首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indonesia has abundant forest biomass resource, which should not be considered as a low economic value resource. This forest biomass resource can be converted into bioenergy through various technologies and it becomes one of sources in Indonesia's energy mix. This paper focuses on forest residues generated primarily from the harvesting of natural production forests and industrial forest plantations; and wood processing mill residues. The estimated total potential forest biomass in Indonesia for bioenergy in the year 2013 was 132 PJ. About 50.4% resulted from harvesting residues and 49.6% from wood processing residues. Riau province has the largest potential bioenergy followed by Central Kalimantan, East Kalimantan, East Java, South Sumatera, Central Java and Jambi, which all together accounted for 87% of total potential bioenergy. Moreover, three major islands accounted for 95% of total potential bioenergy. Using a conversion return approach, the economic value of forest biomass when it was pelletized was estimated to be about US$ 5.6 per ton wood residues. The economic value of forest biomass is more sensitive to changes in the price of wood pellet than to changes in the collection and hauling cost of wood residues.  相似文献   

2.
Abstract

Biomass has become a popular alternative to satisfy expanding energy demand and as a substitute for fossil fuels and phased-out nuclear energy in Europe. The European Union White Paper stipulates that the utilization of biomass shall increase to 1566 TWh by 2010. However it is often overlooked that the forest resources are already, to a large extent, used by the forest industries. When promoting biomass for energy generation the consequences for the forest industries also need to be considered. Sweden is an excellent case study, as there are vast quantities of forest resources, nuclear power is starting to be phased out, there are restrictions on expanding hydropower and the political desire exists to “set an example” with respect to carbon dioxide emissions. This paper attempts to estimate and analyse the supply of two types of forest resource, namely, roundwood and harvesting residues derived from final harvesting and commercial thinnings. Two separate supply curves are estimated: one for roundwood and one for harvesting residues. The cost structure is based on an economic-engineering approach where the separate cost components are constructed from the lowest cost element into aggregates for labour, capital, materials and overhead costs for each forest resource. The results indicate an unutilized economic supply of 12 TWh of harvesting residues in Sweden. However, after these 12 TWh have been recovered it becomes more profitable to use roundwood for energy purposes than to continue extracting further amounts of harvesting residues.  相似文献   

3.
Abstract

The search for alternative energy sources has increased the interest in forest biomass. During the past few years, the severe infestation of the mountain pine beetle (MPB) within the forests of interior British Columbia (BC) has led to huge volumes of dead wood that exceed the capacity of the lumber industry. One way to make the most value of the surplus wood is to use it as the feedstock for bioenergy. The high costs associated with harvest and transport, and uncertainty in supply logistics are issues related to forest biomass utilization. This paper presents the development of a forest biomass supply logistics simulation model and its application to a case of supplying MPB-killed biomass from Quesnel timber supply area (one of the most infested areas in the interior BC) to a potential 300 MW power plant adjacent to the city of Quesnel. It provides values of quantity, cost and moisture content of biomass which are important factors in feasibility study of bioenergy projects. In the case of a conventional harvesting system, the biomass recovered from roadside residues in 1 year will meet only about 30% of the annual demand of the power plant with an estimated delivered cost of Can $45 per oven-dry tonne of woodchips. Sensitivity analyses were also performed.  相似文献   

4.
论我国林业生物质能源林培育与发展   总被引:8,自引:0,他引:8  
能源危机和生态环境压力使世界发达国家纷纷转向发展和利用生物质能源,发展生物质能产业也是我国缓解能源供应压力和解决环境问题的途径之一。林业生物质能资源培育是一项系统工程,要从统筹资源培育和产业发展、进行现状及发展潜力调查评价、制定资源培育及产业发展总体规划、加强科技和加强优惠财税政策等方面做好工作;同时,处理好产业与生态、森林多目标培育的关系,处理好国家、企业和能源林经营者三者之间的关系,以促进我国林业生物质能产业健康快速发展。  相似文献   

5.
As the sustainable forest biomass harvesting process is highly influenced by the terrain, the heterogeneity, and the protection status of the landscape, this study highlights the GIS and Remote Sensing as important scientific tools, assisting in the planning process and integrating the appropriate spatial limitations for an ecological forest biomass extraction in a rational bioenergy utilization framework. This study is focused on the northwest Greece and particularly in the regional unit of Grevena which is part of the Western Macedonia region, the region with the highest unemployment rates in Greece. As the forests in the regional unit of Grevena occupy a significant percentage over half of the regional unit area, the emphasis on the sustainable harvesting and utilization of forest biomass for energy purposes could tackle unemployment rates, enhance the energy autonomy of the remote mountain villages, and reduce the Mediterranean forest fire risk. The spatial data process and the implied spatial limitations unfold a methodology procedure, which is revealing specifically quantified and illustrated results as are emerging progressively the oak forests of the regional unit of Grevena with biomass harvesting capabilities, which do not belong to the Grevena’s protected areas, have accessible slopes and lower diversity index.  相似文献   

6.
The concept of a “harvesting system for unutilized forest biomass by a processor and a forwarder” is examined for the purpose of constructing a system to harvest logging residues (or slashes) as a new resource for energy. The rate of slash harvesting, α, and the energy input rate of hauling slashes,p (%), are defined as indices of the possibility of harvesting slashes and the utilization of slashes for energy, respectively. From an analysis of the field experiment, both the volume of logs hauled by the forwarder per day,E F (m3/day), andp are expressed as functions of the hauling distance,L(m). The productivity of the processor,E P (m3/day), andL were used to calculate α. Results showed that α was approximately 0.95 for the experiment site, indicating that almost all the slashes could be hauled. It was recognized that the energy utilization of slashes was feasible for this site becausep was less than 1 %. The hauling cost per unit weight of slashes was calculated as 15.4 yen/kg on an oven-dry weight basis. This high cost clarified that the cost must be reduced by taking measures such as enhancing the hauling efficiency of the forwarder. A part of this paper was orally presented at the 5th Annual Meeting of the Japan Forest Engineering Society (1998).  相似文献   

7.
The review gives an overview of the increased utilization of forest biomass for energy. The emphasis is on Nordic countries, especially on Sweden and Finland with large biomass potentials and a high share of renewable energy in gross final energy consumption. The utilization and potential of forest chip sources such as logging residues, small-size tree stems and stumps that are normally not harvested in conventional harvesting are described. Environmental potential and impacts that may reduce the utilization of forest biomass are discussed based on recent publications. Finally, the review summarizes the future developments based on their relationship to policies, certifications and guidelines and forest owners' decisions.  相似文献   

8.
Using the method of a life cycle inventory (LCI) analysis, the energy balance and the carbon dioxide (CO2) emission of logging residues from Japanese conventional forestry as alternative energy resources were analyzed over the entire life cycle of the residues. The fuel consumption for forestry machines was measured in field experiments for harvesting and transporting logging residues at forestry operating sites in Japan. In addition, a total audit of energy consumption was undertaken. It involved an assessment of materials, construction, and the repair and maintenance of forestry machines as well as the costs associated with an energy-conversion plant. As a result, the ratio of energy output to input was calculated to be 5.69, indicating that the system examined in this study could be feasible as an energy production system. The CO2 emission per MWhe (e: electricity) of the biomass-fired power generation plant was calculated to be 61.8kgCO2/MWhe, while that of coal-fired power generation plants in Japan is 960kgCO2/MWhe. Therefore, the reduction in the amount of CO2 emission that would result from replacing coal with biomass for power generation by as much as 3.0 million dry-t/year of logging residues in Japan was estimated to be 1.66 million tCO2/year, corresponding to 0.142% of the national CO2 emission. This study provides evidence that Japan could reduce its domestic CO2 emission by using logging residues as alternative energy resources.  相似文献   

9.
生物质发电技术和经济性研究综述   总被引:1,自引:0,他引:1  
受国际原油价格攀升和供应的不稳定、发展中国家持续增加的能源需求以及常规能源的使用所导致的气候变化等因素的影响,各国政府又重新对生物质能源的开发和利用产生了兴趣。介绍生物质资源的类型和3种主要的生物质发电技术,对国内外的生物质发电的研究进展从技术和经济性等方面进行剖析,指出我国在生物质发电方面的发展潜力和存在的不足。  相似文献   

10.
湖北木质生物质能源研究   总被引:4,自引:0,他引:4  
林木生物质能源是可再生能源的重要组成部分,其研究利用对解决湖北省能源、生态环境问题将起到十分积极的作用。本文介绍了湖北省林木生物质能源研究情况,涉及到能源树种种质资源库建设、树木果实榨取柴油、林木废弃物利用以及木纤维转化酒精等方面的研究。结合我省实际情况,提出了建议。  相似文献   

11.
我国桉树生物质能源林研究与利用综述   总被引:1,自引:0,他引:1  
开发利用林业生物质能源是改善能源结构、保障能源安全和保护生态环境的重要途径之一.桉树不仅是工业原料林生产的重要树种,也是林业生物质能利用的良好原材料.本文从品种研究、评价指标(热值、灰分、生物量、能量现存量)、造林技术(立地条件、整地方式、造林密度、混交造林、收获周期、效益分析)和利用方式等方面阐述了我国桉树生物质能源林研究与利用现状,简要总结了我国发展桉树生物质能源存在的不足并提出今后加强研究的重点,以期为我国合理开发和利用桉树生物质能源提供参考.  相似文献   

12.
This article examines alternative forest harvesting regimes when ecosystem services in terms of water quality, biodiversity conservation and climate change mitigation are included in the analysis. The harvesting regimes are whole-tree harvesting with stump removal and conventional stem-only harvesting. The harvesting regimes are evaluated under two alternative climate policy contexts. The first alternative is a carbon neutral bioenergy policy, which assumes the carbon dioxide (CO2) neutrality of bioenergy and produces substitution benefits, as bioenergy replaces fossil fuels. The second alternative climate policy, a carbon non-neutral bioenergy policy, takes into account the fact that bioenergy causes carbon dioxide emissions, producing substitution costs, and that harvested woody biomass affects the ability of a forest to act as a carbon sink. We extend the traditional Faustmann (1849) rotation model to include nutrient load damage, biodiversity benefits, and climate impacts. The empirical analysis is based on Finnish data from a catchment experiment carried out on drained peatland forests. The empirical results show that under a carbon neutral bioenergy policy, whole-tree harvesting with stump removal produces the highest net social benefits. However, if a carbon non-neutral bioenergy policy is assumed, the net social benefits are greater under stem-only harvesting.  相似文献   

13.
In the past the use of woody biomass for bioenergy was considered carbon neutral. However, this changed when analyses were made of cases of land use change or old growth forest logging for bioenergy purposes. These analyses showed a significant carbon debt that could take hundreds of years to be compensated by the substitution factor of the bioenergy.Currently, carbon debt analyses are often carried out: 1) at one hectare scale, or 2) against the hypothetical case of allowing the managed forest to grow to an old-growth state, or 3) in a comparison against short term policy goals. All three are not realistic for European forests. Here we analysed carbon debt and parity of realistically increased harvesting over large forest areas in Europe. We found that under such realistic cases, a carbon debt does not occur. i.e. the large scale average stocks in the forest are not reduced. What does occur is a parity compared to the baseline harvesting levels. The parity effect was eventually also compensated for. However it took long, especially if final fellings were increased for bioenergy; which is a rather hypothetical case. In case of increased thinnings, the parity equality was often reached within 80 years compared to burning coal. Removal of harvesting residues was often compensated within 1 decade. However, parity is a theoretical comparison against a higher baseline C stock in the forest. It is not certain that this higher stocking under the baseline will be sustained, because there is an increasing chance of natural disturbances. Thus the parity may be much shorter than analysed here.  相似文献   

14.
Increased forest biomass production for bioenergy will have various consequences for landscape scenery, depending on both the landscape features present and the character and intensity of the silvicultural and harvesting methods used. We review forest preference research carried out in Finland, Sweden and Norway, and discuss these findings in relation to bioenergy production in boreal forest ecosystems. Some production methods and related operations incur negative reactions among the public, e.g. stump harvesting, dense plantation, soil preparation, road construction, the use of non-native species, and partly also harvest of current non-productive forests. Positive visual effects of bioenergy production tend to be linked to harvesting methods such as tending, thinning, selective logging and residue harvesting that enhance both stand and landscape openness, and visual and physical accessibility. Relatively large differences in findings between studies underline the importance of local contextual knowledge about landscape values and how people use the particular landscape where different forms of bioenergy production will occur. This scientific knowledge may be used to formulate guiding principles for visual management of boreal forest bioenergy landscapes.  相似文献   

15.
Forests are one of the most important ecosystems on earth that require careful management, conservation, and sustainable exploitation. As countries have their own guideline systems, each may learn and borrow from one another’s experience. One of such countries is Japan, which has elaborate forest policies, and rich in forest cover (67%) with its forest history dating many years back. On the other hand, Kenya, with a forest cover of just 7% and its policies demonstrating notable weaknesses, has a lot to learn from Japan. Therefore, we have attempted to do a comparative analysis of forest policies, technologies, and management practices between Kenya and Japan. Results indicate that Kenya’s forest policies do not place adequate emphasis on silvicultural practices and the establishment of forest plantations, and rarely focus on sustainable biomass utilization—factors that contributed significantly to forest growth and development in Japan. Additionally, policy legislation, revision, and implementation have not been given the deserved priority in Kenya. We conclude that Kenyan forest policy would benefit from both revision and thorough implementation. We also discuss the role of indirect factors such as economic growth and availability of nonwood-based energy sources in the future of Kenya’s forests.  相似文献   

16.
Background: Bioenergy is re-shaping opportunities and imperatives of forest management. This study demonstrates,through a case study in Scots pine(Pinus sylvestris L.), how forest bioenergy policies affect stand management strategies.Methods: Optimization studies were examined for 15 Scots pine stands of different initial stand densities, site types, and temperature sum regions in Finland. Stand development was model ed using the Pipe Qual stand simulator coupled with the simulation-optimization tool Opti For Bioenergy to assess three forest bioenergy policies on energy wood harvest from early thinnings.Results: The optimal solutions maximizing bare land value indicate that conventional forest management regimes remain optimal for sparse stands. Energy harvests occurred only when profitable, led to lower financial returns. A forest bioenergy policy which included compulsory energy wood harvesting was optimal for denser stands. At a higher interest rate(4 %), increasing energy wood price postponed energy wood harvesting. In addition, our results show that early thinning somewhat reduced wood quality for stands in fertile sites. For less fertile sites, the changes were insignificant.Conclusions: A constraint of profitable energy wood harvest is not rational. It is optimal to carry out the first thinning with a flexible forest bioenergy policy depending on stand density.  相似文献   

17.
U.S. forests, including family-owned forests, are a potential source of biomass for renewable energy. Family forest owners constitute a significant portion of the overall forestland in the U.S., yet little is known about family forest owners' preferences for supplying wood-based biomass. The goal of this study is to understand how Massachusetts family forest owners feel about harvesting residual woody biomass from their property. The study estimates the probability that Massachusetts landowners will harvest biomass as part of a timber harvest using data from a survey of 932 Massachusetts family forest owners. Logistic regression results suggest that the likelihood of harvesting for biomass is quite low, and that the supply of participation in biomass harvesting is inelastic with respect to price. These low probabilities may be due to the method used to account for preference uncertainty, as well as the unique nature of Massachusetts forests, forest markets, and landowner attitudes in comparison to other states (e.g., Minnesota). The study suggests that it would be more effective to target renewable energy policy toward different regions and/or markets rather than develop a uniform national policy.  相似文献   

18.
Increasing interest in making use of forest sector processing residuals for renewable energy production has led to the need for careful analyses of fibre supply, and the ways in which existing forest sector firms could be affected by new sources of fibre demand. In this paper we present a forest sector transportation model of the three Canadian Prairie Provinces, and use the model to estimate residual fibre production, utilization and surpluses, as well as some potential forest sector impacts from bioenergy capacity additions. Under our base-case assumptions and using 2010 product prices, we estimate that 6.9 million cubic meters (round-wood equivalent) of processing residuals would be traded over the course of a year, with sawmills being the most significant source and pulp and paper mills being the most significant user. Approximately 33% of residuals would be used to produce bioenergy-related products (wood pellets, electricity sold to the grid, or internal electricity and power at pulp mills). Results show that some surpluses of processing residuals may be present in the existing supply chain, though the availability of these residuals is sensitive to lumber prices. At the same time, new bioenergy capacity itself may trigger higher sawmill output, making additional fibre available for both new and existing users. Roadside harvesting residuals are not an economically viable source of fibre under our base-case assumptions; however, their viability is sensitive to roadside processing costs and electricity prices.  相似文献   

19.
Forest bioenergy is an alternative to fossil energy.Although forest bioenergy is of great value to ease energy supply,there is still a strong call for the research of what impact forest bioenergy plantation will exert on environment if under large scale development.By discussing the resource potential and development status of forest bioenergy,the paper attempts to explore the potential impact of forest bioenergy on environment and give some recommendations to mitigate and even avoid negative impact.  相似文献   

20.
中国林木生物质能源潜力测算及变化趋势   总被引:1,自引:1,他引:0  
基于各省份林业统计数据,文中利用自下而上分析方法测算了中国林木生物质能源的资源潜力,并对变化趋势进行分析。结果表明:1993—2013年中国林木生物质能源资源潜力由0.78亿t标准煤增长到1.05亿t标准煤,20年间增长了34.62%;从资源构成来看,灌木平茬剩余物和采伐剩余物是林木生物质能源的主要供给来源;从区域变化来看,不同省份资源潜力呈现明显差异,但全国平均水平的逐步提高并非个别省份资源潜力大幅度提高使然,而是绝大部分省份资源潜力的共同增长促成了平均水平的连年提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号