpyrazine (potato-chip-like), and phenylacetaldehyde (honey-like) showed the highest FD factors. Quantitation of 31 key odorants by means of stable isotope dilution assays, followed by a calculation of their odor activity values (OAVs) (ratio of concentration to odor threshold) revealed OAVs>100 for the five odorants acetic acid (sour), 3-methylbutanal (malty), 3-methylbutanoic acid, phenylacetaldehyde, and 2-methylbutanal (malty). In addition, another 19 aroma compounds showed OAVs>1. To establish their contribution to the overall aroma of the cocoa powder, these 24 compounds were added to a reconstructed cocoa matrix in exactly the same concentrations as they occurred in the cocoa powder. The matrix was prepared from deodorized cocoa powder, which was adjusted to 20% fat content using deodorized cocoa butter. The overall sensory evaluation of this aroma recombinate versus the cocoa powder clearly indicated that the 24 compounds represented the typical sweet, cocoa-like odor of the real sample.  相似文献   

11.
12.
Volatiles of a wild mandarin, Mangshanyegan (Citrus nobilis Lauriro), were characterized by GC-MS, and their aroma active compounds were identified by aroma extract dilution analysis (AEDA) and gas chromatography-olfactometry (GC-O). The volatile profile of Mangshanyegan was compared with those of other four citrus species, Kaopan pummelo (Citrus grandis), Eureka lemon (Citrus limon), Huangyanbendizao tangerine (Citrus reticulata), and Seike navel orange (Citrus sinensis). Monoterpene hydrocarbons predominated in Mangshanyegan, in particular d-limonene and β-myrcene, which accounted for 85.75 and 10.89% of total volatiles, respectively. Among the 12 compounds with flavor dilution factors (FD) = 27, 8 oxygenated compounds, including (Z)- and (E)-linalool oxides, were present only in Mangshanyegan. The combined results of GC-O, quantitative analysis, odor activity values (OAVs), and omission tests revealed that β-myrcene and (Z)- and (E)-linalool oxides were the characteristic aroma compounds of Mangshanyegan, contributing to the balsamic and floral notes of its aroma.  相似文献   

13.
Volatile organic compounds (VOCs) in fermented honeybush, Cyclopia subternata, were sampled by means of a high-capacity headspace sample enrichment probe (SEP) and analyzed by gas chromatography-mass spectrometry (GC-MS). Stereochemistry was determined by means of enantioselective GC-MS with derivatized β-cyclodextrin columns as chiral selectors. A total of 183 compounds, the majority of which are terpenoids (103; 56%), were identified by comparing their mass spectra and retention indices with those of reference compounds or tentatively identified by comparison with spectral library or literature data. Of these compounds, 37 were determined by gas chromatography-olfactometry (GC-O), using detection frequency (DF) and aroma extract dilution analysis (AEDA), to be odor-active (FD ≥ 2). (E)-β-Damascenone, (R/S)-linalool, (E)-β-damascone, geraniol, (E)-β-ionone, and (7E)-megastigma-5,7,9-trien-4-one were identified with the highest FD factors (≥512). The odors of certain compounds, that is, (6E,8Z)-megastigma-4,6,8-trien-3-one, (6E,8E)-megastigma-4,6,8-trien-3-one, (7E)-megastigma-5,7,9-trien-4-one, 10-epi-γ-eudesmol, epi-α-muurolol, and epi-α-cadinol, were perceived by GC-O assessors as typically honeybush-like.  相似文献   

14.
15.
Wines from Pedro Ximénez (PX), Fino, botrytized Sauternes, and Cava were screened by gas chromatography-olfactometry (GC-O), and the most relevant aroma compounds were further quantified in six different wines of each group. The comparison of GC-O and quantitative data with similar data from white young wines has made it possible to identify the aroma compounds potentially responsible for the specific sensory characteristics of these wines. Results have shown that all these wines are relatively rich in 3-methylbutanal, phenylacetaldehyde, methional, sotolon, and the ethyl esters of 2-, 3-, and 4-methylpentanoic acids. While Cava has a less specific aroma profile halfway between these special wines and young white wines, PX is richest in 3-methylbutanal, furfural, beta-damascenone, ethyl cyclohexanoate, and sotolon; Fino in acetaldehyde, diacetyl, ethyl esters of branched aliphatic acids with four, five, or six carbon atoms, and 4-ethylguaiacol; and Sauternes in phenylacetaldehyde, 3-mercaptohexanol, and 4-methyl-4-mercaptopentanone.  相似文献   

16.
Three forms of Thai fried chili pastes (CP) were prepared, consisting of an unheated CP (UH-CP), a CP heated at 100 degrees C for 25 min (H25-CP, typical product), and a CP excessively heated for 50 min (H50-CP). The potent odorants in the CPs were investigated by two gas chromatography-olfactometry methods: dynamic headspace dilution analysis (DHDA) and aroma extract dilution analysis (AEDA). DHDA revealed that the predominant odorants in heated CPs were mainly sulfur-containing compounds, followed by lipid-derived compounds, Strecker aldehydes, and Maillard reaction products. Dimethyl sulfide, allyl mercaptan, 2- (or 3-) methylbutanal, ally methyl sulfide, 2,3-butanedione, 3,3'-thiobis(1-propene), and methyl propyl disulfide were among the most potent headspace odorants detected by DHDA. By AEDA, 2-vinyl-4 H-1,3-dithiin and diallyl trisulfide had the highest FD factors in H25-CP. On the basis of their high FD factors by both GCO methods, the predominant odorants in H25-CP were 3-vinyl-4 H-1,2-dithiin, allyl methyl disulfide, and allyl methyl trisulfide. Furthermore, dimethyl trisulfide and diallyl disulfide had the highest odor activity values in H25-CP, suggesting that these were also potent odorants in CP. In addition, methional, 3-methylbutanoic acid, 4-hydroxy-2,5-dimethyl-3-(2 H)-furanone, and 3-hydroxy-4,5-dimethyl-2( 5H)-furanone (sotolon) were indicated as potent thermally derived odorants of H25-CP.  相似文献   

17.
The volatile components of Hallabong ([C. unshiu Marcov x C. sinensis Osbeck] x C. reticulata Blanco) cold-pressed peel oil were quantitatively and qualitatively determined by use of two internal standards with GC, GC-MS, and GC-olfactometry. According to instrumental analysis by GC and GC-MS, limonene (90.68%) was the most abundant compound, followed by sabinene (2.15%), myrcene (1.86%), and gamma-terpinene (0.88%). Flavor dilution (FD) factors of the volatile flavor components from Hallabong peel oil were determined by aroma extract dilution analysis. Furthermore, relative flavor activity was investigated by means of FD factor and weight percent. The highest FD factors were found for citronellal and citronellyl acetate, and delta-murollene showed a higher relative flavor activity. Results of sniff testing of the original oil and its oxygenated fraction revealed that citronellal, cis-beta-farnesene, and citronellyl acetate were regarded as the character impact odorants of Hallabong peel oil, and citronellal gave the most odor-active character of Hallabong aroma.  相似文献   

18.
19.
20.
Application of the aroma extract dilution analysis on a flavor distillate prepared from freshly ground rye flour (type 1150) revealed 1-octen-3-one (mushroom-like), methional (cooked potato), and (E)-2-nonenal (fatty, green) with the highest flavor dilution (FD) factors among the 26 odor-active volatiles identified. Quantitative measurements performed by stable isotope dilution assays and a comparison to the odor thresholds of selected odorants in starch suggested methional, (E)-2-nonenal, and hexanal as contributors to the flour aroma, because their concentrations exceeded their odor thresholds by factors >100. Application of the same approach on a rye sourdough prepared from the same batch of flour revealed 3-methylbutanal, vanillin, 3-methylbutanoic acid, methional, (E,E)-2,4-decadienal, 2,3-butanedione, and acetic acid as important odorants; their concentrations exceeded their odor thresholds in water and starch by factors >100. A comparison of the concentrations of 20 odorants in rye flour and the sourdough made therefrom indicated that flour, besides the fermentation process, is an important source of aroma compounds in dough. However, 3-methylbutanol, acetic acid, and 2,3-butanedione were much increased during fermentation, whereas (E,E)-2,4-decadienal and 2-methylbutanal were decreased. Similar results were obtained for five different flours and sourdoughs, respectively, although the amounts of some odorants in the flour and the sourdough differed significantly within batches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号