首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
杉木是我国主要造林树种之一,具有生长快、产量高、材质好的优点。土壤微生物与杉木林地土壤理化性质、土壤肥力以及植物根系之间有密切的关联。文中概述了不同林分条件下杉木林地土壤微生物的群落特征及其与土壤质量之间的响应机制,尤其是与植物根系共生关系方面的研究进展,以期为实现杉木林质量的精准提升提供理论参考。天然林和阔叶林较杉木人工林有更丰富的微生物群落,在杉木林生长发育过程中,中龄阶段各微生物指标最低。杉木林土壤微生物群落组成、生物量和活性等均与土壤酸碱性、通气状况、养分含量等存在密切的响应关系。杉木林菌根真菌主要属于球囊霉属,国内对杉木林下菌根真菌的研究仍处于初级阶段。未来土壤微生物的研究热点包括土壤微生物的时空演变规律、土壤微生物在提升土壤肥力上的机理和途径、菌根真菌在土壤养分高效利用中的机制等。  相似文献   

2.
林火干扰作为森林生态系统中能量传递和养分循环的重要因子,对于研究火烧迹地植被更新与快速恢复可提供一定的数据理论支撑,而林火干扰对土壤微生境及微生物氮循环的影响机制一直是广大学者研究的热点。文中从火烧强度、恢复时间、火烧木管理方式等3个方面总结国内外林火干扰对土壤氮组分及氮循环的影响研究进展,揭示了林火干扰和全球气候变化对土壤氮循环的短期及长期影响机制,探讨不同生物技术在林火干扰下土壤微生物氮循环基因丰度变化中的应用;提出未来林火干扰对森林生态系统土壤氮循环影响的研究展望:1)全面比较研究不同林火干扰模式对土壤氮组分、微生物氮循环的影响;2)研究评价不同林火干扰模式下土壤氮库的稳定性;3)加强高通量测序、定量PCR技术、宏基因组学、稳定同位素探测等技术在林火干扰与气候变化对森林生态系统影响研究中的应用。研究结果对火烧迹地植被更新、土壤氮库的重建与功能发挥具有重要意义。  相似文献   

3.
  • ? Growing concerns about fires and the increase of fire frequency and severity due to climate change have stimulated a large number of scientific papers about fire ecology. Most researchers have focused on the short-term effects of fire, and the knowledge about the long-term consequences of fires on ecosystem nutrient dynamics is still scarce.
  • ? Our aim was to improve the existing knowledge about the long-term effects of wildfires on forestlabile N concentrations. We hypothesized that fires may cause an initial decline in organic and inorganic N availability, and in the amount of microbial biomass-N; this should be followed by the recovery of pre-fire N concentrations on a long-term basis. We selected a fire chronosequence in Pinus canariensis forests on La Palma Island (Canary Islands, Spain). These forests are under low anthropogenic atmospheric deposition, and forest management is completely lacking; wildfires are therefore the only significant disturbance. Soil samples were collected during the winter and spring at 22 burned and unburned plots.
  • ? Fire produced a significant decrease in microbial biomass N, mineral N and dissolved organic N. Almost 20 y after fire, pre-fire levels of N concentrations had not recovered.
  • ? These results demonstrate that P. canariensis forest soils have a lower resilience against fire than expected. The magnitude of these observed changes suggests that pine forest wildfires may induce long-term (2 decades) changes in soil and in plant primary production.
  •   相似文献   

    4.
    土壤活性有机碳作为森林土壤有机碳的活跃成分,在凋落物分解和土壤碳循环中发挥着重要作用。林火干扰通过改变土壤底物的数量和理化性质进而影响土壤活性有机碳,因而阐明林火干扰对土壤活性有机碳的影响是开展森林碳循环研究的基础。文中以6种土壤活性有机碳为研究对象,分别阐述林火干扰对土壤活性有机碳影响的研究进展。针对目前研究现状及存在问题,认为应进一步深化探究林火干扰后土壤微生物活性变化机制对土壤活性有机碳的影响,揭示土壤碳库平衡的影响机理;加强林火干扰后C-N耦合循环特征的研究;深入研究林火干扰后影响土壤活性有机碳的内在因素和外在因素的相互作用,综合评价林火干扰对土壤活性有机碳的短期与长期影响;加强林火干扰—土壤碳库—全球气候变化的交互关系研究,深入探讨林火干扰与土壤活性有机碳的相互作用关系及影响机理。  相似文献   

    5.
    冰雪灾害是一种常见的自然灾害,易对森林造成巨大破坏。在全球变化加剧的背景下,冰雪灾害发生的频率和强度呈现上升趋势。文中综述了冰雪灾害后森林土壤物理性质、土壤化学性质、土壤微生物群落和土壤酶活性的变化,以便为受损森林生态系统的修复提供参考。今后的研究热点是加强对灾后森林养分循环、土壤微生物和土壤种子库的长期研究,开展土壤微生物群落、土壤呼吸和土壤理化性质相互关系及作用机理研究,运用3S技术监测不同立地条件下土壤灾后动态变化、建立更科学精准的受灾森林生态系统评估体系,以及建立生态修复模型预测冰雪灾害后的森林恢复过程。  相似文献   

    6.
    Maintaining understory plant species diversity is an important management goal as forest restoration and fuel reduction treatments are applied extensively to dry coniferous forests of western North America. However, understory diversity is a function of both local species richness (number of species in a sample unit) and community heterogeneity (beta diversity) at multiple spatial scales, while studies of restoration treatment effects often only examine local species richness at one or two spatial scales. We studied experimental thinning and prescribed fire treatment effects on understory plant species richness and community heterogeneity at three spatial scales using additive diversity partitioning. We also evaluated treatment effects on understory plant species colonization and extirpation at two spatial scales. There was no evidence that active restoration treatments reduced species richness or increased local extirpation of species. Restoration treatments significantly increased herbaceous species richness at the treatment-unit level primarily by increasing community heterogeneity among sampling points within the units. The combination of thinning and burning produced the greatest increase in community heterogeneity, and increased colonization by species that were not sampled prior to treatment. These results suggest that restoration treatments designed primarily to reduce fire hazard and promote sustainable conditions in these fire-adapted ecosystems can also increase community heterogeneity and facilitate colonization by new understory species without significant local extirpation of extant species.  相似文献   

    7.
    【目的】分析凉水国家级自然保护区内的3种原始红松林(云冷杉红松林、椴树红松林和枫桦红松林)、红松人工林和红松天然次生林5种林型的土壤nosZ型反硝化微生物的群落组成和多样性特征,为全面了解不同林型红松林土壤的反硝化潜势和氮循环过程提供数据支持。【方法】以选取的5种林型红松林林下土壤为研究对象,以反硝化过程中的关键酶——氧化亚氮还原酶的编码基因nosZ为标记基因,采用高通量测序和生物信息学分析技术进行研究。【结果】从5种林型红松林15个土壤样品中一共得到nosZ基因631 878条有效序列,579 871条优质序列,长度分布在178~383 bp之间,主要分布在260 bp。5种林型红松林土壤nosZ型反硝化微生物主要门类为变形菌门和拟杆菌门,核心属为伯霍尔德杆菌属、黄杆菌属、慢生根瘤菌属、假单胞菌属、Dechloromonas属、芽单胞菌属、无色杆菌属和中华根瘤菌属。nosZ型反硝化微生物α多样性分析显示:除枫桦红松林的Shannon和Simpson指数显著高于红松天然次生林外,5种林型红松林之间土壤nosZ型反硝化菌群的4种α多样性指数(Shannon、Chao1、ACE和Simpson指数)差异不显著。β多样性分析显示:5种林型土壤nosZ型反硝化微生物群落组成差异显著(R=0.387,P=0.006),但3种原始红松林之间差异不显著。土壤铵氮和全氮含量是显著影响nosZ型反硝化微生物群落的主要因子(P﹤0.05)。【结论】5种林型红松林土壤nosZ型反硝化微生物多数α多样性指数无显著差异,但β多样性差异显著,引起不同林型之间nosZ型反硝化微生物组成和丰度的主要环境因子是土壤铵氮和全氮含量。  相似文献   

    8.
    森林土壤酶的研究进展   总被引:79,自引:4,他引:79  
    杨万勤  王开运 《林业科学》2004,40(2):152-159
    土壤酶在土壤生态系统的物质循环和能量流动方面扮演重要的角色。目前 ,在几乎所有的森林生态系统研究中 ,土壤酶活性的监测似乎成为必不可少的研究内容。森林凋落物分解过程中的酶活性动态 ,植被特征与土壤酶活性的关系 ,土壤微生物与土壤酶的关系 ,植物 -土壤界面的土壤酶 ,森林土壤质量评价指标的土壤酶及人类活动干扰对森林土壤酶活性的影响等是当前森林土壤酶学的研究重点。由于土壤酶的功能和生态重要性 ,森林土壤酶研究可能包括 :(1 )土壤酶系统分异 ;(2 )作为森林土壤质量综合评价指标的土壤酶活性 ;(3)植被动态与土壤酶的关系 ;(4 )退化森林生态系统的土壤酶活性特征 ;(5 )人工林土壤酶活性特征 ;(6 )人类活动对森林土壤酶系统的影响。本文从土壤酶系统分异和生态系统的角度对土壤酶在森林生态系统中的作用和地位进行了综述 ,这对于加深理解森林生态系统中的物质循环、土壤酶的生态重要性以及森林生态系统退化机理有重要作用  相似文献   

    9.
    Climate change is predicted to shorten the fire interval in boreal forests. Many studies have recorded positive effects of fire on forest growth over a few decades, but few have modeled the long-term effects of the loss of carbon and nitrogen to the atmosphere. We used a process-based, dynamic, forest ecosystem model, which couples the carbon, nitrogen and water cycles, to simulate the effects of fire frequency on coniferous forests in the climate of Prince Albert, Saskatchewan. The model was calibrated to simulate observed forest properties. The model predicted rapid short-term recovery of net primary productivity (NPP) after fire, but in the long term, supported the hypotheses that (1) current NPP and carbon content of boreal forests are lower than they would be without periodic fire, and (2) any increase in fire frequency in the future will tend to lower NPP and carbon storage. Lower long-term NPP and carbon storage were attributable to (1) loss of carbon on combustion, equal to about 20% of NPP over a 100-200 year fire cycle, (2) loss of nitrogen by volatilization in fire, equal to about 3-4 kg N ha(-1) year(-1) over a 100-200 year fire cycle, and (3) the fact that the normal fire cycle is much shorter than the time taken for the forest (especially the soil) to reach an equilibrium carbon and nitrogen content. It was estimated that a shift in fire frequency from 200 to 100 years over 1000 Mha of boreal forest would release an average of about 0.1 Gt C year(-1) over many centuries.  相似文献   

    10.
    The forests of Nothofagus pumilio have historically been affected by forest fires. The effects of fire on certain above and belowground, biotic and abiotic components of these ecosystems have been previously documented, albeit belowground components have received much less attention. It has been suggested that the effects observed in the short-term after a fire usually differ from the longer-term effects. The long-term effects of fire (i.e. >5 years after burning) on belowground components in Nothofagus forests are currently unknown. In the present study we evaluated the long-term effect of fire on ectomycorrhiza (ECM) colonization and morphotype composition in N. pumilio roots, as well as soil chemical properties in temperate forests in Patagonia. Sampling was conducted in three mature monospecific forests. In each, nearby burned and unburned sites were selected. The time since the occurrence of fires differed between areas (i.e. 6-10 years). Within each site, 3 transects of 40 m were established randomly along which 5 samples of roots and soil were collected in spring and autumn. The main results were: (1) in comparison with the unburned site, ECM colonization was lower in the burned site in the area with the shorter time length since fire occurrence and no effects in the other two areas were observed; (2) richness and diversity were not significantly affected by fire but there was a significant effect of season for both parameters, being higher in spring; (3) ECM dominance was significantly higher in the unburned than in the burned site in Tronador, while in Challhuaco the opposite was observed, mainly in autumn; (4) in general carbon, nitrogen and phosphorous decreased while pH increased in the burned sites; (5) ECM colonization positively correlated with NH4+ and phosphorus and negatively with pH but was not significantly correlated with organic matter or any other soil variable. Altogether the results suggest that effects of fire on ectomycorrhiza and soil properties in N. pumilio forests are probably related to the time elapsed since fire occurrence combined with site characteristics. In addition, the direct and indirect effects of fire in these forest systems may persist for more than 10 years.  相似文献   

    11.
    Remote ponderosa pine (Pinus ponderosa) forests on the North Rim of Grand Canyon National Park, Arizona, USA provide valuable examples of reference conditions due to their relatively uninterrupted fire regimes, limited grazing history, and protection from logging. Wildfire is an important disturbance agent in upland forests of the Interior West, yet repeated measurements taken before and after lightning-ignited fires are rare. In 1999, a low-severity Wildland Fire Use fire burned 156 ha on Fire Point, a peninsula dominated by old-growth ponderosa pines, which had not burned for at least 76 years. We measured understory plant community and forest floor characteristics in 1998 (1 year before the fire) and 2001 (2 years after the fire) at this site and at nearby reference sites that did not burn in 1999 but have had continuing fire regimes throughout the past century. After the wildfire, the plant community at Fire Point shifted toward higher compositional similarity with the reference sites. Analysis of functional group composition indicated that this change was due primarily to an increase in annual and biennial forbs. Gayophytum diffusum, Polygonum douglasii, Chenopodium spp., Solidago spp., Elymus elymoides, Calochortus nuttallii, Hesperostipa comata, and Lotus spp. were indicative of forests influenced by recent fires. Species richness, plant cover, plant layer density and plant diversity were significantly lower at Fire Point than at the reference sites, possibly due to long-term fire exclusion, but the fire did not increase the rate of change in these variables after 2 years. Few exotic species were present at any site. Forest floor depths at Fire Point were reduced to depths similar to the reference sites, primarily due to consumption of the duff layer. There was a significant inverse relationship between the ratio of duff:litter and species richness. Compared to fire-excluded forests, old-growth ponderosa pine forests influenced by low-intensity surface fires generally have greater plant species richness (especially annual forbs) and lighter fuel loads. This study supports the continued application of the Wildland Fire Use strategy in old-growth montane forests to maintain and improve forest health by altering understory species composition and reducing fuel loads.  相似文献   

    12.
    Both climate and land-use changes, including the introduction and spread of allochthonous species, are forecast to affect forest ecosystems. Accordingly, forests will be affected in terms of species composition as well as their soil chemical and biological characteristics. The possible changes in both tree cover and soil system might impact the amount of carbon that is stored in living plants and dead biomass and within the soil itself. Additionally, such alterations can have a strong impact on ...  相似文献   

    13.
    土壤微生物是森林生态系统中不可或缺的一部分,在物质循环和能量流动等生态过程中发挥着重要作用。文中总结评述了目前森林土壤微生物生态学的研究进展,主要包括森林土壤微生物群落特征(群落结构组成、时空变化格局以及影响因素)和森林土壤微生物生物量(季节动态变化及影响因素)2个方面,同时对森林土壤微生物生态学今后研究提出展望。  相似文献   

    14.
  • ? Mixed coniferous, subalpine forest communities in the Rocky Mountains are historically dense and have experienced infrequent, high-severity fire. However, many of these high-elevation stands are thinned for a number of perceived benefits.
  • ? We explored the effects of forest stand density on ecosystem properties in subalpine forests in Colorado, USA, 17–18 y after forests were managed for timber.
  • ? Forest structure significantly altered the composition and chemical signature of plant communities. Previously managed stands contained lower density of overstory trees and higher ground cover compared to paired reference stands. Foliar phenolic concentration of several species was negatively related to basal area of overstory trees. Furthermore, reductions in stand density increased total foliar phenolic:nitrogen ratios in some species, suggesting that gap formation may drive long-term changes in litter quality. Despite significant changes in forest structure, reductions in stand density did not leave a strong legacy in surface soil properties, likely due to the integrity of soil organic matter reserves.
  • ? Changes in forest structure associated with past management has left a long-term impact on plant communities but has only subtly altered soil nutrient cycling, possibly due to trade offs between litter decomposability and microclimate associated with reductions in canopy cover.
  •   相似文献   

    15.
    Vegetative filter strips (VFS) have long been promoted as a soil conservation practice that yields many additional environmental benefits. Most previous studies have focused primarily on the role of vegetation and/or soil physical properties in these ecosystem services. Few studies have investigated the soil microbial community of VFS. Therefore, we examined potential differences in soil microbial community characteristics of claypan soil planted to VFS with differing vegetation and a traditional row-crop system in a maize–soybean rotation. Samples were tested for soil microbial function and community structure using dehydrogenase and fluorescein diacetate (FDA) hydrolysis enzyme assays and phospholipid fatty acid (PLFA) analysis, respectively. The grass VFS soil exhibited the greatest dehydrogenase activity levels and FDA activity was greater in the grass and agroforestry (i.e., tree–grass) VFS soils relative to the cropland soil. The PLFA analysis revealed community structural differences underlying these functional differences. The agroforestry VFS soil was characterized by a greater proportion of total bacteria, gram-negative bacteria, anaerobic bacteria and mycorrhizal fungi than the cropland soil. The grass VFS soil shared some characteristics with the cropland soils; but the grass VFS supported greater mycorrhizal fungi and protozoa populations. This work highlights differences in soil microbial function and community structure in VFS relative to cropland soil 12 years post VFS establishment. It also enhances our fundamental knowledge regarding soil microorganisms in VFS, which may aid in explaining some ecosystem services provided by VFS (e.g., decomposition of organic agrichemicals).  相似文献   

    16.
    The spatial heterogeneity of essential plant resources plays a crucial role in the structure, composition and productivity of many terrestrial ecosystems. Fires may affect both the availability and spatial pattern of soil nutrients. However, little is known about the effect of fire on the spatial pattern of soil resources. We hypothesized that shortly after a wildfire, the spatial patterns of soil mineral-N, organic labile-N (microbial biomass-N and dissolved organic-N) and extractable-P pools would become more clumped because of ash accumulation and post-fire deposition of litter around individual adult trees. To test this hypothesis, we used plots within a Pinus canariensis forest (with both Pinus canariensis and Adenocarpus viscosus present) and sampled them one month before and one month after a wildfire. Using geostatistical analyses, we examined the spatial patterns of soil mineral-N (NH4-N and NO3-N), dissolved organic-N (DON), microbial biomass-N (MB-N) and soil extractable-P (PO4-P). Burned plots of P. canariensis and A. viscosus both had values that were significantly greater than the unburned plots for all variables, except for DON in both cases, and the N:P ratio in the case of A. viscosus, which showed significantly lower values. Except for DON, we observed an increased spatial dependence and range after a fire for all studied variables in the P. canariensis plots (large individuals). However, in plots with A. viscosus (smaller individuals), we only found differences before and after the fire for the PO4-P and DON spatial patterns. Our results confirm the changes in the spatial structure of soil variables with fire, and suggest that, on a short-term basis, the physical structure of the plant community may determine the new spatial structure after fire, with a more clumped distribution around large surviving trees and shrubs. The spatial patch size of limiting resources has important consequences for the success of restoration of forest communities on burned areas.  相似文献   

    17.
    Fires are considered the most important disturbance regime in many ecosystems, including boreal forest. Fires usually reduce the abundances of soil living animals, but the duration of the fire effect and the recovery rate of soil fauna communities after fire are poorly understood. The species-rich group of microarthropods (collembolans, mites and proturans) constitutes an important part of the soil food-web, contributing to important ecosystem services like decomposition and nutrient mobilization. Recovery rates of microarthropods after fire reported in the literature differ considerable between sites and studies. Here, I examine if variation in fire severity can explain part of the variation in recovery of microarthropods after fire observed among studies. To do so, I have chosen studies done in boreal forests and in which the post-fire situation was described in such a way that fire severity (depth of burn) could be estimated. I also selected studies that used real abundance data and that sampled for animals for at least 2 years after fire.  相似文献   

    18.
    Polylepis forests are one of the most endangered high mountain ecosystems of South America and reforestation with native Polylepis species has been highly recommended. Greenhouse bioassays were set up to determine the influence of three different soils on growth and phosphorous nutrition of Polylepis australis seedlings. Soils were collected from a grassland, a rare mature forest and a forest degraded due to repeated fires. We identified the arbuscular mycorrhizal fungi (AMF) present in the three soils and after 12 months we harvested the seedlings to evaluate root and shoot biomass, plant P content and root colonization by native AMF and dark septate endophytes (DSE). The soil inocula contained 26 AMF morphospecies. Grassland inoculum showed the highest AMF richness, and mature forest showed a different AMF community assembly from grassland and degraded forest inocula. Root biomass and root colonization were highest in seedlings inoculated with mature forest soil, meanwhile shoot biomass and plant P content were similar between all treatments. AMF colonization correlated negatively with DSE and root biomass was negatively correlated with DSE colonization, thus these fungal symbionts could be competing for resources. Our results indicate that AMF inoculum from the mature forest stand has the potential to improve P. australis performance, probably due to the dominance of Glomeraceae and Acaulosporaceae families. However, other soil microorganisms could be together with AMF in the natural inocula, affecting the growth response of P. australis seedlings. Future studies evaluating the effect of these inocula under field conditions should be carried out.  相似文献   

    19.
    Macroscopic charcoal and pollen analysis were used to study the disturbance history and development of a boreal Norway spruce (Picea abies (L.) Karst.) forest landscape in southeastern Norway. The sites studied were natural forests and the charcoal records showed no evidence of fire disturbance that could have broken the continuity in the spruce forests that were established ca. 1700 years ago. Consequently, true spruce forest ecosystem continuity was documented on a landscape level. However, fire disturbed the mixed pine-deciduous forest ecosystems that preceded the present spruce forests, suggesting a shift from fire-prone, to fire-free forest ecosystems.It is argued that the studied forest landscape has the potential to be an important natural reference for future forestry, that would be required to mimic natural forest dynamics to be biologically sustainable. A stereotypic promiscuous use of fire in the regeneration phase may cause serious damages in forest ecosystems that have developed without the impact of fire disturbance.  相似文献   

    20.
    We assessed species composition, richness and abundance of understory vegetation, as well as arbuscular mycorrhizal (AM) inoculum potential on the San Francisco Peaks, tallest mountains in Arizona, crossing a steep, south-facing elevational gradient. These mountains have a high conservation value due to their rare habitats but previous vegetation studies have been limited. Because mature trees in the Pinaceae do not form associations with AM fungi, there may be more variation in plant community and AM fungal associations in coniferous forest than in ecosystems where all species associate with AM fungi. Differences in species composition between forest types reflected differences in the historical disturbance regimes. Species richness was highest in ponderosa pine forest (32.6 ± 1.4 per 1000 m2 plot), although plant abundance was highest in aspen forest (49.4 ± 3.8%). Ponderosa pine and bristlecone pine forest were both high in species richness and contained species which were tolerant of frequent, low-intensity fire. Exotic species richness and abundance were highest in the lower elevations, which were also areas of high species richness and greater anthropogenic disturbance. Arbuscular mycorrhizal inoculum potential varied widely (1.2–80.1%), decreasing with increases in tree cover. We suggest indicator species that may be of use in monitoring these forests under changing climate and fire regimes.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号