共查询到7条相似文献,搜索用时 0 毫秒
1.
Fengwei Xie Long Yu Bing Su Peng Liu Jun Wang Hongshen Liu Ling Chen 《Journal of Cereal Science》2009,49(3):371-377
The rheological properties of corn starches with different amylose/amylopectin ratios (80/20, 50/50, 23/77, and 0/100) were systematically studied by Haake rheometry. The starches were initially pre-compounded with water to designated moisture content levels using a twin-screw extruder. A single-screw extruder with a slit capillary die was then used to characterize the shear stress and melt viscosity characteristics of sample pellets, as a function of both moisture content (19–27%) and extrusion temperature (110–140 °C). The melts exhibited shear thinning behavior under all conditions, with the power law index (0 < n < 1) increasing with increasing temperature and moisture content in the majority of cases. The higher the amylose content, the higher is the viscosity (for example, η increases from 277 Pa s to 1254 Pa s when amylose content increases from 0% to 80% under a certain condition), which is opposite to the sequence of molecular weight; amylopectin-rich starches exhibited increased Newtonian behavior. These rheological behaviors are attributed to the higher gelatinization temperature of amylose-rich starches, and in particular the multiphase transitions that occur in these starches at higher temperatures, and the gel-ball structure of gelatinized amylopectin. 相似文献
2.
The glass transition temperatures (Tg) of starch with different amylose/amylopectin ratios were systematically studied by a high-speed DSC. The cornstarches with different amylose contents (waxy 0; maize 23, G50 50 and G80 80) were used as model materials. The high heating speed (up to 300 °C/min) allows the weak Tg of starch to be visible and the true Tg was calculated by applying linear regression to the results from different heating rates. It is confirmed for the first time, that the higher the amylose content is, the higher the Tg is for the same kind of starch. The sequence of true Tg of cornstarch is G80 > G50 > maize > waxy when samples contain the same moisture content, which corresponds to their amylose/amylopectin ratio. It was found that Tg was increased from about 52 to 60 °C with increasing amylose content from 0 to 80 for the samples containing about 13% moisture. The microstructure and phase transition were used to explain this phenomenon, in particular the multiphase transitions that occur in high-amylose starches at higher temperatures, and the gel-ball structure of gelatinized amylopectin. 相似文献
3.
V. Derycke G.E. Vandeputte R. Vermeylen W. De Man B. Goderis M.H.J. Koch J.A. Delcour 《Journal of Cereal Science》2005,42(3):334-343
Starch gelatinization and formation of crystalline amylose–lipid complexes during the heat/moisture treatment step in rice parboiling were studied with temperature resolved wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) using flour from Puntal (24% apparent amylose) and Jacinto (12% apparent amylose) rice samples [66, 40 or 25% moisture content (mc)]. Temperature resolved WAXS showed that the crystallinity index (CI, i.e. the relative amount of A-type crystals) of non-parboiled rice flours at 66% mc, monotonically decreased between 65 °C (Puntal) and 70 °C (Jacinto) and 90 °C (both Puntal and Jacinto). These temperatures were in agreement with the respective onset and conclusion temperatures of the M1 endotherm measured by DSC. At 40% mc, the CI decreased monotonically from 65 °C (Puntal) and 70 °C (Jacinto) until 105 °C. In DSC both M1 and M2 endotherms were present. The conclusion temperature of the M2 endotherm was higher than 105 °C. At 25% mc, the CI decreased very gradually and A-type crystals were no longer present at 145 °C. Under these conditions, no DSC endotherms were detected. No type II amylose–lipid complexes were formed during heating at 66% mc. In contrast, at 40 and 25% mc, Vh-type crystals were formed from 100 and 130 °C, respectively. Non-parboiled white rice flour had a strong A-type pattern. Mildly parboiled rice had a clear A-type, with a weak Vh-type and B-type pattern. Severe parboiling resulted in partially crystalline systems with superimposed A-type, Vh-type and B-type crystals. It was concluded that the rice variety, the combination of mc and the moisture distribution in the rice kernel and the temperature during parboiling all impact the level and the types of crystals in the parboiled rice. 相似文献
4.
To study dough microstructure, epifluorescence light microscopy (EFLM) combined with digital image processing software was used, which enabled an improved image quality. A comparison was made between EFLM and confocal scanning laser microscopy (CSLM) methods. Both techniques were satisfactorily able to demonstrate changes in the dough microstructure upon different stages of z-blade mixing. Dough mixed for a shorter time (under-mixed) showed a heterogeneous structure with coarse protein domains and clusters of starch due to local segregation or de-mixing effect. Increasing mixing time (optimal mixing) led to development of interconnected gluten network covering starch granules throughout the dough, representing optimal development. Over-mixing led to formation of a homogeneous dough microstructure in which the gluten phase showed a fine distribution throughout the dough. Using a double staining method in the preparation of samples for both microscopic techniques it was possible to observe gluten network structures together with starch granules. Moreover, special features of image processing software described in this study enabled us to improve EFLM images and to obtain comparable images with CSLM. This could favour a low cost and a convenient microscopic observation of biomaterials. 相似文献
5.
Jorge F. Toro-Vazquez Carlos A. Gmez-Aldapa Antonio Aragon-Pia Edmundo Brito-de la Fuente Elena Dibildox-Alvarado Miriam Char-Alonso 《Journal of Cereal Science》2003,38(3):269-279
In this study we evaluated the thermo-mechanical properties of maize starch pastes (80% wt/wt) under the effect of exogenous lysophosphatidylcholine (LPC) using differential scanning calorimetry (DSC), dynamic mechanical spectrometry (DMS), and scanning electron microscopy (SEM). Particular attention was paid to the development of the amylose-LPC inclusion complex. Results from SEM and DSC showed that with no exogenous LPC, granular maize starch developed the amylose network structure for starch gelling at 80–95 °C. In comparison, at 1.86 and 3.35% of LPC, heating up to 130 °C was needed to develop the three-dimensional network required for starch gelling. Results showed that at these LPC concentrations LPC interacted mainly with amylose within the starch granule. At concentrations ≥8.26% the LPC interacted with amylose both inside the granule and on the granule's surface. At such LPC concentrations heating to 130 °C did not fully develop the starch network structure for gelling. These results suggested that a higher thermal stability was achieved by starch granules because of LPC inclusion complex formation. DSC or DMS did not detect the development of this complex, probably because its formation took place below the onset of gelatinization under conditions of limited molecular mobility. Subsequently, a lower level of organization (i.e. complex in form I) was achieved than in the complex developed at high temperature and water excess (i.e. complex in form II). On the other hand, the changes in the starch granule structure observed by SEM as a function of the time–temperature variable were well described by the phase shift angle (δ) rheograms for starch pastes with and without addition of LPC. 相似文献
6.
Surface properties and locations of gluten proteins and lipids revealed using confocal scanning laser microscopy in bread dough 总被引:1,自引:0,他引:1
Surface properties of gluten proteins were measured in a dilation test and in compression and expansion tests. The results showed that monomeric gliadin was highly surface active, but polymer glutenin had almost no surface activity. The locations of those proteins in bread dough were investigated using confocal scanning laser microscopy and compared with polar and nonpolar lipids. Added gluten proteins participated in the formation of the film or the matrix, surrounding and separating individual gas cells in bread dough. Gliadin was found in the bulk of dough and gas ‘cell walls’. Glutenin was found only in the bulk dough. Polar lipids were present in the protein matrix and in gas ‘cell walls’, as well as at the surface of some particles, which appeared to be starch granules. However, nonpolar lipid mainly occurred on the surface of particles, which may be starch granules and small lipid droplets. It is suggested that the locations of gluten proteins in bread dough depends on their surface properties. Polar lipid participates the formation of gluten protein matrix and gas ‘cell walls’. Nonpolar lipids may have an effect on the rheological properties by associating with starch granule surfaces and may form lipid droplets. 相似文献
7.
This study determined the effects of stearic acid on the functional properties of teff starch, a compound granule starch in comparison to maize, a simple type granule starch. Stearic acid was incorporated into teff and maize starches and pasted (held for 5 or 120 min at 91 °C) with an RVA (Rapid Visco Analyser). Teff starch with added stearic acid (0.25 and 1.5% starch basis) did not produce a pasting peak viscosity within short holding time (5 min) compared to maize starch. The paste viscosity of both teff and maize starches with stearic acid increased by about three times with long pasting (120 min). This increase in paste viscosity occurred earlier for teff starch than maize starch. Teff starch with stearic acid was more viscous and was non-gelling. Confocal laser scanning microscopy showed that stearic acid did not diffuse in teff starch granules, but seemed to coat them. However, stearic acid diffused inside maize starch granules through channels. This microstructural difference may explain the different pasting behavior. The early high paste viscosity and non-gelling properties of the teff starch modified with stearic acid could have promising applications in foods, for example better mouthfeel with lower starch concentration. 相似文献