首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virgin argan oil possesses high antioxidant capacity (AC), which may be partially explained by its high content in antioxidant molecules such as polyphenols and tocopherols. However, the content in other antioxidant molecules, for example, coenzyme Q10 (CoQ(10)), coenzyme Q9 (CoQ(9)), and melatonin (Mel), which have been identified in other edible vegetable oils, have not been evaluated in virgin argan oil. Consequently, it was decided to evaluate the contents of CoQ(10), CoQ(9), and Mel in virgin argan oils and compare the results to those obtained in extra virgin olive oils and some varieties of seed oils. By the use of sensitive HPLC-EC/F methods, the results showed that virgin argan oil is a rich source of CoQ(10) and Mel, but no CoQ(9) was detected. Extra virgin olive oil showed higher levels of CoQ(10) and lower levels of Mel than virgin argan oil. Between the seed oil samples, only virgin soybean oil showed higher CoQ(10) and Mel levels than virgin argan oil. The results may be relevant for the contribution of CoQ(10) and Mel to the biological activities of virgin argan oil.  相似文献   

2.
Coenzyme Q10 (CoQ10) has been extensively studied as adjunctive therapy for ischemic heart disease, and its cardioprotective ability is well-established. The mitochondrial respiratory chain contains several coenzymes, including CoQ1, CoQ2, CoQ4, CoQ6, CoQ7, CoQ8, CoQ9, and CoQ10. It is not known whether other CoQs, especially CoQ9, is equally cardioprotective as CoQ10. The present study was designed to determine if CoQ 9 could protect guinea pig hearts from ischemia reperfusion injury. Guinea pigs were randomly divided into three groups: groups I and II were fed CoQ 9 and CoQ10, respectively, for 30 days while group III served as control. After 30 days, the guinea pigs were sacrificed and isolated hearts were perfused via working mode were subjected to 30 min ischemia followed by 2 h of reperfusion. Cardioprotection was assessed by evaluating left ventricular function, ventricular arrhythmias, myocardial infarct size, and cardiomyocyte apoptosis. Samples of hearts were examined for the presence of CoQ9 and CoQ10. The results demonstrated that both CoQ9 and CoQ10 were equally cardioprotective, as evidenced by their abilities to improve left ventricular performance and to reduce myocardial infarct size and cardiomyocyte apoptosis. High performance liquid chromatographic (HPLC) analysis revealed that a substantial portion of CoQ9 had been converted into CoQ10. The results indicate that CoQ9 by itself, or after being converted into CoQ10, reduced myocardial ischemia/reperfusion-induced injury.  相似文献   

3.
A simple method is proposed for determination of aflatoxins in vegetable oils. The method was successfully applied to both crude and degummed oils. The oil sample, dissolved in hexane, was applied to a silica column and washed with ether, toluene, and chloroform; aflatoxins were eluted from the column with chloroform-methanol (97 + 3). As quantitated by thin layer chromatography and liquid chromatography, the oils analyzed contained aflatoxin B1 at levels of 5-200 micrograms/kg. Recoveries of aflatoxin B1 standards added to aflatoxin-free oils were between 89.5 and 93.5%, with coefficients of variation of 6.3-8.0%.  相似文献   

4.
The optimal formulation of coenzyme Q10 (CoQ10) nanoliposomes and the feasibility of production in a pilot scale were investigated. The nanoliposomes were prepared by ethanol injection and sonication techniques for a desired vesicle size in the laboratory. Optimization of formulation in the preparation of CoQ10 nanoliposomes was achieved by an orthogonal array design. The best formulation was found to be phospholipid/CoQ10/cholesterol/Tween 80 (2.5:1.2:0.4:1.8, w/w) with phosphate buffer solution (pH 7.4, 0.01 M) as the hydration media. The z-average diameter (D(z)) was about 68 nm. The encapsulation efficiency was greater than 95% with a retention ratio higher than 90% and a particle size change lower than 10% after storage at 4 degrees C in the dark for 90 days. CoQ10 incorporation resulted in a dramatic increase of the microviscosity of nanoliposomes and inhibited the peroxidation of phospholipid. The D(z) of CoQ10 nanoliposomes produced in a pilot scale was about 67 nm. Results suggest that the technology developed by this investigation is practical to produce the CoQ10 nanoliposomes with the expected encapsulation quality and stability not only in the laboratory but also in a pilot scale.  相似文献   

5.
亚麻籽油和辅酶Q10都具有水中溶解度低、稳定性差、生物利用度低等缺点。将亚麻籽油和辅酶Q10(coenzyme Q10,CoQ10)同时负载于乳液中,可解决两者的应用瓶颈。使用阿拉伯胶为乳化剂,采用高压均质法制备复配亚麻籽油和CoQ10乳液。采用动态光散射、透射电子显微镜、体外模拟消化、体外释放、稀释稳定性、冻融稳定性、离子强度稳定性、光稳定性和加速氧化稳定性方法对所制备乳液的理化性质进行表征。结果显示,制备的乳液平均粒径为(284±5.6) nm,多分散指数(polydispersity index,PDI)为0.112±0.025,为均匀分散的球形液滴。制备的乳液在模拟小肠液中消化,和亚麻籽油、CoQ10混悬液相比,乳化后亚麻籽油的消化速率和CoQ10的生物可给率明显提高。乳液中CoQ10的释放表现出缓释效果。制备的乳液具有较好的稀释和冻融稳定性。Na^+和Ca^2+会造成乳液Zeta电位的下降,对乳液稳定性影响较大。乳液载体化后CoQ10的光稳定性得到了提高。CoQ10对亚麻籽油具有较好的保护作用。  相似文献   

6.
In clinical trials, patients usually take many kinds of drugs at the same time. Thus, drug-drug interactions can often directly affect the therapeutic safety and efficacy of many drugs. Oral delivery is the most desirable means of drug administration. Changes in the activity of drug transporters may substantially influence the absorption of administered drugs from the intestine. However, there have been a few studies on food-drug interactions involving transporters. It is important to be aware of the potential of food-drug interactions and to act in order to prevent undesirable and harmful clinical consequences. Coenzyme Q10 (CoQ10) is very widely consumed by humans as a food supplement because of its recognition by the public as an important nutrient in supporting human health. Since intestinal efflux transporter P-glycoprotein (P-gp) is one of the major factors in drug-drug interactions, we focused on this transporter. We report here for the first time that CoQ10, which is widely used as a food supplement, affects the transport activity of P-gp.  相似文献   

7.
Fluorescence spectra of undiluted extra virgin olive oil obtained with the traditional setup (right-angle fluorescence) show considerable artifacts and deformations due to self-absorption phenomena, even when the spectra are corrected for inner filter effects. On the other side, front-face fluorescence spectra are much less affected by self-absorption. Front-face fluorescence of native olive oil reveals the presence of different fluorophores and can provide information about their amount. From the intense emission at ca. 315-330 nm, it is possible to detect fluorescent polyphenols and pherols and to evaluate their overall content. Low-intensity emission bands at 350-600 nm are correlated to vitamins and other important molecules. Among them, the fluorescence of the riboflavin fluorophore can be used to evaluate its concentration. The intense emission of chlorophyll derivatives, measured in the 640-800 nm spectral region, can provide information on their concentration.  相似文献   

8.
Vegetable oils are promising candidates as substitutes for petroleum base oils in lubricant applications, such as total loss lubrication, military applications, and outdoor activities. Although vegetable oils have some advantages, they also have poor oxidation and low temperature stability. One of the ways to address these issues is chemical modification of fatty acid chain of triglyceride. We report a one-pot synthesis of a novel class of chemically modified vegetable oils from epoxidized triacylglycerols and various anhydrides. In an anhydrous solvent, boron trifluoride etherate is used as catalyst to simultaneously open the oxirane ring and activate the anhydride. The reaction was monitored and products confirmed by NMR, FTIR, GPC, and TGA analysis. Experimental conditions were optimized for research quantity and laboratory scale-up (up to 4 lbs). The resultant acyl derivatives of vegetable oil, having diester substitution at the sites of unsaturation, have potential in formulation of industrial fluids such as hydraulic fluids, lubricants, and metal working fluids.  相似文献   

9.
酶法脱胶作为一种新型的植物油脂脱胶工艺,与传统脱胶工艺相比,具有脱胶完全、用水量和废水排放少、耗能低、精炼得率高等经济、环保的优点,因而备受各国油脂加工业的关注。随着酶法脱胶技术的发展,已有多种磷脂酶(A1、A2、B、C)应用于植物油脂脱胶;酶法脱胶工艺也从简单地优化基本参数(脱胶温度、酶添加量、pH值和加水量等)到结合优化酸预处理、水酶和油脂混合程度来提高脱胶效率,从单一酶脱胶工艺发展到复合酶脱胶工艺,由游离酶脱胶发展到固定化酶脱胶。该文介绍了植物油脂酶法脱胶工艺中使用的磷脂酶,综述分析了酶法脱胶工艺设计与应用现状及存在的问题。提出需综合考虑脱胶效果、磷脂改性副产品加工价值及植物毛油品质等因素,选择合适的磷脂酶和脱胶工艺才能使酶法脱胶同时达到低耗和经济的效果。目前制约酶法脱胶工艺大规模应用的一个重要因素是现有磷脂酶催化性能差,可通过酶人工改造技术提高磷脂酶活性和抗逆性从而解决目前酶法脱胶时间长,脱胶温度低等问题。因此开发性能优良的磷脂酶,并且相应地设计更节能、环保的脱胶工艺是未来植物油脂酶法脱胶研究的主要目标。  相似文献   

10.
Many epidemiological studies suggest that vegetable oils and especially olive oil present a protective effect against atherosclerosis. In this study, total lipids (TL) of Greek olive oils and seed oils of four kinds, namely, soybean, corn, sunflower, and sesame oil, were separated into total polar lipids (TPL) and total neutral lipids (TNL) via a novel extraction procedure. TPL and TNL of olive oil were fractionated by HPLC for further study. Each lipid fraction from HPLC separation along with TL, TPL, and TNL lipid samples from oils were tested in vitro for their capacity to induce or to inhibit washed rabbit platelet aggregation. Comparison between olive and seed oils supports the superiority of olive oil as high levels of platelet activating factor (PAF) antagonists have been detected, mainly in TPL. In addition, the structure of the most active fraction from olive oil was elucidated, as a glycerol-glycolipid. Because it has already been reported that PAF plays a pivotal role in atherogenesis, the existence of PAF agonists and antagonists in vegetable oils may explain their protective role against atherosclerosis.  相似文献   

11.
A simple and precise analytical method for the determination of hydroxy pentacyclic triterpene acids (HPTAs) in vegetable oils was developed. The acidic fraction was isolated by solid-phase extraction using bonded aminopropyl cartridges, and the extract was silylated and analyzed by gas chromatography. Repeatability and recovery of the method were determined. In virgin olive oils, similar amounts of oleanolic (3beta-hydroxyolean-12-en-28-oic) and maslinic (2alpha,3beta-dihydroxyolean-12-ene-28oic) acids and traces of ursolic (3beta-hydroxyurs-12-en-28-oic) acid were found. The main factor affecting HPTA concentration was the oil quality since that increases as the quality decreases, while olive variety, olive ripeness, and oil extraction system had less influence. In crude olive pomace oils, the concentrations were very much higher than in virgin olive oils. During refining processes, total or significant losses of HPTAs were observed. Esterified derivatives of HPTAs were not found.  相似文献   

12.
13.
The environment must be protected against pollution caused by lubricants based on petroleum oils. The pollution problem is so severe that approximately 50% of all lubricants sold worldwide end up in the environment via volatility, spills, or total loss applications. This threat to the environment can be avoided by either preventing undesirable losses, reclaiming and recycling mineral oil lubricants, or using environmentally friendly lubricants. Vegetable oils are recognized as rapidly biodegradable and are thus promising candidates as base fluids in environment friendly lubricants. Lubricants based on vegetable oils display excellent tribological properties, high viscosity indices, and flash points. To compete with mineral-oil-based lubricants, some of their inherent disadvantages, such as poor oxidation and low-temperature stability, must be corrected. One way to address these problems is chemical modification of vegetable oils at the sites of unsaturation. After a one-step chemical modification, the chemically modified soybean oil derivatives were studied for thermo-oxidative stability using pressurized differential scanning calorimetry and a thin-film micro-oxidation test, low-temperature fluid properties using pour-point measurements, and friction-wear properties using four-ball and ball-on-disk configurations. The lubricants formulated with chemically modified soybean oil derivatives exhibit superior low-temperature flow properties, improved thermo-oxidative stability, and better friction and wear properties. The chemically modified soybean oil derivatives having diester substitution at the sites of unsaturation have potential in the formulation of industrial lubricants.  相似文献   

14.
15.
The fat in vegetable foods--tree nuts, peanuts, sunflower seeds, avocado, and olives--can be determined volumetrically by acid digestion of the material and separation of the fat. The assay can be performed conveniently by using the equipment developed for fat determination of milk (Gerber method). The results agree well with those obtained by Soxhlet extraction. The advantages of using the Gerber method for vegetable foods are simplicity, speed, low operation cost, and elimination of the use of inflammable solvents.  相似文献   

16.
A novel screening method using an automated flow injection electrospray ionization tandem mass spectrometry system is proposed for the simultaneous determination of five nonprotein amino acids (β-alanine, alloisoleucine, ornithine, citrulline, pyroglutamic acid) and three betaines (glycine betaine, trigonelline, proline betaine) after derivatization with butanolic HCl. MS/MS experiments were carried out in a triple-quadrupole instrument using multiple reaction monitoring mode in <2 min. The proposed method provided high fingerprinting power to identify the presence of five of the studied compounds in different types of vegetable oils (soybean, sunflower, corn, olive) with LODs at parts per billion levels. The method was validated, and different mixtures of extra virgin olive oil with seed oils were analyzed, achieving the typification for the detection of adulterations in extra virgin olive oils up to 2% w/w. The nonprotein amino acid ornithine was confirmed as a marker for adulteration in the olive oils analyzed.  相似文献   

17.
The content of phytosterol oxidation products was determined in samples of crude vegetable oils: peanut, sunflower, maize, palm nut, and lampante olive oils that were intended for refining and not for direct consumption. The 7 alpha- and 7 beta-hydroxy derivatives of beta-sitosterol, stigmasterol, and campesterol and the 7-keto-beta-sitosterol were the principal phytosterol oxides found in almost all of the oils analyzed. In some oils, the epoxy and dihydroxy derivatives of beta-sitosterol were also found at very low levels. The highest total concentrations of phytosterol oxides, ranging from 4.5 to 67.5 and from 4.1 to 60.1 ppm, were found in sunflower and maize oils, respectively. Lower concentrations were present in the peanut oils, 2.7-9.6 ppm, and in the palm nut oil, 5.5 ppm, whereas in the lampante olive oils, only three samples of the six analyzed contained a low concentration (1.5-2.5 ppm) of oxyphytosterols. No detectable levels of phytosterol oxides were found in the samples of palm and coconut oils. Bleaching experiments were carried out on a sample of sunflower oil at 80 degrees C for 1 h with 1 and 2% of both acidic and neutral earths. The bleaching caused a reduction of the hydroxyphytosterol with partial formation of steroidal hydrocarbons with three double bonds in the ring system at the 2-, 4-, and 6-positions (steratrienes). The same sunflower oil was deodorized at 180 degrees C under vacuum for 1 h, and no dehydration products were formed with a complete recovery of the hydroxyphytosterols. A bleaching test with acidic earths was carried out also with an extra virgin olive oil fortified with 7-keto-cholesterol, dihydroxycholesterol, and alpha-epoxy-cholesterol. There was no formation of steratrienes from these compounds, but dihydroxycholesterol underwent considerable decomposition and alpha-epoxycholesterol underwent ring opening with formation of the dihydroxy derivative, whereas 7-ketocholesterol was rather stable  相似文献   

18.
Five methods using aqueous/organic solvents for the separation of proteins from oils were compared. The extraction with acetone-hexane followed by amino acid analysis was found to be the most suitable method for isolation and quantification of proteins from oils. The detection limit of the method was 0.18 mg protein/kg oil, and the quantification limit was 0.6 mg protein/kg. The relative repeatability limit for samples containing 1-5 mg protein/kg sample was 27%. The protein recovery ranged between 68 and 133%. Using this method, the protein content of 14 refined and nonrefined oils was determined. In none of the refined oils were proteins detected, whereas the protein content of the unrefined oils ranged between undetectable in extra virgin olive oil to 11 mg/kg in rapeseed oil. With sodium dodecyl sulfate-polyacrylamide gel electrophoresis in combination with silver staining, many protein bands were visible in the unrefined soy, olive, peanut, and rapeseed oil samples. Proteins bands were not obtained from the refined fish oil. In the other refined oil samples, a few proteins bands could be visualized. Two protein bands with apparent molecular molecular masses of 58 and 64 kDa were always observed in these oils.  相似文献   

19.
Near-infrared (NIR) spectroscopy and partial least-square regression were used for determination of alpha-tocopherol in edible oils after extraction with ethanol. The standard error of calibration and the standard error of prediction were calculated for evaluation of the calibration models. The chemometric calibration model was prepared in spectral region 6500-4500 cm(-1) for standard alpha-tocopherol solutions (0.54-53.54 mg/mL). Obtained mean concentrations of natural alpha-tocopherol in different types of oils varied from 17.53 to 57.10 mg/100 g. Net analyte signal calculation was used to estimate detection limit (DL = 0.12 mg/mL), quantification limit (QL = 0.40 mg/mL), sensitivity (SEN = 0.045 mg/mL), and selectivity (SEL ranged between 0.24 and 0.54% of the measured reflectance signal) of the proposed NIR method. The comparable precision (RSD = 0.68-2.80% and 0.79-3.06%) and accuracy (recovery, 97.2-102.4% and 96.8-103.2%) for the proposed NIR and standard HPLC methods, demonstrate the benefit of the NIR method in the routine analysis of alpha-tocopherol in vegetable oils.  相似文献   

20.
The study demonstrates the application of front face and right angle synchronous fluorescence spectroscopy for the characterization of edible oils. The method enables monitoring of tocopherols, pheophytins, and other fluorescent components in edible oils. Principal component analysis of synchronous fluorescence spectra revealed sample clustering according to the type of oil. Partial least-squares regression was utilized to develop calibration models between fluorescence spectra and total tocopherol content determined by HPLC. The regression models showed a good ability to predict tocopherol content. The best fitting results were obtained for 1% v/v diluted oils and for bulk samples using the entire spectrum, yielding the regression coefficient, r, of 0.991, and root mean square error of cross-validation of approximately 8%. The results presented confirm the capabilities of the fluorescence techniques as a tool for the analysis of edible oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号