首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty-six Angus x Hereford heifers (365 +/- 60 kg) were used to determine the effects of supplemental dietary lipid sources on fatty acid composition of i.m., perianal (p.a.), and s.c. lipid depots. Lipid was supplied to diets as either corn oil or a rumen-protected conjugated linoleic acid (CLA) salt for two specific treatment periods of either the final 32 or 60 d on feed. Following an initial 56-d feeding period, heifers were fed one of three dietary treatments (DM basis): 1) basal diet containing 88% concentrate and 12% grass hay (CON), 2) basal diet plus 4% corn oil (OIL), or 3) basal diet plus 2% rumen-protected CLA salt (RPCLA) containing 31% CLA. The trans-10, cis-12 CLA concentration was greatest (P < 0.05) for heifers fed RPCLA and OIL diets and least (P < 0.05) for CON, regardless of time on dietary treatment. Heifers fed supplemental RPCLA had greater (P < 0.05) total CLA content than either CON- or OIL-fed heifers. Adipose tissue concentration of trans-11 vaccenic acid (TVA) was less (P < 0.05) for CON than OIL or RPCLA, which did not differ (P > 0.05). Percentages of C18:1 trans-10 were least (P < 0.05) in i.m. lipid compared with p.a. and s.c., which did not differ (P > 0.05). Following 60 d of lipid supplementation, heifers fed OIL and RPCLA had lower (P < 0.05) concentrations of oleic acid and total monounsaturated fatty acids (MUFA) compared with CON. The ratio of cis-9, trans-11 CLA:TVA was higher (P < 0.05) for heifers fed 60 vs. 32 d, but did not differ (P > 0.05) between adipose depots. Feeding OIL increased (P < 0.05) adipose concentration of C18:2 fatty acid, whereas feeding RPCLA increased (P < 0.05) total CLA isomers by 22%. Intramuscular lipid contained the lowest (P < 0.05) percentage of cis-9, trans-11 CLA, total CLA, C18:1 cis-9, C18:1 trans-10, and TVA. Total CLA and cis-9, trans-11 CLA isomers were increased (P < 0.05) in p.a. and s.c. adipose depots, whereas i.m. adipose tissue contained increased (P < 0.05) amounts of total PUFA. Results from this study indicate that short-term lipid supplementation to feedlot cattle can increase adipose tissue CLA concentrations, but only marginally (8.3 to 17.5%). Moreover, observed decreases in oleic acid and total MUFA concentrations of adipose tissues from heifers fed rumen-protected CLA or corn oil suggest that lipid supplementation may decrease delta9 desaturase activity in adipose tissues, which in turn would lower the conversion of TVA to cis-9, trans-11 CLA isomer.  相似文献   

2.
Sheep adipose tissue explants were maintained in culture for 24 h in the presence of insulin, dexamethasone, or insulin and dexamethasone, and stearoyl-CoA desaturase (SCD) messenger RNA (mRNA) levels and fatty acid synthesis were measured. Insulin increased SCD mRNA levels (P = 0.008) and synthesis of both saturated (P = 0.07) and unsaturated (P < 0.001) fatty acids but had the greatest effect on unsaturated fatty acid synthesis, resulting in the overall production of a greater (P < 0.001) proportion of monounsaturated fat. Dexamethasone, alone, had the opposite effect but actually potentiated the effect of insulin in stimulating SCD expression and both saturated and monounsaturated fatty acid synthesis, without affecting the relative proportions of each. Across adipose tissue depots, the effect of hormones was similar, although the increase in SCD mRNA levels (P = 0.008) and monounsaturated fatty acid synthesis (P < 0.001) was greater in subcutaneous adipose tissue than in the internal (omental and perirenal) depots. These data clearly show that, in ovine adipose tissue, changes in SCD gene expression in response to insulin and dexamethasone are associated with changes in monounsaturated fatty acid synthesis and suggest that it may be possible to develop strategies to manipulate sheep tissues to produce a less-saturated fatty acid profile.  相似文献   

3.
About 30% of U.S. women of reproductive age are obese, a condition linked to offspring obesity and diabetes. This study utilized an ovine model of maternal obesity in which ewes are overfed to induce obesity at conception and throughout gestation. At mid-gestation, fetuses from these obese ewes are macrosomic, hyperglycemic, and hyperinsulinemic, and they exhibited markedly increased pancreatic weight and β-cell numbers compared with fetuses of ewes fed to requirements. This study was conducted to establish fetal pancreatic phenotype and function in late gestation and at term in this ovine model. Multiparous ewes were fed a control (C, 100% National Research Council [NRC] recommendations) or obesogenic (OB, 150% NRC) diet from 60 days before conception to necropsy at day 135 of gestation or to lambing. No differences were observed in fetal size or weight on day 135 or in lamb birth weights between C and OB ewes. In contrast to our previously published results at mid-gestation, pancreatic weights (P < 0.01) and β-cell numbers (P < 0.05) of OB fetuses were markedly lower than those from C fetuses, whereas the β-cell apoptotic rate was increased (P < 0.05) in day 135 OB versus C fetuses. At birth, blood insulin concentration was lower (P < 0.05) and glucose level was higher (P < 0.05) in newborn lambs from OB versus C ewes. These data demonstrate differential impacts of maternal obesity on fetal pancreatic growth and β-cell numbers during early and late gestation. During the first half of gestation there was a marked increase in pancreatic growth, β-cell proliferation, and insulin secretion, followed by a reduction in pancreatic growth and β-cell numbers in late gestation, resulting in reduced circulating insulin at term. It is speculated that the failure of the pancreas to return to a normal cellular composition and function postnatally could result in glucose/insulin dysregulation, leading to obesity, glucose intolerance, and diabetes in postnatal life.  相似文献   

4.
This paper reports the metabolic and morphological characteristics of bovine adipose tissue (AT) at end of fetal life and its variability with breed and anatomical site of AT. Our hypothesis was that, in cattle, end-of-fetal-life differences in adipocyte number, size, and histology may account for differences in AT maturity. To address this question, perirenal and intermuscular AT were sampled from Charolais, Blond d'Aquitaine, and Holstein fetuses at 260 d postconception. Holstein fetuses showed greater leptin mRNA abundance, which is consistent with the greater perirenal AT weight (P = 0.03) than Blond d'Aquitaine fetuses. Compared with Blond d'Aquitaine or Charolais fetuses, Holstein fetuses had larger (P < 0.001) adipocytes, greater (P < 0.05) activities of enzymes involved in de novo fatty acid (FA) synthesis (FA synthase, glucose-6-phosphate dehydrogenase, malic enzyme) and FA esterification (glycerol-3-phosphate dehydrogenase), and greater (P = 0.06, P = 0.10, P < 0.001) mRNA abundance for lipolytic enzymes (hormone-sensitive lipase and adipose triglyceride lipase) and uncoupling protein 1 in both perirenal and intermuscular AT. This indicates increased FA turnover in Holstein adipocytes through FA storage, mobilization, and oxidation pathways. Whatever the breed, adipocytes were smaller in perirenal AT than intermuscular AT. Whatever the breed or anatomical site, bovine AT at 260 d postconception contained predominantly unilocular adipocytes believed to be white adipocytes together with a few multilocular brown adipocytes. We conclude that the greater metabolic and morphologic maturity of adipocytes from Holstein than Blond d'Aquitaine and Charolais fetuses may contribute to the greater thermogenic aptitude of Holstein newborns. Moreover, the presence of both white and brown adipocytes at the end of fetal life highlights the complexity of AT structure and may indicate that the cellular and functional heterogeneity of AT repeatedly observed postnatally has a developmental origin.  相似文献   

5.
The effect of peak lactation on the activities of a number of enzymes of glucose and lipid metabolism of perirenal and subcutaneous adipose tissue, skeletal muscle, liver, kidney cortex and mammary parenchyma of sheep are described. Enzymes studied included hexokinase (glucose utilization), pyruvate carboxylase (gluconeogenesis), pyruvate dehydrogenase (glucose oxidation and production of acetyl CoA for fatty acid synthesis), acetyl CoA carboxylase (fatty acid synthesis) and glycerol-3-phosphate acyltransferase (fatty acid esterification). Major changes that were found include a decrease in activities of enzymes of fatty acid synthesis and esterification in adipose tissues, decreased activity of pyruvate dehydrogenase in muscle and adipose tissues and increased pyruvate carboxylase; there was no change in activities of enzyme of fatty acid esterification in liver. Activities of hexokinase, acetyl CoA carboxylase and glycerol-3-phosphate acyltransferase have been estimated per tissue; this shows the quantitative importance of limiting glucose utilization by muscle and of suppression of fatty acid synthesis in adipose tissue for efficient partitioning of nutrients for milk production.  相似文献   

6.
Chronic endocrine control of fatty acid synthesis in perirenal and subcutaneous adipose tissues of foetal lambs has been investigated. Maintenance of explants of subcutaneous adipose tissue in culture for 48 hr with insulin and dexamethasone (a glucocorticoid analogue), either singly or in combination showed that the two acted synergistically to increase the rate of fatty acid synthesis. Growth hormone inhibited the ability of insulin plus dexamethasone to increase the rate of fatty acid synthesis in explants of subcutaneous adipose tissue. In contrast neither insulin nor dexamethasone either singly or together increased the rate of fatty acid synthesis in perirenal adipose tissue; growth hormone also had no effect on the rate of fatty acid synthesis in this depot. These studies show that fatty acid synthesis is under distinct endocrine control in subcutaneous and perirenal adipose tissues in foetal lambs.  相似文献   

7.
The effects of sex, genotype, and adipose depot on lipogenic enzyme activity have been investigated in Holstein and Pirenaican bulls and heifers, taking into account differences in adipocyte size. Fifteen Pirenaican bulls and 15 heifers and 15 Holstein bulls and 13 heifers were fattened until slaughter (12 to 13 mo old and 450 to 500 kg of body weight). During the fattening period, animals had ad libitum access to commercial concentrates and straw. The 10th rib was dissected to determine the fat content. Adipocyte size and activities of the following lipogenic enzymes were determined: glycerol 3-phosphate dehydrogenase, fatty acid synthase, nicotinamide adenine dinucleotide phosphate (NADP)-malate dehydrogenase, glucose 6-phosphate dehydrogenase, and NADP-isocitrate dehydrogenase, in the omental, perirenal, subcutaneous, and intermuscular adipose depots, respectively. Because adipocyte mean cell volume varied with sex, breed, and depot, regression analyses of log(e) activity per cell and log(e) cell volume were used to compare activities per unit volume. Sex, breed and depot had no effect (P > 0.05) on the gradients of regressions, which did not differ significantly from 1. Thus, activity per unit volume did not vary with cell size. Consequently, sex, breed, and depot effects on the regression analyses were equivalent to effects on activity per unit volume. Females had greater amounts of fat in the 10th rib (P < 0.001), larger adipocytes (P < 0.001) and, in general, greater (P < 0.05) lipogenic activity per cell, even when adjusted for cell size, than males. These findings suggest that differences in adiposity between sexes are mainly due to females having a greater capacity for lipid synthesis, and hence, hypertrophy, than males. When adjusted for differences in carcass weight, Holsteins had larger adipocytes than Pirenaicans. The abdominal depots, omental and perirenal, had a greater adipocyte size (P < 0.001) and, in general, greater lipogenic enzyme activities per cell (P < 0.05) than the subcutaneous and intermuscular carcass depots. However, when activity per cell was adjusted for cell size, subcutaneous depots had greater fatty acid synthae, glucose 6-phosphate dehydrogenase, and NADP-malate dehydrogenase activities than omental and perirenal, indicating that other factors such as nutrient supply may restrict hypertrophy of carcass adipocytes.  相似文献   

8.
In vitro adipose tissue fatty acid pool size (POOL), fatty acid release (FAR) and esterification (EST) were measured in peritoneal (PFP) and subcutaneous mammary (MFP) fat pads of swine at d 15, 30, 45, 60, 75, 90, 105 and 112 of pregnancy. Plasma free fatty acids (FFA) and triglycerides (TG) were not altered by stage of pregnancy. Basal EST in PFP was generally constant across pregnancy with a peak at d 75. Basal EST in MFP was elevated at d 30, 75 and 112. Esterification in response to norepinephrine stimulus (NE) was lower than basal rates in both fat depots. Basal FAR was constant throughout pregnancy in PFP, but elevated at d 75 and 90 in MFP. Fatty acid release in response to NE was biphasic with peaks at d 30 and in late pregnancy (in MFP, micromolar FAR in response to NE was 69.3% greater on d 75 to 112 than on d 45 to 60). Basal POOL was constant throughout pregnancy in both depots and lower than NE-stimulated POOL. All responses to NE were greater in MFP than in PFP, indicating that adipose tissue surrounding the developing mammary gland had higher metabolic activity and a greater response to NE than peritoneal adipose. Changes in fatty acid metabolism during pregnancy in swine are temporally related to published values for plasma steroids, fetal growth and mammary development. Metabolic adaptations in adipose and mannary epithelial tissue occur in synchrony with changing plasma estrogen concentrations, redirecting energy flow from maternal adipose tissue toward developing mammary and fetal tissue.  相似文献   

9.
To gain insights into the regulation of fat synthesis, we have investigated the effect of cold environmental exposure and feed restriction of sheep on activity and immunodetectable protein content of acetyl-CoA carboxylase (ACC) and fatty acid synthase in adipose tissue. Subcutaneous and mesenteric adipose tissues were collected at slaughter from sheep exposed to either cold (0+/-2 degrees C) or warm (23+/-2 degrees C) environment, and given either ad libitum or restricted access to feed for three 5-wk periods. Acetyl-CoA carboxylase was isolated from frozen adipose tissue samples and activity determined as the rate of incorporation of H14CO3- into acid stable malonyl-CoA. Cold exposure and feed restriction reduced (P < .05) ACC activity in the two adipose tissue depots. Western blot analysis with peroxidase-conjugated streptavidin showed that both adipose tissue depots express a single isoform of ACC. In s.c. adipose tissue, cold exposure increased (P < .05) ACC protein abundance, which is opposite to the change in activity. However, feed restriction reduced immunodetectable ACC protein. There was no significant effect of environment or feeding level on ACC protein abundance in mesenteric tissue. Fatty acid synthase activity determined in ammonium sulfate extract by measuring the malonyl-CoA- and acetyl-CoA-dependent oxidation of NADPH was decreased (P < .05) by feed restriction in both s.c. and mesenteric tissues. Cold exposure reduced fatty acid synthase activity in s.c. but not in mesenteric tissue. There was no effect of environment on fatty acid synthase protein abundance in either adipose tissue depot. However, feed restriction significantly reduced fatty acid synthase protein abundance in the two depots. The data suggest that feed restriction and exposure of ruminants to cold environmental conditions may significantly down-regulate the activity of key lipogenic enzymes.  相似文献   

10.
Samples of liver and perirenal, mesenteric and subcutaneous fat were collected from 16 sick necropsied dairy cows to evaluate the fatty acid profiles in the hepatic and adipose tissues associated with advanced fatty liver or hepatic lipidosis. Hepatic triglyceride and eight fatty acids were measured in the hepatic and adipose tissues. Six cows had more than 3% triglyceride on fresh weight in their livers and were classified as having fatty liver. Stearic and linoleic acid proportions in the liver decreased markedly with increased hepatic triglyceride levels, while the proportion of palmitic and oleic acids increased. The most striking fluctuations in hepatic lipidosis were manifested as decreased stearic acid in the adipose tissues including subcutaneous fat with the trend of decreasing stearic acid. Palmitic acid was elevated in hepatic and perirenal fat in fatty liver cows. In instances of advanced hepatic lipidosis, palmitoleic acid increased in only subcutaneous fat and not in perirenal or mesenteric fat. In addition to the proportions of hepatic fatty acids in fatty liver, this study also clarified the fluctuations observed in the profiles of fatty acids of the adipose tissues in cows with advanced hepatic lipidosis, particularly the decline in the proportions of stearic acid.  相似文献   

11.
Vitamin A (retinoic acid) is known to be an adipogenic factor influencing both in vitro and in vivo cell development. This study aimed to determine its effect on lamb adipose tissue development during the early phase of postnatal development until 100 d of age. Male lambs (n = 24) of the Rasa Aragonesa breed were used. At birth, lambs were assigned to 1 of 2 experimental groups: 1) the control (C) group, which received feed without vitamin A supplementation, and 2) the vitamin A (V) group, which received a supplement of 500,000 IU/animal twice per week from birth to slaughter. The effect of vitamin A supplementation was studied at 16.8 +/- 0.35 kg of BW (58 +/- 0.7 d of age) and at 27.8 +/- 0.78 kg of BW (101 +/- 6.5 d of age). The variables of lamb growth, carcass, LM area, and lipid content were analyzed. To study adipose tissue development, the amount of adipose tissue accumulated, the size and number of adipocytes, and lipogenic enzyme activities (glycerol 3-phosphate dehydrogenase, fatty acid synthase, and glucose 6-phosphate dehydrogenase) of the omental, perirenal, and s.c. depots were quantified. Results showed that vitamin A supplementation had no influence on growth, carcass variables, LM area, and lipid content during lamb growth but that the number of adipocytes in the perirenal depot was 30% greater in lambs of the V group (P < 0.05) and that these lambs had smaller adipocytes in the omental and perirenal depots (P = 0.06) at 28 kg of BW (101 d of age). These results suggest that the intake of this level of vitamin A during the whole period of growth of the lambs influenced the processes of hyperplasia and hypertrophy in the different adipose depots, depending on their degree of maturity.  相似文献   

12.
Our objective was to determine effects of dietary high-oleate (Oleate; 76% 18:1) or high-linoleate (Linoleate; 78% 18:2) safflower seeds on fatty acids in muscle and adipose tissue of feedlot lambs. White-faced ewe lambs (n = 36) were fed a beet pulp, oat hay, and soybean meal basal diet (Control), blocked by BW, and allotted randomly to dietary treatments. Cracked safflower seeds were used in isocaloric and isonitrogenous replacement of beet pulp, oat hay, and soybean meal so that Oleate and Linoleate diets contained 5.0% additional fat. Fatty acids were determined in semitendinosus, longissimus dorsi (longissimus), and adipose tissue from the tail head (tailhead adipose tissue), adjacent to the 12th rib (s.c. adipose tissue), and kidney and pelvic fat (KPH adipose tissue) depots. Fatty acid data were analyzed within muscle and adipose tissue as a split-block design. Single degree of freedom orthogonal contrasts were used to compare treatment effects. Average daily gain, feed efficiency, and carcass characteristics did not differ (P = 0.15 to 0.96) across dietary treatments. Adipose tissue saturated fatty acids were greater (P = 0.04) for Controls but were not different (P = 0.36) in muscle. Trans-vaccenic acid (18:1(trans-11)) increased (P < 0.0001) with safflower supplementation and was greater (P < 0.0001) in Linoleate than in Oleate for both tissue types. Linoleate lamb had greater (P < 0.0001) PUFA than Oleate lamb in muscle and adipose tissue. Conjugated linoleic acids (CLA; cis-9, trans-11 and trans-10, cis-12) were greater (P < 0.0001) in muscle and adipose tissue of lambs fed safflower seeds. Lambs fed Linoleate had greater (P < 0.0001) CLA in adipose tissue and muscle than lambs fed Oleate. Saturated fatty acids were greater (P < 0.0001) in s.c. adipose tissue than in tailhead adipose tissue. Mono- and polyunsaturated fatty acids were greater (P < 0.0001) in tailhead adipose tissue than in s.c. adipose tissue. Weight percentages of 18:1(trans-11) ranked tailhead adipose tissue = KPH adipose tissue > s.c. adipose tissue and semitendinosus > longissimus, whereas CLA ranked tailhead adipose tissue > s.c. adipose tissue > KPH adipose tissue and semitendinosus > longissimus. Feeding mono- and polyunsaturated fatty acids increased tissue 18:1(trans-11) and CLA, which is a favorable change in regard to current human dietary guidelines.  相似文献   

13.
OBJECTIVE: To examine effects of dietary protein quality (casein [CA] vs corn gluten [CG]) and dietary lipids (corn oil [CO] vs oil blend [OB] rich in long-chain polyunsaturated fatty acids [LCPUFAs]) on fatty acid composition in liver and adipose tissue after weight loss in overweight cats. ANIMALS: 24 ovariohysterectomized adult cats. PROCEDURE: Cats were allowed ad libitum access to a high-quality diet until they weighed 30% more than their ideal body weight. Cats were then randomly assigned to 1 of 4 weight-reduction diets (6 cats/diet) and were fed 25% of maintenance energy requirements per day. Diets consisted of CG-CO, CA-CO, CG-OB, and CA-OB, respectively, and were fed until cats lost weight and returned to their original lean body mass. Liver biopsy specimens and samples of perirenal, subcutaneous, and abdominal fat were obtained and analyzed for fatty acid content. RESULTS: Following weight loss, fatty acid composition of the liver and adipose tissue was primarily affected by protein quality in that cats fed CA had significantly higher percentages of 20:4(n-6) and 22:6(n-3) fatty acids than those fed CG. Cats fed the CG-CO diet had the lowest concentrations of LCPUFAs, suggesting that dietary lipids and protein quality each influence fatty acid composition in tissues. CONCLUSIONS AND CLINICAL RELEVANCE: These data provide direct evidence that dietary protein quality alters fatty acid composition of tissues during weight loss in cats. The fatty acid patterns observed suggest that protein quality may alter fatty acid composition through modulation of desaturase activity.  相似文献   

14.
Angus × Gelbvieh cows with 2 to 3 previous pregnancies were used to evaluate effects of maternal nutrient restriction on offspring adipose tissue morphology at standard production endpoints. At 45 d after AI to a single sire, pregnancy was confirmed and cows randomly allotted into groups and fed a control (Con, 100% of NRC recommendations), nutrient-restricted (NR, 70% of Con diet), or nutrient-restricted + protein-supplemented (NRP, 70% of Con + essential AA supply to the small intestine equal to Con) diet. At d 185 of gestation, cows were commingled and received the Con diet thereafter. Bull calves were castrated at 2 mo of age. Calves were weaned at 210 d, backgrounded for 28 d, and then placed in the feedlot for 195 d. Steers and heifers were slaughtered at an average 12th-rib fat thickness of 7.6 mm. Adipose tissue from selected depots was collected for adipocyte size analysis. There was no significant difference in BW or BCS between Con, NRP, and NR cows at d 45 of gestation, which averaged 489.7 ± 17.7 kg and 5.35 ± 0.13, respectively. At d 185 of gestation, Con and NRP groups had similar BW (566.1 ± 14.8 and 550.2 ± 14.8 kg) and BCS (6.34 ± 0.27 and 5.59 ± 0.27), but NR cows exhibited reduced (P < 0.05) BW (517.9 ± 14.8 kg) and BCS (4.81 ± 0.27). Among offspring (steers and heifers) at slaughter, there were no significant differences in BW or organ weights among treatment groups. Yield grade was reduced (P < 0.05) and semitendinosus weight/HCW tended (P = 0.09) to be reduced in NR offspring compared with Con and NRP offspring. Average adipocyte diameter was increased (P < 0.05) in subcutaneous, mesenteric, and omental adipose tissue and tended (P = 0.09) to increase in perirenal adipose tissue in NR compared with Con offspring with NRP offspring adipocyte diameter being either intermediate or similar to Con calves. The adipocyte size alterations observed in NR offspring were confirmed by DNA concentration of the adipose tissue depots. There also was an increased mRNA expression (P < 0.05) of fatty acid transporter 1 in subcutaneous adipose tissue from NR offspring compared with Con and NRP offspring. Nutritional restriction during early and mid gestation increased or tended to increase (P < 0.09) adipocyte diameter in all adipose tissue depots in finished steer and heifer calves.  相似文献   

15.
Brown adipose tissue (BAT) can influence glucose, lipid, and energy metabolism in rodents. Active BAT is now known to be present in adult humans, and interventions targeting BAT are being investigated for the treatment of human obesity and disorders of glucose and lipid metabolism. Domestic cats, like humans, are at increasing risk for obesity and diabetes but little is known about the presence and role of BAT in adult cats. The purpose of this study was to determine if brown adipocytes, identifiable by histological features and molecular markers, were present in the fat depots of adult cats. Adipose tissue samples from intrascapular, perirenal, and subcutaneous depots of eleven 8–12 year old cats (6 lean, 5 obese), were analyzed by real-time PCR for brown adipocyte markers uncoupling protein 1 (UCP1) and Type II iodothyronine 5′deiodinase (D2), by histological examination and by immunohistochemistry for UCP1.UCP1 mRNA was detectable in interscapular and subcutaneous depots in all cats, and in the perirenal depot in 10/11 cats. D2 mRNA was detectable in all depots from all cats. Multilocular adipocytes were identified in the interscapular depots of 4/11 cats and these were positive for UCP1 immunoreactivity. The results demonstrate that UCP1-expressing brown adipocytes are present in multiple depots of adult lean and long-term obese cats, even at 8–12 years of age. It is possible that dietary components or pharmacological agents that influence brown fat activity could exert a relevant biological effect in cats.  相似文献   

16.
The effects of a concentrate diet on growth, carcass fat, and fatty acid (FA) composition of muscle (supraspinatus), perirenal, and intermuscular adipose tissues of Creole goats (n = 32) were evaluated. Goats were fed a tropical green forage Digitaria decumbens ad libitum with no concentrate (G0) or 1 of 3 levels of concentrate: 140 (G100), 240 (G200), and 340 g?d(-1) (G300), respectively. Goats were slaughtered according to the standard procedure at the commercial BW (22 to 24 kg of BW). Goats fed the concentrate diets (G100, G200, and G300) had greater ADG (P < 0.001), cold carcass weights (P < 0.001), and omental (P < 0.01), perirenal (P < 0.01), and intermuscular (P < 0.01) adipose tissues weights. Dietary intake of C18:0, C18:1n-9, C18:2n-6 increased as concentrate supplementation increased (P < 0.001), whereas C18:3n-3 intake was not affected (P > 0.05). Increased concentrate supplementation did not affect (P > 0.05) the proportion of MUFA in all tissues and had very little effect on SFA in perirenal tissue, but increased the PUFA proportion in muscle (P < 0.05). The major effect of feeding increased concentrate was an increase in n-6 PUFA proportions in all tissues (P < 0.001) and, surprisingly, a decrease in n-3 PUFA (P < 0.001). Focusing on FA, which are supposed to have a beneficial or an adverse effect on human health, feeding increased concentrate did not increase the content of any cholesterol-increasing SFA in meat, but increased the n-6/n-3 ratio above 4 when more than 240 g of concentrate was fed per day.  相似文献   

17.
This study examined if leptin can acutely affect glucose or fatty acid metabolism in pig adipocytes and whether leptin's actions on lipogenesis are manifested through interaction with insulin or growth hormone. Subcutaneous adipose tissue was obtained from approximately 55 kg crossbred barrows at the USDA abattoir. Isolated adipocytes were prepared using a collagenase procedure. Experiments assessed U-14C-glucose or 1-14C-palmitate metabolism in isolated adipocytes exposed to: basal medium (control), 100 nM insulin, 100 ng/ml porcine growth hormone, 100 ng/ml recombinant porcine leptin, and combinations of these hormones. Treatments were performed in triplicate and the experiment was repeated with adipocytes isolated from five different animals. Cell aliquots (250 microl) were added to 1 ml of incubation medium, then incubated for 2h at 37 degrees C for measurement of glucose and palmitate oxidation or incorporation into lipid. Incubation of isolated adipocytes with insulin increased glucose oxidation rate by 18% (P<0.05), while neither growth hormone nor leptin affected glucose oxidation (P>0.5). Total lipid synthesis from glucose was increased by approximately 25% by 100 nM insulin or insulin+growth hormone (P<0.05). Insulin+leptin reduced the insulin response by 37% (P<0.05). The combination of all three hormones increased total lipid synthesis by 35%, relative to controls (P<0.05), a rate similar to insulin alone. Fatty acid synthesis was elevated by insulin (32%, P<0.05) or growth hormone (13%, P<0.05). Leptin had no effect on fatty acid synthesis (P>0.05). Leptin reduced the esterification rate by 10% (P<0.05). Growth hormone and insulin could overcome leptin's inhibition of palmitate esterification (P>0.05).  相似文献   

18.
19.
A feedlot trial was conducted to determine the effect of dietary vitamin A concentration and roasted soybean (SB) inclusion on carcass characteristics, adipose tissue cellularity, and muscle fatty acid composition. Angus-crossbred steers (n = 168; 295 +/- 1.8 kg) were allotted to 24 pens (7 steers each). Four treatments, in a 2 x 2 factorial arrangement, were investigated: no supplemental vitamin A, no roasted soybeans (NANS); no vitamin A, roasted SB (20% of the diet on a DM basis; NASB); with supplemental (2,700 IU/kg) vitamin A, no roasted SB (WANS); and with supplemental vitamin A, roasted SB (WASB). Diets included high moisture corn, 5% corn silage, 10 to 20% supplement, and 20% roasted SB in the SB treatments on a DM basis. The calculated vitamin A concentration in the basal diet was < 1,300 IU/kg of DM. Blood samples (2 steers/pen) were collected for serum vitamin A determination. Steers were slaughtered after 168 d on feed. Carcass characteristics and LM composition were determined. Fatty acid composition of LM was analyzed, and adipose cellularity in the i.m. and s.c. depots was determined. No vitamin A x SB interactions were detected (P > 0.10) for cattle performance, carcass composition, or muscle fatty acid composition. Low vitamin A diets (NA) did not affect (P > 0.05) ADG, DMI, or G:F. Quality grade tended (P = 0.07) to be greater in NA steers. Marbling scores and the percentage of carcasses grading > or = Choice(-) were 10% greater for NA steers, although these trends were not significant (P = 0.11 and 0.13, respectively). Backfat thickness and yield grade were not affected (P > 0.26) by vitamin A supplementation. Composition of the LM was not affected (P > 0.15) by vitamin A or SB supplementation. Serum retinol at slaughter was 44% lower (P < 0.01) for steers fed NA than for steers supplemented with vitamin A (23.0 vs. 41.1 microg/dL). A vitamin A x SB interaction occurred (P < 0.05) for adipose cellularity in the i.m. depot; when no SB was fed, vitamin A supplementation decreased cell density and increased cell size. However, when SB was fed, vitamin A supplementation did not affect adipose cellularity. Adipose cellularity at the s.c. depot was not affected (P > 0.18) by vitamin A or SB treatments. Fatty acid profile of the LM was not affected by vitamin A (P > 0.05), but SB increased (P < 0.05) PUFA (7.88 vs. 4.30 g/100 g). It was concluded that feeding NA tended to increase marbling without affecting back-fat and yield grade. It appeared that NA induced hyperplasia in the i.m. but not in the s.c. fat depot.  相似文献   

20.
Fourteen Hereford steers were used to compare carcass traits, meat quality, and fatty acid composition of beef from cattle grazing tall fescue infected with either wild-type (E+; n = 6) or novel, nil ergot alkaloid (AR542; n = 8) endophyte for 209 d. Average daily gain, live weight, and HCW were greater (P < 0.05) for AR542 cattle than for E+. No differences in LM color or pH were observed between AR542 and E+. Steaks from E+ cattle tended (P = 0.10) to have higher L* and b* than those from AR542 cattle at 0 d of display. Ground beef from E+ cattle also had higher (P < 0.05) L* than AR542 cattle, with no differences in a* or b* at 0 d of display. Color changes during display did not differ for both steaks and ground beef from E+ and AR542. Lipid oxidation levels increased (P < 0.05) during simulated retail display, but they did not differ between endophyte treatments. Adipose tissues from E+ cattle had a higher (P < 0.05) percentage of SFA, and a lower (P < 0.05) percentage of MUFA than adipose from AR542 cattle. Ground beef and i.m. fat had higher (P < 0.05) concentrations of SFA, MUFA, and cis-9, trans-11 isomer of conjugated linoleic acid, and lower (P < 0.05) concentrations of PUFA and PUFA:SFA ratio than s.c. fat. The n-6:n-3 fatty acid ratio did not differ among fat depots. Ergot-alkaloids were detected in s.c. adipose tissues, and alkaloid concentration was greater (P < 0.05) for E+ than AR542. Warner-Bratzler shear force values did not differ between endophyte types, but it decreased (P < 0.01) across the postmortem aging period. Conversely, sensory panel evaluation detected greater (P < 0.01) chewiness and lower (P < 0.05) juiciness for AR542 than for E+ steaks aged for 14 d. Although grazing cattle on tall fescue pastures infected with nil ergot alkaloid endophyte improved cattle performance, these results suggest that endophyte type has minor effects on carcass traits and meat quality of pasture-fed beef. Moreover, finishing cattle on tall fescue pastures showed the potential to enhance the fatty acid profile of beef from a human health perspective. Alkaloid concentration was greater (P < 0.05) in s.c. fat from E+ than AR542 (2.81 vs. 0.92 ppb; fresh-tissue basis). This is the first published report demonstrating the presence of alkaloids in beef tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号