首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice (Oryza sativa L.) grown on cadmium (Cd)-contaminated soils has caused health problems in Asian subsistence rice farmers. For other crops, normal co-contaminant zinc (Zn) inhibits the increased uptake of Cd. We used a multi-chelator-buffered nutrient solution to characterize the interaction of Zn and Cd in uptake-translocation of Cd in “Lemont” rice. The activity of free Zn2+ varied from 10?7.6 to 10?5.2 M, while free Cd2+ held constant at 10?10.7 M. Zinc activity 10?5.6 M and higher was phytotoxic to rice, resulting in severe chlorosis, reduced growth, and increased Cd transport to shoots. In contrast to previous studies with wheat, lettuce, and spinach, free Zn2+ maintained at adequate to sub-phytotoxic levels (10?7.6 to 10?6.1) did not inhibit Cd uptake by rice. The inability of Zn to inhibit Cd uptake by rice is a key factor in Cd risk from zinc-lead mine waste contaminated soil compared with other crops.  相似文献   

2.
A promising approach for cancer chemoprevention might be a combination therapy utilizing dietary phytochemicals and anticarcinogenic pharmaceuticals at a suboptimal dosage to minimize any potential adverse side effects. To test this hypothesis, various dosages of anthocyanin-rich tart cherry extract were fed in combination with suboptimal levels of the nonsteroidal anti-inflammatory drug sulindac to APCMin mice for 19 weeks. By the end of the feeding period, fewer mice that were fed the anthocyanin-rich extract in combination with sulindac lost more than 10% of body weight than mice fed sulindac alone. Mice that were fed anthocyanin-rich extract (at any dose) in combination with sulindac had fewer tumors and a smaller total tumor burden (total tumor area per mouse) in the small intestine when compared to mice fed sulindac alone. These results suggest that a dietary combination of tart cherry anthocyanins and sulindac is more protective against colon cancer than sulindac alone.  相似文献   

3.
This study was designed to investigate the cancer preventive activities of wheat bran (WB) oil. We studied the colon cancer preventive effects of WB oil and its subfractions in the Apc(min/+) mouse model, a recognized mouse model for human colorectal cancer, and used human colon cancer cell lines (HCT-116 and HT-29) to identify possible active fractions in WB oil. Our results showed that the oil fraction of WB was more active than the water fraction against the growth of human colon cancer cell lines and that 2% WB oil significantly inhibited the overall tumorigenesis by 35.7% (p < 0.0001) in the Apc(min/+) mouse model. The WB oil was further fractioned into nonpolar lipids and phytochemicals and the phytochemical fraction was fractionated into phytosterols and phytosterol ferulates, 5-alk(en)ylresorcinols, and unidentified constituents by normal phase silica gel column chromatography. Results on cell culture showed that the phytochemical fraction had a higher inhibitory effect on HCT-116 human colon cancer cells than that of WB oil, whereas the nonpolar lipid fraction had less growth inhibitory effectiveness. However, neither fractions showed a stronger inhibition than WB oil in the Apc(min/+) mouse model. The current results demonstrate, for the first time, the intestinal cancer preventive activity of WB oil. The active ingredients, however, remain to be identified.  相似文献   

4.
The effect of a combination of (-)-epigallocatechin-3-gallate (EGCG) with fish oil on intestinal tumorigenesis in Apc (Min/+) mice fed a high-fat diet was investigated in the present study. The combined treatment of EGCG and fish oil for 9 weeks reduced the tumor number by 53% as compared to controls while neither agent alone had a significant effect. Apoptosis was significantly increased in all treatment groups. beta-Catenin nuclear positivity in adenomas from the combination group was lower than control mice, implicating the modulation of Wnt signaling by the combination. Fish oil and the combination significantly reduced prostaglandin E 2 (PGE 2) levels in small intestinal tumors as compared to controls, suggesting modulation of aberrant arachidonic acid metabolism by fish oil. Akt phosphorylation in adenomas was significantly reduced in all treatment groups, which may have contributed to the observed increase in apoptosis. The results indicate that a combination of low doses of EGCG and fish oil can inhibit tumor multiplicity in Apc (Min/+) mice.  相似文献   

5.
Organic farming has often been found to provide benefits for biodiversity, but the benefits can depend on the species considered and characteristics of the surrounding landscape. In an intensively farmed area of Northeast Italy we investigated whether isolated organic farms, in a conventionally farmed landscape, provided local benefits for insect pollinators and pollination services. We quantified the relative effects of local management (i.e. the farm system), landscape management (proportion of surrounding uncultivated land) and interactions between them. We compared six organic and six conventional vine fields. The proportion of surrounding uncultivated land was calculated for each site at radii of 200, 500, 1000 and 2000 m. The organic fields did not differ from the conventional in their floral resources or proportion of surrounding uncultivated land. Data were collected on pollinator abundance and species richness, visitation rates to, and pollination of experimental potted plants. None of these factors were significantly affected by the farming system. The abundance of visits to the potted plants in the conventional fields tended to be negatively affected by the proportion of surrounding uncultivated land. The proportion fruit set, weight of seeds per plant and seed weight in conventional and organic fields were all negatively affected by the proportion of surrounding uncultivated land. In vine fields the impact of the surrounding landscape was stronger than the local management. Enhancement of biodiversity through organic farming should not be assumed to be ubiquitous, as potential benefits may be offset by the crop type, organic-management practices and the specific habitat requirements in the surrounding landscape.  相似文献   

6.
Charcoal stocks were determined in a chronosequence of soils which have been converted to agricultural land use by slash-and-burn up to 100 years ago. With time, opposite to our assumptions, the charcoal chemical quality, as measured by molecular markers for pyrogenic carbon, did not change and charcoal stocks did not show a clear decrease. Our results indicate that charcoal may resist chemical degradation even when exposed to intense weathering in a tropical climate.  相似文献   

7.
Ginger is one of the most commonly used fresh herbs and spices. Enterotoxigenic Escherichia coli heat-labile enterotoxin (LT)-induced diarrhea is the leading cause of infant death in developing countries. In this study, we demonstrated that ginger significantly blocked the binding of LT to cell-surface receptor G M1, resulting in the inhibition of fluid accumulation in the closed ileal loops of mice. Biological-activity-guided searching for active components showed that zingerone (vanillylacetone) was the likely active constituent responsible for the antidiarrheal efficacy of ginger. Further analysis of chemically synthesized zingerone derivatives revealed that compound 31 (2-[(4-methoxybenzyl)oxy]benzoic acid) significantly suppressed LT-induced diarrhea in mice via an excellent surface complementarity with the B subunits of LT. In conclusion, our findings provide evidence that ginger and its derivatives may be effective herbal supplements for the clinical treatment of enterotoxigenic Escherichia coli diarrhea.  相似文献   

8.
Like thermal processing, ionizing radiation can break molecular bonds and induce the formation of chemicals not found in the unprocessed product. Irradiation of foods containing palmitic acid can lead to the formation of 2-dodecylcyclobutanone (2-DCB). In this study, the Escherichia coli tryptophan reverse mutation assay was used to evaluate the capacity of 2-DCB to induce mutations. E. coli tester strains WP2 (pkM101) and WP2 uvrA (pKM101), with and without exogenous metabolic activation, were exposed to 0, 0.05, 0.1, 0.5, and 1 mg/well 2-DCB using the Miniscreen version of the assay. 2-DCB did not induce mutations in the E. coli tryptophan reverse mutation assay. These results are in agreement with negative results obtained in short-term and long-term genetic toxicology tests of irradiated food products.  相似文献   

9.
The Azospirillum genus comprises free-living, plant growth-promoting, nitrogen-fixing bacteria found in the rhizosphere of plant roots. Azospirilla are able to promote plant growth mainly through improvement of root development. Bacterial surface components, such as extracellular polysaccharides and proteins, are involved in root colonization. Phase variation – or phenotypic variation – is one of the mechanisms by which microorganisms adapt to environmental changes. This phenomenon is characterized by the presence of a sub-population of the bacteria presenting a different phenotype relative to the major population. In this study we characterized phenotypic variation of Azospirillum brasilense Sp7. When plated on solid media, some A. brasilense colonies were shown to possess a much more mucoid morphology, producing 7.5–8 times more exopolysaccharide with different monosaccharide composition than the parental strain Sp7. The rate of appearance of this kind of variant colonies was 1 in 5000, in agreement with the accepted rate for the phase/phenotypic variation phenomenon. The variants were significantly more resistant to heat and UV-exposure than the parental strain and displayed genomic changes as seen by the different band patterns following ERIC-PCR, BOX-PCR and RAPD analyses. In plant inoculation experiments under greenhouse conditions, with maize, wheat, soybean and peanuts, the EPS overproducing variants performed as similar as the parental strain. Therefore, EPS overproduction did not confer an apparent advantage to A. brasilense in terms of induction of plant growth promotion.  相似文献   

10.
Urea is the most common nitrogen(N)fertilizer used in the tropics but it has the risk of high gaseous nitrogen(N)losses.Use of nitrification inhibitor has been suggested as a potential mitigation measure for gaseous N losses in N fertilizer-applied fields.In a field trial on a tropical Andosol pastureland in Costa Rica,gaseous emissions of ammonia(NH3)and nitrous oxide(N2O)and grass yield were quantified from plots treated with urea(U;41.7 kg N ha-1application-1)and urea plus the nitrification inhibitor nitrapyrin(U+NI;41.7 kg N ha-1application-1and 350 g of nitrapyrin for each 100 kg of N applied)and control plots(without U and NI)over a six-month period(rainy season).Volatilization of NH3(August to November)in U(7.4%±1.3%of N applied)and U+NI(8.1%±0.9%of N applied)were not significantly different(P>0.05).Emissions of N2O in U and U+NI from June to November were significantly different(P<0.05)only in October,when N2O emission in U+NI was higher than that in U.Yield and crude protein production of grass were significantly higher(P<0.05)in U and U+NI than in the control plots,but they were not significantly different between U and U+NI.There was no significant difference in yield-scaled N2O emission between U(0.31±0.10 g N kg-1dry matter)and U+NI(0.47±0.10 g N kg-1dry matter).The results suggest that nitrapyrin is not a viable mitigation option for gaseous N losses under typical N fertilizer application practices of pasturelands at the study site.  相似文献   

11.
Aboveground litter decomposition is controlled mainly by substrate quality and climate factors across terrestrial ecosystems, but photodegradation from exposure to high-intensity ultraviolet-B (UVB) radiation may also be important in arid and semi-arid environments. We investigated the interactive effects of UVB exposure and litter quality on decomposition in a Tamarix-invaded riparian ecosystem during the establishment of an insect biological control agent in northern Nevada. Feeding by the northern tamarisk beetle (Diorhabda carinulata) on Tamarix spp. trees leads to altered leaf litter quality and increased exposure to solar UVB radiation from canopy opening. In addition, we examined the dynamics of litter decomposition of the invasive exotic Lepidium latifolium, because it is well-situated to invade beetle-infested Tamarix sites. Three leaf litter types (natural Tamarix, beetle-affected Tamarix, and L. latifolium) differing in substrate quality were decomposed in litterbags for one year in the field. Litterbags were subjected to one of three treatments: (1) Ambient UVB or (2) Reduced UVB (where UVB was manipulated by using clear plastic films that transmit or block UVB), and (3) No Cover (a control used to test for the effect of using the plastic films, i.e. a cover effect). Results showed a large cover effect on rates of decomposition and nutrient release, and our findings suggested that frequent cycles of freeze-thaw, and possibly rainfall intensity, influenced decomposition at this site. Contrary to our expectations, greater UVB exposure did not result in faster rates of decomposition. Greater UVB exposure resulted in decreased rates of decomposition and P release for the lower quality litter and no change in rates of decomposition and nutrient release for the two higher quality litter types, possibly due to a negative effect of UVB on soil microbes. Among litter types, rates of decomposition and net release of N and P followed this ranking: L. latifolium > beetle-affected Tamarix > natural Tamarix. Altered nutrient dynamics with beetle introduction as well as the rapid decomposition rates exhibited by L. latifolium are consistent with vulnerability to secondary invasion. In this desert ecosystem, decomposition and nutrient release were strongly affected by litter type and much less so by UVB exposure.  相似文献   

12.
Using six bread wheat genotypes (Triticum aesttvum L. cvs. Dagdas‐94, Gerek‐79, BDME‐10, SBVD 1–21, SBVD 2–22 and Partizanka Niska) and one durum wheat genotype (Triticum durum L. cv. Kunduru‐1149) experiments were carried out to study the relationship between the rate of phytosiderophore release and susceptibility of genotypes to zinc (Zn) deficiency during 15 days of growth in nutrient solution with (1 μM Zn) and without Zn supply. Among the genotypes, Dagdas‐94 and Gerek‐79 are Zn efficient, while the others are highly susceptible to Zn deficiency, when grown on severely Zn deficient calcareous soils in Turkey. Similar to the field observations, visual Zn deficiency symptoms, such as whitish‐brown lesions on leaf blades occurred first and severely in durum wheat Kunduru‐1149 and bread wheats Partizanka Niska, BDME‐10, SBVD 1–21 and SBVD 2–22. Visual Zn deficiency symptoms were less severe in the bread wheats Gerek‐79 and particularly Dagdas‐94. These genotypic differences in susceptibility to Zn deficiency were not related to the concentrations of Zn in shoots or roots. All bread wheat genotypes contained similar Zn concentration in the dry matter. In all genotypes supplied adequately with Zn, the rate of phytosiderophore release was very low and did not exceed 0.5 μmol/48 plants/ 3 h. However, under Zn deficiency the release of phytosiderophores increased in all bread wheat genotypes, but not in the durum wheat genotype. The corresponding rates of phytosiderophore release in Zn deficient durum wheat genotype were 1.2 umol and in Zn deficient bread wheat genotypes ranged between 8.6 μmol for Partizanka Niska to 17.4 umol for SBVD 2–22. In Dagdas‐94, the most Zn efficient genotype, the highest rate of phytosiderophore release was 14.8 umol. The results indicate that the release rate of phytosiderophores does not relate well with the susceptibility of bread wheat genotypes to Zn deficiency. Root uptake and root‐to‐shoot transport of Zn and particularly internal utilization of Zn may be more important mechanisms involved in expression of Zn efficiency in bread wheat genotypes than release of phytosiderophores.  相似文献   

13.
Forest fungi not only have important functions within the forest ecosystem, but picking their fruit bodies is also a popular past time, as well as a source of income in many developing and developed countries. The expansion of commercial harvesting in many parts of the world has led to widespread concern about overharvesting and possible damage to fungal resources. In 1975, we started a field research project to investigate the effects of mushroom picking on fruit body occurrence. The three treatments applied were the harvesting techniques picking and cutting, and the concomitant trampling of the forest floor. The results reveal that, contrary to expectations, long-term and systematic harvesting reduces neither the future yields of fruit bodies nor the species richness of wild forest fungi, irrespective of whether the harvesting technique was picking or cutting. Forest floor trampling does, however, reduce fruit body numbers, but our data show no evidence that trampling damaged the soil mycelia in the studied time period.  相似文献   

14.
Abstract

Due to continuous single nitrogen fertilization, we hypothesized a built-up deficiency of micronutrients in crops that would limit plant growth and crop quality. In 2-year field experiments using urea-N fertilized grain maize (Zea mays L.), hybrid KWS 2376 at 0, 120 and 240 kg N ha?1 crop uptake of Zn, Mn, Cu and Fe was studied at DC 32, DC 61 and in the grain harvested. Micronutrient contents at DC 32 stage – 1st node (aboveground phytomass) and DC 61 – flowering (ear leaf) were all at levels indicative of adequate micronutrient supply to the crop. At both sampling occasions the Fe:Zn and Fe:Mn ratios were adequate implying that Fe did not inhibit the uptake of Zn and Mn. The application of nitrogen increased the Fe content at the 1st sampling in both years; in the second year the same was also the case for the Zn content. Nitrogen nutrition increased the contents of Mn and Fe at the 2nd sampling only in year 2; in the other treatments no changes were observed in the micronutrient contents. Micronutrient correlations in the grain were discovered between Zn and Mn contents and between Fe and Mn contents. In the second year the highest N-rate significantly increased the Fe and Zn content of the grain compared with the lower rates of nitrogen fertilization. Grain yields were not affected by the rate of nitrogen and ranged between 13.65 and 14.34 t ha?1 (1st year) and between 13.68 and 14.18 t ha?1 (2nd year). Nitrogen fertilization did not reduce the content of micronutrients in the plant or grain of maize. It is evident that the continuous single use of N fertilization so far has not resulted in a micronutrient deficiency of the plants limiting the nutrient density of the grain or reducing its quality.  相似文献   

15.
Shrub encroachment is a worldwide phenomenon with implications for desertification and global change. We evaluated its effects on the activities of urease, phosphatase and β-glucosidase in Mediterranean semiarid grasslands dominated by Stipa tenacissima by sampling 12 sites with and without resprouting shrubs along a climatic gradient. The presence of shrubs affected the evaluated enzymes at different spatial scales. Soils under S. tenacissima tussocks and in bare ground areas devoid of vascular plants had higher values of phosphatase and urease when the shrubs were present. For the β-glucosidase, this effect was site-specific. At the scale of whole plots (30 m × 30 m), shrubs increased soil enzyme activities between 2% (β-glucosidase) and 22% (urease), albeit these differences were significant only in the later case. Our results indicate that shrub encroachment does not reduce the activity of extracellular soil enzymes in S. tenacissima grasslands.  相似文献   

16.
Plant roots and soil microorganisms contain significant quantities of low molecular weight (MW) phosphorylated nucleosides and sugars. Consequently, upon death these can represent a significant input of organic-P to the soil. Some of these organic-P substrates must first be dephosphorylated by phosphatases before being assimilated by the soil microbial community while others can be taken up directly from soil solution. To determine whether sorption or phosphatase activity was limiting the bioavailability of low MW organic-P in soil we compared the microbial uptake and C mineralization of a range of 14C-labeled organic-P substrates [glucose-6-phosphate, adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP)] to that of the parent compounds (adenosine and glucose). In a fertile grassland soil we showed that at low organic-P substrate concentrations (<0.5 mM) phosphatase activity did not limit microbial uptake or mineralization in comparison to their non-phosphorylated counterparts. However, at high substrate concentrations (1-10 mM) the mineralization of the organic-P compounds was significantly lower than that of the non-phosphorylated compounds suggesting that phosphatase activity or microbial transporter capacity limited bioavailability. Sorption to the solid phase followed the series glucose<adenosine<G-6-P<AMP<ADP=ATP. However, sorption of the organic-P compounds to the solid phase did not appear to greatly affect bioavailability. The high adenosine mineralization capacity of the microbial biomass suggests that nucleosides may represent a significant source of C and N to the soil microbial biomass. We conclude that at low organic-P substrate concentrations typical of those in soil, neither phosphatase activity nor sorption greatly limits their bioavailability.  相似文献   

17.
Use of transgenic crops, including those expressing the insecticidal Cry protein from Bt, is increasing at a rapid rate in worldwide. Field and laboratory studies of transgenic Bt crops have been carried out to detect the persistence and activity of the Cry protein in soil and its effect on soil microorganisms to assess their risks to environment. However, there were few studies that evaluate the seasonal effects of Bt rice on rhizosphere soil microbial communities compared to those of insecticides commonly applied in paddy soil for the control of lepidopteran insects. In this study, seasonal effects of transgenic rice expressing the Cry1Ab insecticidal protein active against lepidoperan pests and the insecticide triazophos [3-(o,o-diethyl)-1-phenyl thiophosphoryl-1,2,4-triazol] on soil enzyme activities and microbial communities were compared under field conditions. During a 2-year field study, rhizosphere soil samples of transgenic-Bt rice (Bt), non-Bt parental rice (Ck) and non-Bt parental rice with triazophos (Ckp) applied were taken at four stages in the rice developmental cycle: seedling, booting, heading and maturing. Microbial processes were investigated by measuring different biochemical activities including those involved in C and P cycling. Denaturing gradient gel electrophoresis (DGGE) and terminal-restriction fragment length polymorphism (T-RFLP) analyses were used to compare rhizosphere microbial compositions. Some occasional and inconsistent effects of the application of triazophos on the bacterial composition in the rhizosphere soil of rice plant were found at the booting and heading stages as compared with that of transgenic-Bt rice. There were no statistically significant differences (P>0.05) in phosphatase activity, dehydrogenase activity, respiration, methanogenesis or fungal community composition in rhizosphere soil between Bt, Ck and Ckp over the rice cropping cycle. However, seasonal variations in the selected enzyme activities and microbial community composition in the rhizosphere soil of Bt, Ck and Ckp were clearly detected. These results suggested that the changes in rhizophere soil microbial community composition associated with the crop growth stage overweighed the application of triazophos and the cry1Ab gene transformation. KMD1 (Bt) rice expressing the cry1Ab gene had no measurable adverse effect on the key microbial processes or microbial community composition in rhizophere soil over 2 years of rice cropping.  相似文献   

18.
Climate warming may promote soil organic carbon(SOC) decomposition and alter SOC stocks in terrestrial ecosystems, which would in turn affect climate warming. We manipulated a warming experiment using open-top chambers to investigate the effect of warming on SOC stock and chemical composition in an alpine peatland in Zoigê on the eastern Tibetan Plateau, China. Results showed that 5 years of warming soil temperatures enhanced ecosystem respiration during the growing season, promoted above-and be...  相似文献   

19.
20.
Some studies suggest that incorporation of catch crop residues leads to increased availability of P to plants. However, little information is available on how this affects P leaching in soils with a high P load. We tested the effect of catch‐crop residue incorporation at the end of winter on the P leaching potential in a soil column experiment under unsaturated conditions using a typical sandy loam soil of NW Europe characterized by a high P load. We sampled the catch crops white mustard (Sinapis alba L.), Italian ryegrass (Lolium multiflorum L.), black oats (Avena strigosa L.) and a perennial ryegrass‐white clover mix (Lolium perenne L.‐Trifolium repens L.) from a field trial on catch crops and soil from the plots where they were grown. Plant biomass was incorporated taking account of the differences in conditions of the plant material at the end of winter and the biomass yield of each catch crop. Incorporation of catch‐crop residues decreased P leaching compared to the fallow treatment probably through immobilization of soil P during catch crop residue decomposition. The exception was black oats, where the leaching of P was the same as for fallow soil. We observed clear differences in C/N, C/P, water soluble and total P concentration, and biodegradability between the tested catch crops, which seemed to affect the P leaching. We conclude that the incorporation of catch crop residues under typical soil and weather conditions and agricultural practices of NW Europe does not increase the potential P leaching losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号