共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypotheses that hydraulic conductance is lower in old (about 250 years old and 30 m tall) compared to young (about 40 years old and 10 m tall) Pinus ponderosa Dougl. ex Laws. trees and that lower hydraulic conductance of old trees limits their photosynthesis. Hydraulic conductance at the end of summer 1995, calculated from leaf water potential and leaf gas exchange measurements on one-year-old needles, was 44% lower in old trees compared to young trees growing in a mixed age-class stand on the east slope of the Oregon Cascades. Whole-tree sapflow per unit leaf area averaged 53% lower in old trees compared to young trees and mean hydraulic conductance calculated from sapflow and water potential data was 63% lower in old trees than in young trees. For the entire summer, stomatal conductance (g(s)) and assimilation (A) declined more steeply with air saturation deficit (D) in old trees than in young trees. For both old and young trees, mean g(s) and A were approximately 32 and 21% lower, respectively, at typical midday D values (2.5-3.0 kPa). We hypothesized that if hydraulic conductance limits g(s) and A, then increasing or decreasing the leaf specific conductance of a branch will result in proportional changes in the responses of g(s) and A with D. Removal of 50% of the foliage from a set of experimental branches on old trees caused g(s) and A to decline less steeply with D in early summer, but values were not significantly different from control values in late summer. Cutting transverse notches in branches on young trees had no effect on the responses of g(s) and A with D. Leaf nitrogen content and photosynthetic capacity were similar suggesting that differences in g(s) and A between old and young trees were not caused by differences in photosynthetic capacity. 相似文献
2.
J. A. Hoff N. B. Klopfenstein G. I. McDonald J. R. Tonn M.‐S. Kim P. J. Zambino P. F. Hessburg J. D. Rogers T. L. Peever L. M. Carris 《Forest Pathology》2004,34(4):255-271
The fungal community inhabiting large woody roots of healthy conifers has not been well documented. To provide more information about such communities, a survey was conducted using increment cores from the woody roots of symptomless Douglas‐fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) growing in dry forests on the eastern slope of the Cascade Mountains in Washington state, USA. Fungal isolates were cultured on standard media, and then were identified using a combination of molecular and morphological methods. Fungal genera and species identified in this study will provide baseline data for future surveys of fungal endophytes. Examination of internal transcribed spacer (ITS1 and ITS2) and 5.8S rDNA sequences and morphology of cultured fungi identified 27 fungal genera. Two groups predominated: Byssochlamys nivea Westling (20.4% of isolations) and Umbelopsis species (10.4% of isolations). This is the first report of B. nivea within large woody roots of conifers. Both taxa have been previously identified as potential biological control agents. Although some trends were noted, this study found no significant evidence of host species or plant association effects on total recovery of fungal endophytes or recovery of specific fungal taxa. 相似文献
3.
To gain insight into the limitations imposed by a typical Mediterranean-climate summer drought on the uptake of carbon and ozone in the ponderosa pine (Pinus ponderosa Dougl. ex Laws.) ecosystem, we compared diurnal trends in leaf physiology of young trees in a watered and a control plot located in the Sierra Nevada Mountains, CA, USA (Blodgett Forest, 38 degrees 53' N, 120 degrees 37' W, 1315 m elevation). Predawn water potential of trees in the watered plot remained above -0.3 MPa throughout the growing season, whereas it dropped in the control plot from -0.24 to -0.52 MPa between late May and mid-August. Photosynthesis and stomatal conductance of trees in the watered plot were relatively insensitive to atmospheric vapor pressure deficit (VPD), whereas gas exchange of trees in the control plot varied with changes in soil water, VPD and temperature. Although the 1998 growing season was abnormally wet, we saw a pronounced drought effect at the control site. Over the 2 months following the onset of watering, carbon and ozone uptake were measured on three days at widely spaced intervals. Carbon uptake per unit leaf area by 1-year-old foliage of trees in the control plot was 39, 35 and 30% less, respectively, than in the watered plot, and estimated ozone deposition per unit leaf area (ozone concentration times stomatal conductance) was 36, 46 and 41% less. 相似文献
4.
Winter desiccation is believed to contribute to stress in coniferous trees growing at the treeline because cuticular conductance increases with altitude. To test whether winter desiccation occurs in high-altitude conifers of the Dolomites (NE Italian Alps), we measured minimum cuticular conductance (g(min)), needle wettability (contact angle) and cuticle thickness in Picea abies (L.) Karst. and Pinus cembra L. needles from December to August. Samples were collected from adult trees along an altitudinal gradient from valley bottom (1050 m a.s.l.) to the treeline (2170 m a.s.l.). The treeline site is one of the highest in the area and is characterized by a generally low wind exposure. Altitude had no effect on g(min) in either species. In P. abies, large seasonal variations in g(min) were recorded but no changes were related to needle age class. Pinus cembra had a low g(min) and appeared to be efficient in reducing needle water losses. There was a significant increase in g(min) with needle aging in P. cembra growing at low altitude that could be related to a shorter needle longevity compared with P. abies. High contact angles (> 110-120 ) suggested the presence of tubular epicuticular waxes on needles of both species. Contact angles were higher (low wettability) in high-altitude needles than in low-altitude needles. By the end of winter, there was no difference in contact angles between needles in the windward and leeward positions. Wax structures transformed toward planar shapes as demonstrated by the decrease in contact angle from winter to summer. In both species, the cuticle was thicker in needles of high-altitude trees than in needles of low-altitude trees and there was no correlation between g(min) and cuticle thickness. Because desiccation resistance did not decrease with altitude in either species, we conclude that they are not susceptible to winter desiccation at the tree line. 相似文献
5.
The influence of low light on tolerance to prolonged drought was tested on unshaded and shaded seedlings of ponderosa pine (Pinus ponderosa var. scopulorum Dougl. ex Laws.). Unshaded seedlings of P. ponderosa var. ponderosa were also drought stressed to compare varietal responses to drought. The maximum irradiance received by shaded seedlings was 10% of full light. Seedlings were progressively drought stressed until predawn water potentials (Psi(x)) were -5.0 MPa. Relative water content (RWC) and the reciprocal of Psi(x) were analyzed by means of an unusual application of the pressure-volume relationship for determination of RWC of the apoplast (RWC(a)), osmotic potential at full turgor (Psi(oft)), and ratio of fully turgid weight to dry weight. Major varietal differences in drought response were in RWC(a) and needle cellulose content. The shaded seedlings showed tissue damage at relative water contents < 60%, and were killed by water deficits from which unshaded seedlings recovered. Correspondingly, shaded plants had significantly higher cell volume/cell mass ratio, Psi(oft), less cellulose in needle tissue, and lower RWC(a) than unshaded plants. These differences suggest that low irradiance restricts drought adaptation in ponderosa pine. 相似文献
6.
Panek JA 《Tree physiology》2004,24(3):277-290
This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores. 相似文献
7.
Photoinhibition of photosynthesis and photosynthetic recovery were studied in detached needles of cypress (Cupressus sempervirens L.) Clones 52 and 30 under controlled conditions of high irradiation (about 1900 micromol m(-2) s(-1) for 60 min; HL treatment), followed by 60 min in darkness. The degree of photoinhibition was determined based on the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm), which is a measure of the potential efficiency of photosystem II (PSII), and on electron transport measurements. The Fv/Fm ratio declined in needles of both clones in response to the HL treatment. Minimal fluorescence (Fo) increased in HL-treated needles of both clones. The HL treatment decreased rates of whole-chain and PSII activity of isolated thylakoids more in Clone 52 than in Clone 30. In needles of both clones, PSI activity was less sensitive to photoinhibition than PSII activity. In the subsequent 60-min dark incubation, fast recovery was observed in needles of both clones, with PSII efficiencies reaching similar values to those in non-photoinhibited needles. The artificial exogenous electron donors diphenyl carbazide (DPC), hydroxylamine (NH2OH) and manganese chloride (MnCl2) failed to restore the HL-induced loss of PSII activity in needles of Clone 30, whereas DPC and NH2OH significantly restored PSII activity in photoinhibited needles of Clone 52. Quantification of the PSII reaction center protein D1 and the 33-kDa protein of the water-splitting complex following HL treatment of needles revealed pronounced differences between Clone 52 and Clone 30. The large decrease in PSII activity in HL-treated needles was caused by the marked loss of D1 protein and 33-kDa protein in Clone 30 and Clone 52, respectively. 相似文献
8.
Whitehead D Walcroft AS Scott NA Townsend JA Trotter CM Rogers GN 《Tree physiology》2004,24(7):795-804
Responses of photosynthesis to carbon dioxide (CO2) partial pressure and irradiance were measured on leaves of 39-year-old trees of manuka (Leptospermum scoparium J. R. Forst. & G. Forst.) and kanuka (Kunzea ericoides var. ericoides (A. Rich.) J. Thompson) at a field site, and on leaves of young trees grown at three nitrogen supply rates in a nursery, to determine values for parameters in a model to estimate annual net carbon uptake. These secondary successional species belong to the same family and commonly co-occur. Mean (+/- standard error) values of the maximum rate of carboxylation (hemi-surface area basis) (Vcmax) and the maximum rate of electron transport (Jmax) at the field site were 47.3 +/- 1.9 micromol m(-2) s(-1) and 94.2 +/- 3.7 micromol m(-2) s(-1), respectively, with no significant differences between species. Both Vcmax and Jmax were positively related to leaf nitrogen concentration on a unit leaf area basis, and the slopes of these relationships did not differ significantly between species or between the trees in the field and young trees grown in the nursery. Mean values of Jmax/Vcmax measured at 20 degrees C were significantly lower (P < 0.01) for trees in the field (2.00 +/- 0.05) than for young trees in the nursery with similar leaf nitrogen concentrations (2.32 +/- 0.08). Stomatal conductance decreased sharply with increasing air saturation deficit, but the sensitivity of the response did not differ between species. These data were used to derive parameters for a coupled photosynthesis-stomatal conductance model to scale estimates of photosynthesis from leaves to the canopy, incorporating leaf respiration at night, site energy and water balances, to estimate net canopy carbon uptake. Over the course of a year, 76% of incident irradiance (400-700 nm) was absorbed by the canopy, annual net photosynthesis per unit ground area was 164.5 mol m(-2) (equivalent to 1.97 kg C m(-2)) and respiration loss from leaves at night was 37.5 mol m(-2) (equivalent to 0.45 kg m(-2)), or 23% of net carbon uptake. When modeled annual net carbon uptake for the trees was combined with annual respiration from the soil surface, estimated net primary productivity for the ecosystem (0.30 kg C m(-2)) was reasonably close to the annual estimate obtained from independent mensurational and biomass measurements made at the site (0.22 +/- 0.03 kg C m(-2)). The mean annual value for light-use efficiency calculated from the ratio of net carbon uptake (net photosynthesis minus respiration of leaves at night) and absorbed irradiance was 13.0 mmol C mol(-1) (equivalent to 0.72 kg C GJ(-1)). This is low compared with values reported for other temperate forests, but is consistent with limitations to photosynthesis in the canopy attributable mainly to low nitrogen availability and associated low leaf area index. 相似文献
9.
Han Q 《Tree physiology》2011,31(9):976-984
Hydraulic limitations associated with increasing tree height result in reduced foliar stomatal conductance (g(s)) and light-saturated photosynthesis (A(max)). However, it is unclear whether the decline in A(max) is attributable to height-related modifications in foliar nitrogen concentration (N), to mesophyll conductance (g(m)) or to biochemical capacity for photosynthesis (maximum rate of carboxylation, V(cmax)). Simultaneous measurements of gas exchange and chlorophyll fluorescence were made to determine g(m) and V(cmax) in four height classes of Pinus densiflora Sieb. & Zucc. trees. As the average height of growing trees increased from 3.1 to 13.7 m, g(m) decreased from 0.250 to 0.107 mol m(-2) s(-1), and the CO(2) concentration from the intercellular space (C(i)) to the site of carboxylation (C(c)) decreased by an average of 74 μmol mol(-1). Furthermore, V(cmax) estimated from C(c) increased from 68.4 to 112.0 μmol m(-2) s(-1) with the increase in height, but did not change when it was calculated based on C(i). In contrast, A(max) decreased from 14.17 to 10.73 μmol m(-2) s(-1). Leaf dry mass per unit area (LMA) increased significantly with tree height as well as N on both a dry mass and an area basis. All of these parameters were significantly correlated with tree height. In addition, g(m) was closely correlated with LMA and g(s), indicating that increased diffusive resistance for CO(2) may be the inevitable consequence of morphological adaptation. Foliar N per unit area was positively correlated with V(cmax) based on C(c) but negatively with A(max), suggesting that enhancement of photosynthetic capacity is achieved by allocating more N to foliage in order to minimize the declines in A(max). Increases in the N cost associated with carbon gain because of the limited water available to taller trees lead to a trade-off between water use efficiency and photosynthetic nitrogen use efficiency. In conclusion, the height-related decrease in photosynthetic performance appears to result mainly from diffusive resistances rather than biochemical limitations. 相似文献
10.
Scaling leaf-level measurements to estimate carbon gain of entire leaf crowns or canopies requires an understanding of the distribution of photosynthetic capacity and corresponding light microenvironments within a crown. We have compared changes in the photosynthetic light response and nitrogen (N) content (per unit leaf area) of Pinus contorta Dougl. ssp. latifolia Engelm. (lodgepole pine) leaves in relation to their age and light microenvironment. The vertical gradient in integrated daily photosynthetic photon flux density (PPFD) from the upper to the lower crown of lodgepole pine was similar in magnitude to the horizontal gradient in daily PPFD along shoots from young to old leaves. The relationship between light-saturated net photosynthesis (A(max)) and daily PPFD was significant for both young and old leaves. However, old leaves had a lower A(max) than young leaves in a similar daily irradiance regime. For leaves of all ages from throughout the crown, A(max) was linearly related to the estimated daily net carbon gain that leaves could achieve in their natural PPFD environment (estimated A(day)) (r(2) = 0.84, P < 0.001, n = 39), indicating that estimated A(day) may be dominated by carbon fixed when leaves are light-saturated and operating at A(max). Comparison of the PPFD required to achieve A(max) and the PPFD available to the leaves showed that all of the measured leaves (n = 39), regardless of their position in the crown or age, were in light environments that could light-saturate photosynthesis for a similar proportion of the day. For all data pooled, foliar N was weakly correlated with daily PPFD. Analyzing each leaf age class separately showed that foliar N was significantly related to daily PPFD, A(max), and estimated A(day) for the youngest leaves but not for middle-aged or old leaves. Therefore, the general theory that foliar N is allocated within a crown according to total daily light availability was supported only for young (1-4 years old) leaves in this study. 相似文献
11.
M. S. Günthardt-Goerg 《Forest Pathology》1986,16(7):400-408
Epicuticular wax composition and its variation with needle age was analysed chemically. Needles were taken from conifers at the highest altitude of their local distribution. Quantitative and qualitative differences in the composition of the three conifer waxes were found. Increasing needle age influenced the wax composition in Pinus cembra and Picea abies. 相似文献
12.
《Scandinavian Journal of Forest Research》2012,27(2):149-159
Abstract The dynamics of six different needle parameters of Pinus sylvestris L. and Pinus ponderosa Dougl. ex P. & C. Laws. were examined retrospectively for a 112-year-old mixed stand in Brandenburg, Germany, using the needle trace method. Similarities were found in needle production, needle loss and needle density. However, needle age, needle retention and total number of needles revealed significant differences between the tree species, with higher values for P. ponderosa. Pinus ponderosa yielded approximately twice as much mean whole-crown needle dry mass as P. sylvestris. Furthermore, different branching systems could be detected between the species, with both pines following “Corner's rule”. The results suggest that under identical growing conditions, P. ponderosa exhibits more efficient water use and can therefore maintain a bigger crown (as the basis for increased growth) than P. sylvestris. 相似文献
13.
Combination of native pastures with fast-growing tree species (mainly Pinus spp.), may be an interesting economic and environmental alternative for small and medium land-owners in Patagonia,Argentina. Pasture productivity is usually the single most important factor affecting livestock carrying capacity. Therefore the prediction of the effects of tree cover on understory herbaceous production is of great importance for management. This paper reports the growth response of Stipa speciosa Trin. et Rupr. (tillering, tiller height, number of green leaves per tiller, and relative growth) to Pinus ponderosa Doug. (Laws) canopy cover (0 to 100%). Grasses did not grow when crown cover was >70%. Tiller production and relative growth were negatively correlated with tree cover; tiller height was larger under high tree cover. There was no relationship between leaf production and tree canopy cover. Grass leaves maintained net photosynthetic rates, at similar light levels, at a wide range of plant water potentials (from saturation to at least –2.4 MPa). Decrease in photosynthesis occurred at very low plant water potentials (–4.3 MPa). No differences in photosynthetic rate at similar radiation levels were foundbe tween plants growing in different light environments (determined by tree cover) in the field. Stipa speciosa can maintain positivenet CO2 assimilation and growth under moderate shading and severewater stress conditions. For this reason, it can be used in silvopastoral systems, with a proper light management.This revised version was published online in November 2005 with corrections to the Cover Date. 相似文献
14.
《Forest Ecology and Management》1986,15(4):285-294
Growth in height, diameter, and volume was measured on 9- to 18-year-old ponderosa pine (Pinus ponderosa) and 10- to 13-year-old lodgepole pine (Pinus contorta) trees growing on or near compacted skid trails in the Yakima Indian Reservation in south-central Washington. Soil bulk density of the 0- to 30.5-cm deep layer was measured with a single-probe nuclear densimeter on two sides of each sample tree and in adjacent undisturbed soil. On three ponderos pine sites logged 23 years before the study, average bulk density on skid trails was 15% greater than on adjacent undisturbed soil. On a lodgepole pine site logged 14 years before the study, soil on skid trails averaged 28% greater bulk density than undisturbed soil.Total growth of ponderosa pine and the last 5 years of growth were significantly related (P = 0.07) by regression analysis to age of trees, site index, basal area of the adjacent overstory, and the percentage of increase in soil bulk density. At the mean increase in soil bulk density, total height, diameter, and volume growth were reduced 5%, 8%, and 20%, respectively.Total growth of lodgepole pine and the last 5 years of height, diameter, and volume growth were significantly related to tree age and the percentage of soil organic matter. Increase in soil bulk density was not significantly related to growth of this species. 相似文献
15.
As one of the three major five-leaved pines in the northern hemisphere, Pinus koraiensis is the most important dominant tree species in the natural mixed-broadleaved Korean pine forests. However, the regeneration of P koraiensis under the canopy of secondary forest stands is poor because of the light limitation. This study was conducted to understand how P koraiensis seedlings adapt to different light intensities and what would be the optimum light level for their establishment and growth. Three repetition plots with four light intensities (15%, 30%, 60% and 100% of the natural incident irradiances, achieved by suspending layers of black nylon net above and surrounding the plots) were set up under natural climate conditions in a montane region in eastern Liaoning Province, Northeast China. A total of 80 P koraiensis seedlings with similar height and root collar diameter were transplanted into four plots. After one year of acclimation to the specific light conditions, the seasonal variations of the photosynthetic variables and needle traits of the current and one-year-old needles, and the growth parameters were observed under four light intensities. The results indicated that: (1) The seedling at 60% treatment exhibited the greatest growth, which agreed with the response of the light-saturated photosynthetic rates (Amax) and the dark respiration rate (Rd) in the current and one-year-old needles, i.e., Rd at 60% treatment was significantly lower than that at 100% treatment, but Amax did not differ between the seedlings at 100% and 60% treatments. (2) The P. koraiensis seedlings have a certain photosynthetic plasticity to adapt the light conditions by adjusting their needle traits and regulating the physiological processes, because Amax, Rd, light saturation point and compensation point, the needle mass area, needle nitrogen and chlorophyll contents were significantly (p〈0.05) correlated with the light intensities. Especially, Am,x at 100% and 60% treatments was significantly higher (p〈0.05) than that at 30% and 15% treatments for both current and one-year-old needles. (3) The needles of different ages played a commutative role during the growing season, i.e., the one-year-old needles played a major role for the photosynthesis in the early growing season; the current year needles did in the later growing season. This ensured the effective photosynthesis throughout the growing season. These findings suggest that P. koraiensis is the in-between heliophilous and shade-tolerant tree species at least for the seedlings up to 8 years. 相似文献
16.
Glutathione S-transferase activity conjugating xenobiotics with glutathione (GSH) was found in extracts from needles of dwarf pine (Pinus mugo Turra). In vivo incubation of needle segments with the herbicide fluorodifen at 25 degrees C resulted in conversion of the xenobiotic to water-soluble products at initial rates of 0.7 nmol h(-1) g(fw) (-1). At 15 degrees C, the initial rate of product formation was decreased to 0.1 nmol h(-1) g(fw) (-1). In vitro conjugation studies with chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB) as model substrates gave apparent K(m) values of 0.5 mM GSH and 1.14 mM CDNB in the GSH/CDNB system and 0.3 mM GSH and 0.44 mM DCNB in the GSH/DCNB system. The pH optimum was between 7.7 and 7.9 for both the GSH/CDNB and the GSH/DCNB systems. The temperature optimum for these model substrates was between 30 and 35 degrees C, and only minute amounts of enzyme activity were detected at 15 degrees C. The activation energy in the temperature range of 15 to 30 degrees C was 46 kJ mol(-1). Dwarf pine glutathione S-transferase exhibited an approximate molecular weight of 52 kD. 相似文献
17.
Five-year-old Scots pine (Pinus sylvestris L.) seedlings were grown in open-top chambers at ambient and elevated (ambient + 400 &mgr;mol mol(-1)) CO(2) concentrations. Net photosynthesis (A), specific leaf area (SLA) and concentrations of nitrogen (N), carbon (C), soluble sugars, starch and chlorophyll were measured in current-year and 1-year-old needles during the second year of CO(2) enrichment. The elevated CO(2) treatment stimulated photosynthetic rates when measured at the growth CO(2) concentration, but decreased photosynthetic capacity compared with the ambient CO(2) treatment. Acclimation to elevated CO(2) involved decreases in carboxylation efficiency and RuBP regeneration capacity. Compared with the ambient CO(2) treatment, elevated CO(2) reduced light-saturated photosynthesis (when measured at 350 &mgr;mol mol(-1) in both treatments) by 18 and 23% (averaged over the growing season) in current-year and 1-year-old needles, respectively. We observed significant interactive effects of CO(2) treatment, needle age and time during the growing season on photosynthesis. Large seasonal variations in photosynthetic parameters were attributed to changes in needle chemistry, needle structure and feedbacks governed by whole-plant growth dynamics. Down-regulation of photosynthesis was probably a result of reduced N concentration on an area basis, although a downward shift in the relationship between photosynthetic parameters and N was also observed. 相似文献
18.
19.
以陕西榆林黑龙潭树木园引种的美国黄松和油松为研究对象,结合延安树木园的一些情况,对2个树种进行了比较,研究了生长进程和生长性状的相关性,并对其适应性进行了阐述。研究结果表明,18年生美国黄松与油松在生长量上有差异,但未达到显著水平。2个树种的高生长进程表现为一致,第7年进入速生阶段,年生长量达到40 cm以上。在树高、胸径和材积3个生长指标上,美国黄松具有很好的相关性,相关系数均在0.9以上;而油松的树高与胸径相关系数仅为0.583。对于黑龙潭山地树木园而言,油松和美国黄松都是外来树种。18年引种结果表明,2个树种引入该地后成活率高、生长量大、适应性强,具有较高的引种推广价值。 相似文献
20.
《Forest Ecology and Management》1986,15(1):43-53
Plant moisture stress is artificially maintained for ponderosa pine, Pinus ponderosa Dougl. ex Laws, seedlings using polyethylene glycol. Stressed seedlings produce significantly lower amounts of needle nitrogen, phenols, and tannins than non-stressed seedlings. Field tests reveal that previously damaged foliage is a significantly poorer food source for the pine sawfly, Neodiprion autumnalis Smith (Hymenoptera: Diprionidae), than non-damaged foliage. Field studies further indicate that the effect of induction by defoliation is more important than the effect of stress level. These results are discussed in terms of their potential impact on future studies on preferential selection by herbivores of stressed host plants. 相似文献