首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abundance of IGF-2 receptor (IGF2R), FSH receptor (FSHR), and LH receptor (LHCGR) mRNA in granulosa cells (GCs) or theca cells (TCs) or both cells as well as estradiol (E2), progesterone (P4), and androstenedione concentrations in follicular fluid were compared in cows genetically selected (Twinner) or not selected (control) for multiple ovulations and twin births. Cows were slaughtered at day 3 to 4 (day 3) and day 5 to 6 (day 5) of an estrous cycle, and ovaries, follicular fluid, GCs, and TCs were collected. The two largest (F1 and F2) E2-active (EA) and E2-inactive (EI) follicles were selected according to their E2-to-P4 ratio and diameter. Androstenedione levels in EA F1 and F2 follicles were 5-fold greater (P < 0.05) in Twinner cows than in control cows on day 3 but did not differ on day 5. Twinner cows also had greater (P < 0.05) E2 and P4 concentrations, whereas steroid levels in EI follicles did not differ (P > 0.10) between genotypes. In EA F2 follicles, IGF2R levels in GCs were greater (P < 0.05) in control cows than in Twinner cows on day 3 and day 5, whereas IGF2R mRNA in TCs did not differ (P > 0.10). On day 3, FSHR mRNA levels were greater (P < 0.05) in GCs of EA F1 and EI F2 follicles of control cows than of Twinner cows. LH receptor mRNA expression was less in GCs and greater in TCs of EA F2 follicles in control cows than in Twinner cows (P < 0.05). We hypothesize that reduced GC IGF2R expression in F2 follicles of Twinner cows may play a role in the development of 2 or more dominant follicles.  相似文献   

2.
We hypothesized that the number of microscopic follicles present in the ovaries of cattle selected for twin births (Twinner) would be greater than in the ovaries of contemporary Controls. Ovaries were collected from seven Control and seven Twinner cows at slaughter. The number of Small (1 to 3.9 mm), Medium (4 to 7.9), and Large (> 8 mm) surface follicles was counted and one ovary was fixed for histological evaluation. Fifty to sixty consecutive 6-microm slices were taken from a piece of cortical tissue, approximately 1 cm x 1 cm in area, located between the surface follicles. Microscopic follicles were classified as primordial (oocyte surrounded by a single layer of squamous pregranulosa cells), primary (oocyte surrounded by a single layer of one or more cuboidal granulosa cells), secondary (oocyte surrounded by two or more layers of granulosa cells), or tertiary (oocyte surrounded by multiple layers of granulosa cells with initiation of antrum formation to < or = 1 mm in diameter). The total number of follicles was counted in 200 fields (2 mm x 2 mm) per ovary. A field containing no follicles was classified as empty. There were significantly more secondary follicles in Twinner compared with Control ovaries (12.9 vs 6.3; P < .05). Twinners also tended to have more small surface follicles (35.4 vs 49.0; P < 0.1). We conclude that ovaries of Control and Twinner cows do not differ in the number of primordial follicles or in the number of follicles activated into the growing pool; however, Twinner cows are able to maintain more growing follicles at the secondary and subsequent stages of development.  相似文献   

3.
Nineteen cycling ewes underwent transrectal ultrasonography of ovaries followed by ovariectomies during the growth phase of the first follicular wave of the interovulatory interval or the proestrus/estrus phase of the cycle. Quantitative ultrasonographic characteristics of the antrum and follicular wall in a total of forty-three ovine antral follicles were examined for correlations with the protein expression of three steroidogenic enzymes (cytochrome P450 17α-hydroxylase, CYP17; cytochrome P450 aromatase, CYP19; and 3β-hydroxysteroid dehydrogenase, 3β-HSD) determined by densitometric analysis of immunohistochemical slides, follicular dimensions, granulosa layer thickness and the percentage of apoptotic granulosa cells. Significant correlations were found between echotextural attributes of ovine antral follicles and the percentage of apoptotic granulosa cells, CYP17 expression (theca), CYP19 expression (granulosa) and 3β-HSD expression (theca cells). Computer-aided analyses of ultrasonographic images can be beneficial to the development of assisted reproductive technologies and diagnosis of hormonal imbalances without the need for ovarian biopsies or hormone assays.  相似文献   

4.
Previous studies have shown that androgen receptor (AR) is expressed in granulosa cells of healthy, growing ovarian follicles in rats and primates. However, AR expression in the bovine ovary has not been examined. Therefore, a 346-base pair segment of the bovine AR was cloned and sequenced. Using a ribonuclease protection assay, AR expression was detected in total RNA from bovine ovarian cortex. Expression (absence or presence) of AR mRNA was detected by in situ hybridization in bovine ovarian cortex. Follicles (n = 32) were classified as follows: type 1 (1 layer of flattened granulosa cells), type 2 (1-1.5 layers of cuboidal granulosa cells), type 3 (2-3 layers of granulosa cells), type 4 (4-6 layers of cuboidal granulosa cells and formation of thecal layer), and type 5 (>6 layers of cuboidal granulosa cells, defined theca layer, and antrum formation). Frequency of AR mRNA expression increased (P < 0.001) as follicles entered the growing pool. Expression of AR mRNA was absent in type 1 follicles (n = 8), but present in the granulosa cells of 41% of type 2 follicles (n = 12). In types 3-5 follicles, AR mRNA expression was present in granulosa cells of 100% of follicles examined (n = 4, 4, and 4, respectively) and was greater than type 1 follicles (P = 0.002). These data provide evidence of AR mRNA expression in bovine follicles and suggest that AR mRNA increases during early follicle development.  相似文献   

5.
Adiponectin and its receptors (AdipoR1 and AdipoR2) mRNAs are expressed in various chicken tissues including ovary. However, the cellular expression and the role of adiponectin system have never been investigated in chicken ovary. Here, we have shown that the level of adiponectin mRNA is about 10- to 30-fold higher (p < 0.001) in theca cells than in granulosa cells from each hierarchical yellow follicle studied (F4–F1). In contrast, the level of AdipoR1 mRNA expression was about two-fold lower in theca cells than in granulosa cells (p < 0.05) whereas those of AdipoR2 was similar in both ovarian cells. Whereas expression of adiponectin mRNA increased with follicular differentiation in theca cells, it decreased in granulosa cells. In contrast, mRNA expression of AdipoR1 and AdipoR2 in both theca and granulosa cells remained stable during yellow follicle development. To determine whether adiponectin is involved in the ovarian steroidogenesis, LH (100 ng/ml)-, FSH (100 ng/ml)- and IGF-1 (100 ng/ml)-induced progesterone production was measured in absence or presence of human recombinant adiponectin (10 μg/ml) for 36 h in cultured granulosa cells from F1, F2 and mixed F3 and F4 follicles. In absence of LH, FSH and IGF-1, adiponectin treatment had no effects on progesterone production whatever vitollegenic follicle studied. However, it increased by about two-fold IGF-1-induced progesterone secretion in F2 and F3/4 follicles whereas it halved progesterone production in response to gonadotropins (LH and FSH) in F3/4 follicles. Thus, in chicken, adiponectin, mainly expressed in theca cells, could exert paracrine or autocrine effect on the ovarian steroidogenesis.  相似文献   

6.
7.
本研究旨在探究促卵泡素(follicle stimulating hormone,FSH)处理对体外培养的牛有腔卵泡颗粒细胞和膜细胞类固醇激素合成相关基因表达的影响。采集牛卵巢表面直径9~11 mm的有腔卵泡,用含不同浓度FSH的DMEM/F12体外培养牛有腔卵泡24 h。提取卵泡颗粒细胞、膜细胞RNA并反转录成cDNA,利用实时荧光定量PCR检测卵泡颗粒细胞、膜细胞中类固醇激素合成酶基因(CYP11A1、3β-HSD、CYP17A1、CYP19A1、17β-HSD)和促性腺激素受体基因(FSHR、LHR)的表达水平。结果显示,FSH处理上调了颗粒细胞中CYP11A1、3β-HSDCYP19A1基因表达,其中,25 ng/mL FSH处理极显著上调了CYP11A1基因表达(P<0.01),10 ng/mL FSH处理显著上调了3β-HSD基因表达(P<0.05),50 ng/mL FSH处理显著上调了CYP19A1基因表达(P<0.05);50 ng/mL FSH处理显著或极显著上调了膜细胞中CYP11A1、3β-HSDCYP17A1基因表达(P<0.05;P<0.01),但在10和25 ng/mL FSH处理组中CYP11A1、3β-HSDCYP17A1基因表达显著或极显著下调(P<0.05;P<0.01)。对FSHR、LHR基因研究结果显示,不同浓度FSH处理对颗粒细胞中FSHR、LHR基因的表达均无显著影响(P>0.05),只有25和50 ng/mL FSH处理显著或极显著上调了膜细胞中LHR基因表达水平(P<0.05;P<0.01),且不同处理组之间膜细胞中CYP11A1、3β-HSDCYP17A1基因的表达变化与LHR基因表达变化趋势较一致。结果表明,FSH处理可提高牛有腔卵泡颗粒细胞中CYP11A1、3β-HSDCYP17A1基因的表达,膜细胞中CYP11A1、3β-HSDCYP17A1基因对LH的刺激更敏感,FSH可能通过影响LHR基因的表达来调节膜细胞中类固醇合成酶基因的表达。  相似文献   

8.
This study quantified Fibroblast growth factor 2 (FGF-2) mRNA and localized FGF-2 protein in different categories of follicles isolated from goat ovaries. In addition, we verified the effects of this factor on the in vitro culture of preantral follicles isolated from goats. For mRNA quantification, we performed real-time PCR using primordial, primary and secondary follicles, as well as cumulus-oocyte complexes (COCs) and mural granulosa and theca cells of small and large antral follicles. For FGF-2 protein localization, the ovaries were subjected to conventional immunohistochemical procedures. Preantral follicles were isolated and cultured in vitro for 12 days in either control (basic) or supplemented with FGF-2 medium. The expression of FGF-2 mRNA was detected in all categories of follicles and there was no difference in preantral follicles and COCs or granulosa/theca cells from small and large antral follicles. However, in large antral follicles, COCs showed expression levels significantly lower than in granulosa/theca cells (p < 0.05). We observed moderate expression of FGF-2 protein in preantral follicles but not in granulosa cells of primordial follicles and theca cells of secondary follicles. In both small and large antral follicles, strong, moderate and weak staining was observed in oocytes, granulosa and theca cells, respectively. The addition of FGF-2 caused a significant increase in the daily follicular growth rate compared to the control group. We conclude that FGF-2 mRNA is expressed throughout follicular development and that its protein can be found in different patterns in preantral and antral follicles. Furthermore, FGF-2 increases the follicular growth rate in vitro.  相似文献   

9.
Ovaries contain follicles at various stages of development, including primordial, primary, secondary, antral and Graafian follicles. Although the growth of these follicles is controlled to maintain regular ovulation, the mechanism through which this occurs remains unclear. In our study, we found that the growth rate of cultured secondary follicles separated from mice ovaries differed between follicles. After 4 days of culture, the size of some secondary follicles was markedly increased, while that of others had either slightly increased, remained unchanged or shrunk. We compared the expression levels of growth factors between these secondary follicles and found that the growth rate of cultured secondary follicles correlated with the expression level of insulin-like growth factor 1 (Igf1) mRNA. Igf1 mRNA expression level in secondary follicles containing theca cells was higher than that in secondary follicles without theca cells, and the granulosa cell proliferation around follicles containing theca cells was increased. Furthermore, an IGF1 inhibitor also inhibited the granulosa cell proliferation, and administration of IGF1 to secondary follicles without growth promoted granulosa cell proliferation. These results indicated that the theca cells of secondary follicles induced the expression of IGF1 and promoted the follicle growth.  相似文献   

10.
Angiogenic factors are associated with angiogenesis during follicular development in the mammalian ovary. The aim of the present study was to determine the relationships between the vascular network and mRNA expressions of angiopoietins (Ang)-1, Ang-2 and hepatocyte growth factor (HGF), and their receptors in follicles at different developmental stages during follicular development. Ovaries in gilts were collected 72 h after equine chorionic gonadotropin (eCG, 1250 IU) treatment for histological observation of the capillary network. Granulosa cells and thecal tissues in small (<4 mm), medium (4-5 mm) or large (>5 mm) individual follicles were collected for detection of mRNA expression of HGF, Ang-1 and Ang-2 in granulosa cells, and HGF receptor (HGF-R) and Tie-2 in the theca cells by semi-quantitative RT-PCR. The number of capillaries in the thecal cell layer increased significantly in healthy follicles at all developmental stages in the eCG group compared with those in controls. The expression of Ang-1 mRNA declined in granulosa cells of medium and large follicles and the level of Ang-2 mRNA increased in granulosa cells of small follicles after eCG treatment. The ratio of Ang-2/Ang-1 increased in small, medium and large follicles from ovaries after eCG treatment, but Tie-2 mRNA expression in the theca cells did not change. The level of HGF mRNA increased in granulosa cells of small follicles after eCG treatment but HGF-R in theca cells was not increased by eCG. These data suggested that the angiopoietins might be associated with thecal angiogenesis during follicular development in eCG-treated gilts.  相似文献   

11.
A decrease in insulin-like growth factor (IGF) binding protein (BP) amount occurs within the follicular fluid of dominant ovarian follicles. At the same time, concentrations of follicular fluid IGF-I do not change. The mRNA for IGF-I, IGF-II, IGFBP-2, and IGFBP-3 in dominant and subordinate follicles were measured to determine if changes in IGF or IGFBP gene expression are associated with follicular dominance. Heifers were ovariectomized during a follicular wave, either during early-dominance (emerging dominant follicle, 9 mm diameter) or mid-dominance (established dominant follicle, 14–16 mm diameter). Follicles were classified as either dominant (DF), subordinate (SF), or not-recruited (NRF; small antral follicles). mRNA was localized by in situ hybridization and measured by image analyses. The IGF-I mRNA (granulosa cells) was greatest in DF and increased in DF, SF, and NRF from early- to mid-dominance. Likewise, IGF-II mRNA (theca cells) was greatest in DF compared with SF or NRF. The IGFBP-2 mRNA (granulosa cells), however, was nearly undetectable in DF, whereas adjacent SF expressed abundant IGFBP-2 mRNA. The NRF were not uniform in their IGFBP-2 expression because only 5 of 13 NRF had IGFBP-2 mRNA. The IGFBP-3 mRNA (granulosa cells) was found only in two NRF, suggesting that local synthesis is not a predominant source of follicular fluid IGFBP-3. These data show that changes in gene expression for IGFBP-2 are opposite to those for IGF-I or IGF-II. Increased IGF-I and IGF-II mRNA and decreased IGFBP-2 mRNA within the DF may be one mechanism leading to follicular dominance. The opposite pattern of IGFBP-2 gene expression in SF and some NRF may lead to follicular atresia.  相似文献   

12.
A peptidyl-prolyl isomerase, Pin 1, has been shown to play a role in the regulation of cell cycle progression, both in vitro and in vivo. However, the involvement of Pin 1 during follicular development is not well understood. The aim of this study was first to investigate the expression of Pin 1 mRNA in the granulosa and theca cells of the follicle at different developmental stages of follicles in the bovine ovary, and second, to examine the effects of follicle-stimulating hormone (FSH) and estradiol (E2) on the expression of Pin 1 in the cultured bovine granulosa cells. Follicles were classified into four groups based on the diameter (dominant follicles >8.5mm in diameter, subordinate follicles <8.5mm in diameter) and the relative levels of E2 and progesterone (P4) (E2:P4>1, estrogen active; E2:P4<1, estrogen inactive): i.e. preovulatory dominant follicles (POFs); E2 active dominant follicles (EADs); E2 inactive dominant follicles (EIDs); small follicles (SFs). The expression of the Pin 1 gene was significantly increased in the granulosa cells of EADs as compared with those of other follicles, whereas its expression in theca cells did not differ among follicles at different developmental stages. The concentration of 5 ng/ml FSH alone and the combination of 1 ng/ml E2 and 5 ng/ml FSH stimulated the expression of the Pin 1 gene in bovine granulosa cells. Our data provide the first evidence that Pin 1 expression in the granulosa cells but not the theca cells changes during follicular development, and that FSH stimulate the expression of the Pin 1 gene. These results suggest that Pin 1 regulates the timing of cell proliferation and may act as an intracellular signal responder in the granulosa cells during bovine follicle development.  相似文献   

13.
The vascular endothelial growth factor (VEGF) is essential for follicular development by promoting follicular angiogenesis, as well as for the proliferation and survival of granulosa cells. The biological effects of VEGF are regulated by two membrane receptors, VEGFR1 and VEGFR2, and two soluble receptors, sVEGFR1 and sVEGFR2, which play an antagonistic role. Thus, the objective of this study was to identify the mRNA expression pattern of total VEGF, VEGFR1, VEGFR2, sVEGFR1 and sVEGFR2 in bovine preselected follicles (PRF) and post‐selected follicles (POF). The mRNA expression of these five genes in both granulosa cells (GC) and theca cells (TC) was compared between follicles classified as PRF and POF based on their diameter and on their ratio of estradiol/progesterone (E2/P4). Results showed a lower expression of mRNA of sVEGFR1 and sVEGFR2 in POF than in PRF (p < .05). Regarding the mRNA expression of total VEGF, VEGFR1 and VEGFR2, there was no difference between POF and PRF follicles (p > .05). Our results showed that the mRNA expression of VEGFR2 and sVEGFR1 was more abundant than the expression of VEGFR1 and sVEGFR2, while GC was the main source of mRNA for total VEGF. On the other hand, TC was the follicular compartment where the receptors were most expressed. Our results suggest that non‐dominant follicles maintain a greater concentration of the mRNA expression of both membrane and soluble VEGF receptors. On the other hand, follicular dominance is related to a reduction in the mRNA expression of sVEGFR1 and sVEGFR2, which may favour VEGF binding with VEGFR2 and, hence, improve the follicular health and development.  相似文献   

14.
This study verified the in vitro effects of IGF-1, FSH or both on caprine preantral follicle development and mRNA levels encoding IGF-1, IGFR-1 and FSHR. Secondary follicles were cultured for six days with FSH, IGF-1 or IGF-1+FSH. The results showed that IGF-1 and/or FSH addition did not influence follicular development for six days. The interaction between IGF-1 and FSH increased the mRNA levels of IGF-1 and FSHR, and FSH increased the expression of the IGFR-1 mRNA. Thus, IGF-1 and/or FSH increased IGF-1, IGFR-1 and FSHR mRNA levels in in vitro cultured caprine secondary follicles, but they did not influence their development after six days of in vitro culture.  相似文献   

15.
Because IGFBP inhibit IGF-stimulated cellular proliferation and differentiation, it is hypothesized that variations among IGFBP in individual follicles might contribute to the regulation of recruitment, selection, dominance, and turnover of ovarian follicles. Sources of IGFBP in fluid of bovine follicles are not well established; thus, objectives of this study were to determine levels of IGFBP binding activities and messenger RNA (mRNA) in granulosa and theca interna cells at different stages of follicular development (small [< 6 mm], medium [6 to < 8 mm], and large [> or = 8 mm]) and to characterize associations of these levels measured in the cells with levels of IGFBP and steroids in follicular fluid. Thecal and granulosa cells from large healthy follicles contained two- to twentyfold less (P < 0.05) IGFBP-2, -3, and -5 than cells from small, medium, and large atretic follicles. Thecal cells from small, medium, and large atretic follicles contained more (P < 0.05) IGFBP-3 and -4 than granulosa cells from these follicles, whereas granulosa cells from these follicles contained more IGFBP-2 activity than thecal cells. Differences in IGF binding activity were paralleled by differences in levels of mRNA for the respective IGFBP. Developmental differences in IGFBP activity in follicular fluid were positively associated with activity in granulosa and/or thecal cells, with the exception of IGFBP-4, which was low in fluid from large healthy follicles but markedly increased (mRNA and binding activity) in granulosa cells from these follicles. It is concluded that developmental changes in follicular fluid IGFBP-2 and -5 binding activities seem to be controlled in part by alterations in synthesis of these IGFBP by granulosa and thecal cells, whereas diminished IGFBP-4 in fluid from large healthy follicles occurs concomitantly with increased levels of IGFBP-4 mRNA and activity in granulosa cells, implicating posttranslational regulation by specific proteases.  相似文献   

16.
Expression of mRNAs encoding cytochrome P450 side-chain cleavage (P450scc), cytochrome P450 17 -hydroxylase (P450c17), and cytochrome P450 aromatase (P450arom) were characterized by the RT-PCR technique and concentrations of progesterone (P4), testosterone (T0) and estradiol (E2) were measured by radioimmunoassay during follicular development of prepubertal goats. Synthesis of mRNAs encoding P450scc and P450c17 began in preantral follicles, but mRNA encoding P450arom was not detectable until early antral formation. While mRNA for P450scc was expressed in both theca and granulosa cells, mRNA for P450c17 was expressed only in theca cells while P450arom mRNA only in granulosa cells. In nonatretic follicles from prepubertal ovaries, the relative quantity of mRNA expression of all the three enzymes increased with follicle size; however, while the concentration of P4 and E2 increased, that of T0 decreased with follicle size. While expression of mRNA encoding P450scc was unaffected, that of P450c17 mRNA decreased to the lowest level and mRNA for P450arom became undetectable following atresia; accordingly, while the concentration of P4 increased in the atretic medium follicles, that of T0 and E2 decreased to the lowest level after atresia. While the adult follicular stage follicles showed a similar cytochrome expression as the nonatretic follicles of prepubertal goats, the former contained higher levels of E2 and P4 than the latter. The presence of corpus luteum in an ovary decreased expression of P450scc, significantly in large follicles while it increased concentration of P4. These findings indicated that (1) similar to other species, changes in follicular steroid production in goats were explained in large measure by changes in steroidogenic enzyme expression; (2) while mRNA expression was similar, activities of some of the steroidogenic enzymes may differ between sexually mature and immature goats.  相似文献   

17.
The period of spring transition, from the anovulatory to the ovulatory season, is characterized in many mares by cyclical growth and regression of large dominant follicles. These follicles produce only low concentrations of estradiol and it is thought that acquisition of steroidogenic competence by large follicles during spring transition is prerequisite in stimulating LH prior to first ovulation. In situ hybridization was used to localize and quantify expression of factors that play a key role in follicular steroidogenesis: StAR, P450scc (CYP11A1), P450c17 (CYP17), P450arom (CYP19), and LH receptor (LHr). One ovary was obtained from mares on the day after detection of an actively growing 30 mm transitional anovulatory follicle (defined as the transitional follicle), and the remaining ovary was removed at the third estrus of the breeding season on the day after the preovulatory follicle reached 30 mm in diameter (defined as the preovulatory follicle). Messenger RNAs encoding StAR, CYP11A1, and CYP17 were detected only in theca cells and CYP19 mRNA was confined to the granulosa layer. There was significantly lower expression of mRNAs for the steroidogenic enzymes, StAR (P<0.001) and LHr (P<0.05) in transitional follicles than in preovulatory follicles. In conclusion, large equine follicles during spring transition have low levels of mRNA encoding steroidogenic enzymes, StAR and LHr which will contribute to the steroidogenic incompetence of dominant follicles during spring transition and their subsequent regression.  相似文献   

18.
The growth factor receptor‐bound protein 14 (Grb14) is a cellular adapter protein belonging to the Grb7 family of proteins. Studies with human and rodent cells have demonstrated that Grb14 acts as a negative regulator of tyrosine kinase receptor signalling through the MAPK and PI3K pathways. In cattle, tyrosine kinase receptors are activated during follicular development but the role of Grb14 in this process has not yet been investigated. Therefore, the aim of the present study was to characterize Grb14 mRNA expression in ovarian somatic cells during follicular growth and deviation in cattle. We found Grb14 mRNA expressed in both granulosa and theca cells derived from follicles at different stages of development (3–5 , 6–8, >8 mm in diameter). The abundance of mRNA for Grb14 was higher in granulosa cells of subordinate compared with those from dominant follicles at days 3 and 4 of the follicular wave (p < 0.05). Further, there was a negative correlation between the abundance of mRNA for Grb14 and P450Arom in granulosa cells (R2 = 0.367; p < 0.05) and between the abundance of mRNA for Grb14 in granulosa cells and concentration of oestradiol in follicular fluid (R2 = 0.545; p < 0.05). In theca cells, the expression of Grb14 mRNA did not differ between dominant and subordinate follicles (p > 0.05). These findings suggest that Grb14 may play a regulatory role in granulosa cells during follicular deviation in cattle.  相似文献   

19.
IGF-1 plays a key role in the proliferation and differentiation of granulosa cells. However, the molecular mechanism of IGF-1 action in avian granulosa cells during follicle maturation is unclear. Here, we first studied IGF-1 receptor (IGF-1R) expression, IGF-1-induced progesterone production and some IGF-1R signaling pathways in granulosa cells from different follicles. IGF-1R (mRNA and protein) was higher in fresh or cultured granulosa cells from the largest follicles (F1 or F2) than in those from smaller follicles (F3 or F4). In vitro, IGF-1 treatment (10(-8)M, 36h) increased progesterone secretion by four-fold in mixed F3 and F4 (F3/4) granulosa cells and by 1.5-fold in F1 granulosa cells. IGF-1 (10(-8)M, 30min)-induced increases in tyrosine phosphorylation of IGF-1R beta subunit and phosphorylation of ERK were higher in F1 than in F3/4 granulosa cells. Interestingly, IGF-1 stimulation (10(-8)M, 10min) decreased the level of AMPK Thr172 phosphorylation in F1 and F3/4 granulosa cells. We have recently showed that AMPK (AMP-activated protein kinase) is a protein kinase involved in the steroidogenesis in chicken granulosa cells. We then studied the effects of AMPK activation by AICAR (5-aminoimidazole-4-carboxamide ribonucleoside), an activator of AMPK, on IGF-1-induced progesterone secretion by F3/4 and F1 granulosa cells. AICAR treatment (1mM, 36h) increased IGF-1-induced progesterone secretion, StAR protein levels and decreased ERK phosphorylation in F1 granulosa cells. Opposite data were observed in F3/4 granulosa cells. Adenovirus-mediated expression of dominant negative AMPK totally reversed the effects of AICAR on IGF-1-induced progesterone secretion, StAR protein production and ERK phosphorylation in both F3/4 and F1 granulosa cells. Thus, a variation of energy metabolism through AMPK activation could modulate differently IGF-1-induced progesterone production in F1 and F3/4 granulosa cells.  相似文献   

20.
The aim of the study and short review was to present evidence that growth hormone (GH), locally produced insulin-like growth factors (IGFs), and IGF-binding proteins (IGFBPs) may have an important role in the control of ovarian function. There is clear evidence for a distinct GH-receptor mRNA expression and protein production in follicles (oocytes and granulosa-cumulus cells) and corpus luteum (CL). In hypophysectomized ewes, GH and LH are necessary for normal CL development. IGF-1 mRNA in the follicles is expressed in theca interstitial cells (TIC) and granulosa cells (GC) with already higher levels in the TIC before follicle selection. In contrast, IGF-2 is mainly expressed in the TIC. The IGFR-1 mRNA is expressed in both the TIC and GC, with increasing levels in GC during the final development of dominant follicles. IGF-1 is a very potent stimulator of progesterone and oxytocin release in GC. IGFBP-1, -2, -3, -4, -5, and -6 have been isolated from follicular fluid or ovarian tissue. Studies indicate that IGFBP expression and production in the developing follicle is dependent on both cell type and follicle size and is regulated by IGF-1 and gonadotropins. The highest expression of IGF-1 and IGFR-1 mRNA was demonstrated during the early luteal phase. Distinct receptors for IGF-1 and IGF-2 were present in CL membrane preparations at all stages investigated. Intense immunostaining for IGF-1 was observed mainly in bovine large and small luteal cells and in a limited number of endothelial cells. In contrast, IGF-2 protein was localized in perivascular fibroblast and pericytes of the capillaries. With the use of a microdialysis system, we found that in vitro and in vivo IGF-1, IGF-2, and GH stimulated the release of progesterone in cultures of luteal cells or intact tissues. In conclusion, there is clear evidence for a central role of the IGFs, IGFBPs, and GH in follicular development and CL function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号