首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pedunculate oak (Quercus robur L.) seedlings were grown for 3 or 4 months (second- and third-flush stages) in greenhouses at two atmospheric CO2 concentrations ([CO2]) (350 or 700 micromol mol(-1)) and two nitrogen fertilization regimes (6.1 or 0.61 mmol N l(-1) nutrient solution). Combined effects of [CO2] and nitrogen fertilization on partitioning of newly acquired carbon (C) and nitrogen (N) were assessed by dual 13C and 15N short-term labeling of seedlings at the second- or third-flush stage of development. In the low-N treatment, root growth, but not shoot growth, was stimulated by elevated [CO2], with the result that shoot/root biomass ratio declined. At the second-flush stage, overall seedling biomass growth was increased (13%) by elevated [CO2] regardless of N fertilization. At the third-flush stage, elevated [CO2] increased growth sharply (139%) in the high-N but not the low-N treatment. Root/shoot biomass ratios were threefold higher in the low-N treatment relative to the high-N treatment. At the second-flush stage, leaf area was 45-51% greater in the high-N treatment than in the low-N treatment. At the-third flush stage, there was a positive interaction between the effects of N fertilization and [CO2] on leaf area, which was 93% greater in the high-N/elevated [CO2] treatment than in the low-N/ambient [CO2] treatment. Specific leaf area was reduced (17-25%) by elevated [CO2], whereas C and N concentrations of seedlings increased significantly in response to either elevated [CO2] or high-N fertilization. At the third-flush stage, acquisition of C and N per unit dry mass of leaf and fine root was 51 and 77% greater, respectively, in the elevated [CO2]/high-N fertilization treatment than in the ambient [CO2]/low-N fertilization treatment. However, there was dilution of leaf N in response to elevated [CO2]. Partitioning of newly acquired C and N between shoot and roots was altered by N fertilization but not [CO2]. More newly acquired C and N were partitioned to roots in the low-N treatment than in the high-N treatment.  相似文献   

2.
Scots pine (Pinus sylvestris L.) seedlings of a provenance from northern Sweden were cultivated hydroponically for 7 weeks in a climate chamber. The nutrient solution contained either 2.5 (low-N) or 50 (high-N) mg N l(-1) with other essential elements added in a fixed optimal proportion to the nitrogen. After 5 and 7 weeks, the seedlings were analyzed for growth, total nitrogen and other essential nutrients, protein and free amino acids. Low-N seedlings grew more slowly and had higher root/shoot ratios than high-N seedlings. With respect to total nitrogen, the effect of the lower nutrient supply was mainly on the nitrogen content of the whole plant and the allocation of nitrogen among tissues, not on tissue nitrogen concentration. This was also the case for potassium, phosphorus, calcium and magnesium. The proportions by weight among these macronutrients in the whole seedlings were similar in both nutrient regimes. The proportion and concentration of sulfur were significantly lower in low-N seedlings than in high-N seedlings, because of a lower net uptake of sulfur than of other macronutrients. The shoot, needles and stem of low-N seedlings had higher concentrations of free amino acids and lower concentrations of protein than the shoot, needles and stem of high-N seedlings. Arginine dominated the pool of free amino acids in the low-N seedlings, whereas glutamine predominated in the high-N seedlings. We conclude that Scots pine seedlings accumulated soluble nitrogen as arginine when net protein synthesis was limited by factors other than nitrogen availability. Nutritional imbalance, as revealed by growth characteristics and a suboptimal proportion and concentration of sulfur in the seedlings, probably affected synthesis of S-amino acids, resulting in the diversion of assimilated nitrogen to arginine instead of protein.  相似文献   

3.
Longleaf pine (Pinus palustris Mill.) seedlings were exposed to two concentrations of atmospheric CO(2) (365 or 720 micro mol mol(-1)) in combination with two N treatments (40 or 400 kg N ha(-1) year(-1)) and two irrigation treatments (target values of -0.5 or -1.5 MPa xylem pressure potential) in open-top chambers from March 1993 through November 1994. Irrigation treatments were imposed after seedling establishment (i.e., 19 weeks after planting). Seedlings were harvested at 4, 8, 12, and 20 months. Elevated CO(2) increased biomass production only in the high-N treatment, and the relative growth enhancement was greater for the root system than for the shoot system. In water-stressed trees, elevated CO(2) increased root biomass only at the final harvest. Root:shoot ratios were usually increased by both the elevated CO(2) and low-N treatments. In the elevated CO(2) treatment, water-stressed trees had a higher root:shoot ratio than well-watered trees as a result of a drought-induced increase in the proportion of plant biomass in roots. Well-watered seedlings consistently grew larger than water-stressed seedlings only in the high-N treatment. We conclude that available soil N was the controlling resource for the growth response to elevated CO(2) in this study. Although some growth enhancement was observed in water-stressed trees in the elevated CO(2) treatment, this response was contingent on available soil N.  相似文献   

4.
Both drought and root pruning (RP) increased the number of cones induced when black spruce (Picea mariana (Mill.) B.S.P.) grafts were injected with gibberellins A(4/7) (GA), but their effects on predawn shoot water potential and current-year needle development differed. Drought decreased predawn shoot water potential (Psi(pd)), but only during the period when irrigation was withheld, and it had no effect on the growth or gas exchange properties of current-year needles. Conversely, root pruning had little effect on Psi(pd), but it resulted in trees with smaller current-year needles that had lower nitrogen and chlorophyll concentrations and reduced rates of gas exchange up to the later stages of shoot elongation compared with needles of control trees. These findings are discussed in relation to potential effects on the development of induced cones in the following growth cycle.  相似文献   

5.
The temporal distribution of soil nutrients is heterogeneous, and thus the uptake, storage and later remobilization of brief nutrient pulses may be critical for growth in nutrient-limited habitats. We investigated the response of 2-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings receiving a low nutrient supply to a 15-day nutrient pulse (containing 250 ppm nitrogen (N) as 10 atom % 15NH4 15NO3). The nutrient pulse was imposed in late July, toward the end of the seedlings' third growing season, and subsequent changes in dry mass and N content over the following 3 months were determined from destructive harvests. We tested three hypotheses: (1) N from the nutrient pulse is rapidly assimilated and accumulated primarily in needles and roots; (2) this accumulated N is later remobilized to support new growth; and (3) the nutrient pulse leads to a larger second flush of shoot growth. Seedlings increased their N content by 175 mg (67%) in response to the nutrient pulse. Nitrogen was taken up preferentially into younger tissues, especially the secondary flush and current-year roots. Immediately after the nutrient pulse, tissue N concentrations were high and supported subsequent increases in dry mass. Over 3 months, seedlings receiving the nutrient pulse added twice as much dry mass as control seedlings, and even after 3 months of growth, N concentrations remained greater than in controls. Current-year and older needles were the only components whose dry mass did not increase over this period. The nutrient pulse increased the size of the second flush, but it was still a minor component of increments in dry mass (approximately 10% of the total dry mass increment) and N content (23%). The relatively modest increases in N content during autumn could be accounted for by soil uptake and there was no evidence that N was remobilized to support growth of new tissues. Short-term (15 days) elevated N uptake led to sustained growth in the long term (> 3 months), and thus growth rate was to a large extent decoupled from current nutrient supply.  相似文献   

6.
The specific rate of CO(2) efflux (respiration) from roots of intact fruiting calamodin plants (Citrus madurensis Lour.) showed no diel trend, and did not respond significantly to short-term (2 day) changes in shoot irradiance. Mean root respiration rate was about 8.4 nmol CO(2) g(-1) s(-1) at 20 degrees C, and increased with temperature with a Q(10) of about 2. In calamodin plants, the proportion of total root length that was white averaged 6.0 mm m(-1). Respiration of roots of apple plants (Malus domestica Borkh.), planted in spring as rootstocks and grown at high irradiance and N supply, declined from about 5.3 to 2.8 nmol CO(2) g(-1) s(-1) between 46 and 138 days after bud burst. At 50% irradiance, root respiration was reduced more than 25% at 46 and 92 days after bud burst, but was not significantly affected later in the season. Reducing shoot irradiance reduced the proportion of total root length that was white, e.g., from 217 to 146 mm m(-1) at 46 days after bud burst. For plants previously grown at low irradiance, increasing shoot irradiance for 6 days increased the rate of root respiration by 5 to 10%. For plants previously grown at high irradiance, reducing shoot irradiance for 6 days reduced root respiration by about 20% early in the season, but had no significant effect later in the season. For plants grown with low-N supply (5% of the high-N), root respiration was reduced early in the season, but was not significantly affected later. Reducing the N supply increased slightly the proportion of total root length that was white. For plants previously grown with low-N, increasing the N supply for 6 days reduced further the rate of root respiration. For plants previously grown with high-N, reducing the N supply for 6 days did not significantly affect the rate of root respiration. Specific respiration rates of root systems excised from mature trees growing outdoors peaked in June, at about 2.4 nmol CO(2) g(-1) s(-1), and then declined for the remainder of the growing season.  相似文献   

7.
Budget studies have shown that internal cycling may contribute a large proportion of the annual nutrient supply required to support new growth in trees. Use of budgets to quantify internal cycling only quantifies the net transfer of nutrients within the plant. Differential partitioning of remobilized nutrients and current nutrient uptake could lead to errors in the interpretation of results from these studies. We have quantified the dynamic relationships among tree growth, nutrient uptake and internal cycling by labeling the current uptake of N in trees that received contrasting amounts of nutrient. Two-year-old seedlings of Sitka spruce (Picea sitchensis (Bong.) Carr.) were grown in sand culture in a greenhouse for one year. The trees received nutrients in a balanced solution at either a high (high-RAR) or a low (low-RAR) relative addition rate throughout the experiment. Current N uptake was labeled with (15)N from April 13 to July 25. Thereafter, trees were re-potted in clean sand and unlabeled N applied until November 13. Overall growth was sustained for approximately 10 weeks before treatment effects were observed. Initially, no differences in the partition of growth or remobilized N occurred, although partition of current uptake favored the roots of plants in the low-RAR treatment. After 6 weeks, the partition of both growth and remobilized N altered in favor of roots of plants in the low-RAR treatment. Nutrient supply had no effect on the amount or rate of N remobilization. No evidence was found to suggest that N taken up in the current season and partitioned to preexisting shoots or roots is remobilized late in the season to support growth of new shoots. However, some trees in the high-RAR treatment exhibited a second flush of growth later in the season that was partially sustained by remobilization of (15)N from current shoots formed earlier in the season. Use of (15)N demonstrated differential partitioning of current uptake and remobilized N. The results highlight the limitations of simple budget studies for quantifying internal cycling.  相似文献   

8.
The effectiveness of spraying foliage with urea to provide nitrogen (N) to augment the seasonal internal cycling of N in young nectarine trees (Prunus persica (L.) Batsch var. nectarina (Ait. f. Maxim.), cv. Stark Red Gold) was studied. One-year-old trees were grown with contrasting N supplies during the summer and foliage was sprayed with a 2% urea solution labeled with (15)N just before leaf senescence started. After leaf abscission had finished, the trees were repotted in sand and given no further N. Remobilization of both labeled and unlabeled N for leaf growth the following spring was quantified. Leaves absorbed between 58 and 69% of the (15)N intercepted by the canopy irrespective of tree N status. During leaf senescence, the majority of (15)N was withdrawn from the leaves into the shoot and roots. Remobilization of (15)N the following spring was also unaffected by tree N status. About 38-46% of (15)N in the trees was recovered in the new growth. More unlabeled N (derived from root uptake) was remobilized for leaf growth in the spring than was withdrawn from leaves during canopy senescence the previous autumn. Therefore, soil-applied N augmented N storage pools directly, and contributed more to N remobilization the following spring than did foliar-absorbed (15)N.  相似文献   

9.
The impacts of thinning, fertilization and crown position on seasonal growth of current-year shoots and foliage were studied in a 13-year-old loblolly pine (Pinus taeda L.) plantation in the sixth post-treatment year (1994). Length of new flushes, and their needle length, leaf area, and oven-dry weight were measured in the upper and lower crown from March through November. Total shoot length was the cumulative length of all flushes on a given shoot and total leaf area per shoot was the sum of leaf areas of the flushes.

By the end of June, first-flush foliage reached 70% of the November needle length (14.3 cm) and 65% of the final leaf area (15.0 cm2). Cumulative shoot length of first- and second-flush shoots achieved 95% of the annual length (30.3 cm), whereas total leaf area per shoot was 55% of the final value (75.3 dm2). Fertilization consistently stimulated fascicle needle length, dry weight, and leaf area in the upper crown. Mean leaf area of upper-crown shoots was increased by 64% six years after fertilization. A significant thinning effect was found to decrease mean leaf area per shoot in the crown. For most of the growing season, the thinned-fertilized trees produced substantially more leaf area per shoot throughout the crown than the thinned-nonfertilized trees. These thinned-fertilized trees also had greater needle length and dry weight, longer first flush shoots, and more leaf area per flush than trees in the thinned-nonfertilized plots. Needle length and leaf area of first flush shoots between April and July were linearly related to previous-month canopy air temperature (Ta). Total shoot length strongly depended on vertical light gradient (PPFD) within the canopy, whereas shoot leaf area was a function of both PPFD and Ta. Thus, trees produced larger and heavier fascicles, more and longer flush shoots, and more leaf area per shoot in the upper crown than the lower crown. We conclude that thinning, fertilization, and crown position regulate annual leaf area production of current-year shoots largely by affecting the expansion of first flush shoots and their foliage during the first half of the growing season.  相似文献   


10.
Noland  Thomas L.  Mohammed  Gina H.  Scott  Maureen 《New Forests》1997,13(1-3):105-119
Number of new roots (root growth potential or RGP), new root length, photosynthesis, total nonstructural carbohydrate content of needles and roots, terminal bud condition, and shoot elongation were measured on jack pine container seedlings for 4 weeks at weekly intervals under greenhouse conditions of 100%, 20%, and 10% sunlight to simulate competition-induced, lower light levels in the field. Both lower light levels significantly reduced photosynthetic rate, RGP, new root length, total nonstructural carbohydrate (especially starch) content of needles and roots, speed of terminal bud flush, and shoot growth. Both light level and photosynthetic rate were positively correlated with RGP and new root length, indicating that jack pine seedlings may use current photosynthate as an energy source to support new root growth. RGP and new root length were also both negatively correlated with root starch content suggesting that jack pine seedlings may also use stored carbohydrates as a potential carbon source for root initiation and initial root growth.  相似文献   

11.
Influence of plant internal nitrogen (N) stocks on carbon (C) and N uptake and allocation in 3-year-old beech (Fagus sylvatica L.) was studied in two 15N- and 13C-labeling experiments. In the first experiment, trees were grown in sand and received either no N nutrition (-N treatment) or 4 mM unlabeled N (+N treatment) for 1 year. The -N- and +N-pretreated trees were then supplied with 4 mM 15N and grown in a 13CO2 atmosphere for 24 weeks. In the second experiment, trees were pretreated with 4 mM 15N for 1 year and then supplied with unlabeled N for 24 weeks and the remobilization of stored 15N was monitored. On the whole-plant level, uptake of new C was significantly reduced in -N-pretreated trees; however, partitioning of new C was not altered, although there was a trend toward increased belowground respiration. The amount of N taken up was not influenced by N nutrition in the previous year. In +N-pretreated trees, partitioning of new N was dominated by the fine roots (59.7% at Week 12), whereas in -N-pretreated trees, partitioning of new N favored stem, coarse roots and fine roots (24, 21 and 31.9%, respectively, at Week 12), indicating the formation of N stores. The contribution of previous-year N to leaf N was about 15%. The N remobilized for leaf formation had been stored in stem and coarse roots. We conclude that, within a growing season, the growth of beech is strongly determined by the availability of tree internal N stores, whereas the current N supply is of less importance.  相似文献   

12.
We investigated mature dwarf Abies mariesii trees growing in conifer thicket–meadow parklands on a snowy subalpine plateau, where these dwarf trees are buried in the accumulated snow in winter. We focused on structural variation in the needles, shoots, and branchlets within different crown positions (leader crown vs lower crown) of the dwarf trees. In the leader crown, which appears above the snow surface earlier than the lower crown, current-year shoots and branchlets had greater total biomass, and foliage was more closely packed along the stem axis than in the lower crown, whereas current-year shoots in the leader crown had a lower needle mass ratio than in the lower crown. These results suggest that current-year shoots and branchlets in the leader crown have a specific structure that allows them to harvest more light, although construction and maintenance costs would be higher. In contrast, the structural characteristics of current-year shoots and branchlets in the lower crown efficiently concentrate incoming light by avoiding mutual shading within foliage, thus leading to increased biomass of photosynthetic needles within shoot and branchlet biomass. Such within-crown variability at various hierarchical levels from needles to branches in mature, but very dwarf, A. mariesii trees maintains the crown and allows survival within conifer clumps in areas of subalpine parklands that receive heavy snowfall.  相似文献   

13.
We estimated the amount of nitrogen (N) remobilized from 1-year-old leaves at various positions in the crowns of mature Quercus glauca Thunb. ex Murray trees and related this to the production of new shoots. Leaf N concentration on an area basis (Na) and total N (Nt= Na x lamina area of all leaves on a shoot) were related to photosynthetic photon flux (PPF) on the leaves of current-year and 1-year-old shoots. When new shoots (S02 shoots; flushed in 2002) flushed, only a portion of the leaves on the previous year's shoots (S01 shoots; flushed in 2001) were shed. After the S02 shoots flushed, S01 shoots were defined as 1-year-old shoots (S01* shoots). Both Na and Nt were positively correlated with PPF for S01 shoots, but not for S01* shoots. The fraction of remobilized N (% of the maximum Na in S01 leaves) from remaining leaves was 5-35%, with the fraction size being positively correlated with the number of S02 shoots on an S01* shoot (new shoot number). However, the mean fraction of remobilized N from fallen leaves was 45% and was unrelated to new shoot number. The total amount of N remobilized from both fallen and remaining leaves was 1-20 mg per S01* shoot. Total remobilized N was positively correlated with new shoot number. There was a statistically significant positive relationship between the light-saturated net photosynthetic rate on a leaf area basis (Amax) and Na for both S01* and S02 leaves. However, when we compared leaves with similar Na, Amax of S01* leaves was only half that of S02 leaves, indicating that 1-year-old leaves had lower instantaneous N-use efficiency (Amax per unit Na) than current-year leaves. Ratios of chlorophyll a:b and Rubisco:chlorophyll were lower in S01* leaves than in S02 leaves, indicating that 1-year-old leaves were acclimatized to lower light environments. Thus, in Q. glauca, the N allocation theory (i.e., that N is distributed according to local PPF) applied only to the current-year shoots. Although the amount of foliar N in 1-year-old shoots was not strongly affected by the PPF on 1-year-old leaves, it was affected by interactions with current-year shoots.  相似文献   

14.
Early season leaf growth depends largely on nitrogen (N) provided by remobilization from storage, and many studies have tested the effect of N availability to roots on the amount of N provided for new leaf development by remobilization. Although it is well known that the light regime experienced by a leaf influences the amount of N per unit leaf area (LA), the effect of the local light regime on the amount of N derived either directly from root uptake or from remobilization for early season leaf growth has never been tested at an intra- canopy scale. The objective of this study was to quantify the relative importance of (1) N availability to roots, (2) local light regime experienced by the foliage (at the shoot scale) and (3) leaf rank along the shoot, on the total amount of N allocated to leaves and on the proportions of N provided by remobilization and root uptake. To quantify the importance of N uptake and remobilization as sources of leaf N, potted hybrid walnut trees (Juglans nigra L. x regia L.) were grown outdoors in sand and fed with a labeled ((15)N) nutrient solution. By removing the apical bud, the trees were manipulated to produce only two shoots. The experimental design had two factors: (1) high (HN; 8 mol N m(-3)) and low (LN; 2 mol N m(-3)) N availability; and (2) high (HL; 90% of incident photosynthetically active photon flux (PPF)) and low (LL; 10% of incident PPF) light. Total leaf N per tree was unaffected by either N availability or irradiance. The HN treatment increased the amount of leaf N derived from root uptake at the whole-tree scale (typically around 8 and 2% in the HN and LN treatments, respectively). Nitrogen allocation within foliage of individual trees was controlled by the local light regime, which strongly affected individual leaf characteristics as leaf mass per unit LA and area- based amount of leaf (N(a)). Decreasing the light availability to a branch decreased the amount of N allocated to it, benefiting the less shaded branches. In contrast, shading of the lower branch did not affect the fraction of total leaf N remobilized for either the lower, shaded branch or the upper, unshaded branch. The relevance of these findings for tree growth modeling is discussed.  相似文献   

15.
Well-watered American elm (Ulmus americana L.) seedlings responded to increased nitrate availability with increased leaf nitrogen (N) concentration and photosynthetic rate, larger and more numerous leaves, greater total growth and greater proportional allocation of carbon to shoot than root. Plasticity of growth and carbon allocation were greater than plasticity of N concentration and photosynthetic capacity. For a given N availability, allocation of N per unit leaf area was positively correlated with dry mass per unit leaf area (specific leaf mass), but these relationships differed with N availability. Rates of net photosynthesis and leaf conductance declined logarithmically with decreasing predawn water status. Increased water stress resulted in a greater relative decline in net photosynthesis and leaf conductance for high-N than low-N plants.  相似文献   

16.
We investigated effects of nutrient addition on several physiological characteristics of 60-cm-tall black spruce (Picea mariana Mill. B.S.P.) layers (i.e., rooted branches of overstory trees) and 20-cm-tall planted seedlings on a clear-cut, N-limited boreal site. After two growing seasons, current-year and one-year-old needles of fertilized trees (layers and seedlings combined) had higher net photosynthetic rates (A(n)) and maximum capacity of Rubisco for CO(2) fixation (V(max)) than unfertilized trees. One-year-old needles of fertilized trees had higher stomatal conductance (g(s)), higher water-use efficiency, and lower intercellular to ambient CO(2) ratio than unfertilized trees. Additionally, fertilized trees had higher predawn and midday shoot water potentials than unfertilized trees. Stomatal conductance of 1-year-old needles was 23% higher in seedlings than in layers, but there were no significant differences in g(s) of current-year needles between the regeneration types. For both needle age-classes, A(n) and V(max) of layers were 25 and 40% higher, respectively, than the corresponding values for seedlings. The higher values of A(n), V(max) and foliar N concentration of layers compared with seedlings after two growing seasons may be associated with the larger root systems of the layers compared with the transplanted seedlings.  相似文献   

17.
Relationships between CO(2) assimilation at light saturation (A(max)), nitrogen (N) content and weight per unit area (W(A)) were studied in leaves grown with contrasting irradiances (outer canopy versus inner canopy) and N supply rates in field-grown nectarine trees Prunus persica L. Batsch. cv. Fantasia. Both A(max) and N content per unit leaf area (N(A)) were linearly correlated to W(A), but leaves in the high-N treatment had higher N(A) and A(max) for the same value of W(A) than leaves in the low-N treatment. The curvilinear relationship between photosynthesis and total leaf N was independent of treatments, both when expressed per unit leaf area A(maxA) and N(A)) and per unit leaf weight (A(maxW) and N(W)), but the relationship was stronger when data were expressed on a leaf area basis. Both A(maxA) and N(A) were higher for outer canopy leaves than for inner canopy leaves and A(maxW) and N(W) were higher for leaves in the high-N treatment than for leaves in the low-N treatment. The relationship between A(max) and N resulted in a similar photosynthetic nitrogen-use efficiency at light saturation (A(max)NUE) for both N and light treatments. Photosynthetic nitrogen-use efficiency was similar among treatments throughout the whole light response curve of photosynthesis. Leaves developed in shade conditions did not show higher N-use efficiency at low irradiance. At any intercellular CO(2) partial pressure (C(i)), photosynthetic CO(2) response curves were higher for outer canopy leaves and, within each light treatment, were higher for the high-N treatments than for the low-N treatments. Consequently, most of the differences among treatments disappeared when photosynthesis was expressed per unit N. However, slightly higher assimilation rates per unit N were found for outer canopy leaves compared with inner canopy leaves, in both N treatments. Because higher daily irradiance within the canopies of the low-N trees more than compensated for the lower photosynthetic performances of these leaves compared to the leaves of high-N trees, daily carbon gain (and N-use efficiency on a daily assimilation basis) per leaf was higher for the low-N treatment than for the high-N treatment in both outer and inner canopy leaves.  相似文献   

18.
Cheng L  Fuchigami LH 《Tree physiology》2002,22(18):1297-1303
Bench-grafted Fuji/M.26 apple (Malus domestica Borkh.) trees were fertilized with a nutrient solution (fertigation) containing 0, 2.5, 5, 7.5, 10, 15 or 20 mM nitrogen (N) in a modified Hoagland's solution from June 30 to September 1. In mid-October, half of the trees in each N treatment were sprayed twice with 3% urea, 1 week apart. The remaining trees served as controls. All trees were harvested after leaf fall and stored at 2 degrees C over winter. One group of trees from each treatment was destructively sampled before bud break to determine amounts of reserve N and total nonstructural carbohydrates (TNC); the remaining trees were transplanted to N-free medium in the spring. These trees were supplied with Hoagland's solution with or without 10 mM N (from 15N-depleted NH4NO3) for 60 days, starting from bud break. With increasing N supply from fertigation, tree N concentration increased, whereas TNC concentration decreased. Foliar urea applications increased tree N concentration and decreased TNC concentration in each N fertigation treatment. There was a negative linear relationship between tree N concentration and TNC concentration. Irrespective of whether N was provided the following spring, trees with high N reserves but low carbohydrate reserves produced a larger total leaf area at the end of the regrowth period than trees with low N reserves but high carbohydrate reserves. The pooled data on reserve N used for new growth showed that, regardless of the spring N supply, there was a linear relationship between total N accumulated in the tree during the previous season and the amount of reserve N remobilized for new shoot and leaf growth. About 50% of tree N content was remobilized to support new shoot and leaf growth over the range of tree N status examined. We conclude that the initial growth of young apple trees in the spring is determined mainly by reserve N, not reserve carbohydrates. The amount of reserve N remobilized for new growth in spring was proportional to tree N status and was unaffected by current N supply.  相似文献   

19.
Seasonal variations in leaf nitrogen, phosphorus and potassium concentrations were studied in a mature carob (Ceratonia siliqua L. cv "Mulata") orchard subjected to a 4-year irrigation and fertilization experiment. Three irrigation regimes (0, 50 and 100%), based on the evaporation values obtained from a class A pan, were tested in combination with two nitrogen (N) supply regimes in which 21 kg ha(-1) year(-1) (low-N) and 63 kg ha(-1) year(-1) (high-N) were supplied as ammonium nitrate. Leaf nitrogen concentration increased throughout the experiment, independently of treatments. There were no significant differences in leaf N concentration between trees in the high-N and low-N treatments. Irrigation regimes had no effect on leaf mineral concentration but influenced the amount of leaves shed and slightly modified the pattern of leaf shedding that occurred during the summer drought period. Nutritional balances between N and P and N and K were both closely and significantly correlated. Potassium was translocated from leaves to fruits during spring, independently of treatments. Severe water stress periods occurring during spring or autumn induced shedding of leaves leading to nutrient mobilization. Nutrient retranslocation during these drought periods may represent an adaptive mechanism. Nitrogen retranslocation was higher for trees in the high-N treatments than for trees in the low-N treatments, whereas phosphorus retranslocation was independent of the irrigation and fertilization treatments.  相似文献   

20.
Sitka spruce (Picea sitchensis (Bong.) Carr.) seedlings were supplied with solutions containing nitrogen (N) at 0.1 x or 2 x the optimum rate (low-N and high-N supply, respectively) and grown either outside in a control plot or inside open-top chambers and exposed to ambient (355 &mgr;mol mol(-1)) or elevated (700 &mgr;mol mol(-1)) CO(2) concentration ([CO(2)]). Gas exchange measurements, chlorophyll determinations and nutrient analysis were made on current-year (< 1-year-old) shoots of the upper whorl after the seedlings had been growing in the [CO(2)] treatments for 17 months and the nutrient treatments for 6 months. Total seedling biomass and biomass allocation were assessed at the end of the experiment. Nutrient treatment had a significant effect on the light response curves, irrespective of [CO(2)] or chamber treatment; seedlings supplied with high-N rates had higher net photosynthetic rates than seedlings supplied with low-N rates. The degree of photosynthetic stimulation in response to elevated [CO(2)] was larger in seedlings receiving high-N rates than in seedlings receiving low-N rates. Light-saturated net photosynthesis of seedlings grown and measured in elevated [CO(2)] was 26% higher than that of seedlings grown and measured in ambient [CO(2)]. There was no significant effect of [CO(2)] or chamber treatment on the CO(2) response curves of seedlings receiving High-N supply rates. In contrast, analysis of the CO(2) response curves of seedlings receiving Low-N supply rates showed acclimation to elevated [CO(2)]. Both maximum rate of carboxylation (V(cmax)) and maximum electron transport capacity (J(max)) were lower and J(max)/V(cmax) higher in seedlings in the elevated [CO(2)] treatment. There was no effect of elevated [CO(2)] on stomatal conductance, although it was highly dependent on foliar [N], ranging from ~60 mmol m(-2) s(-1) at ~1.5 g N m(-2) to 200 mmol m(-2) s(-1) at ~5 g N m(-2). In the high-N and low-N treatments, foliar N concentration was 10 and 28% lower in seedlings grown in elevated [CO(2)] than in seedlings grown in ambient [CO(2)], respectively. There was no [CO(2)] effect on foliar phosphorus concentration ([P]). Chlorophyll concentration increased with increasing N supply in all treatments. There was no significant effect of elevated [CO(2)] on specific leaf area. Chlorophyll concentration expressed either on an area or dry mass basis for a given foliar [N] was higher in seedlings grown in elevated [CO(2)] than in seedings grown in ambient [CO(2)]. Elevated [CO(2)] increased total biomass accumulation by 37% in seedlings in the high-N treatment but had no effect in seedlings in the low-N treatment. There was a proportionally bigger allocation of biomass to roots of seedlings in the elevated [CO(2)] + low-N supply rate treatment compared with seedlings in other treatments. This resulted in a reduction in aboveground biomass compared with corresponding seedlings grown in ambient [CO(2)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号