首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of challenge exposure on the humoral and cellular immune responses in pseudorabies vaccinated swine were studied in 84 barrows. The pigs were divided into seven groups and challenge exposed to a virulent strain of pseudorabies virus on months 1, 3, 5, 8, 10, 12 and 14 after vaccination. The pigs were vaccinated with commercial attenuated and inactivated pseudorabies virus vaccines. The protection conferred by vaccination was equally effective with both types of vaccines. The levels of cellular and humoral immunity after challenge exposure in pigs vaccinated with either type of vaccine were similar. The cell-mediated immune response can be effectively used for the early detection of pigs exposed to pseudorabies virus. Virus isolation attempts from the brain and spleen in most of the vaccinated pigs were unsuccessful.  相似文献   

2.
The purpose of the study was to evaluate the short- and long-term immunity after intranasal vaccination in pigs with maternally derived antibodies (MDA). In two experiments, 10-week-old pigs with moderate MDA titres against Aujeszky's disease virus (ADV) were vaccinated intranasally with the Bartha strain of ADV to evaluate the protective immunity conferred at 2 weeks, 2 months and 4 months after vaccination. Protection was evaluated on the basis of severity of clinical signs, periods of fever and growth arrest, and duration and amount of virus excreted after challenge with a virulent ADV. During the first 2-3 weeks after vaccination, antibodies to ADV continued to decline as in unvaccinated control pigs. After that, antibody titres stabilized or gradually increased. At 2 weeks, 2 months and 4 months after vaccination, vaccinated pigs were significantly better protected than unvaccinated controls. The vaccinated pigs challenged 2 weeks after vaccination hardly developed any sign of disease. Mild signs of Aujeszky's disease and a growth arrest period of 5 days were observed in vaccinated pigs challenged 2 months after vaccination, whereas vaccinated pigs challenged 4 months after vaccination developed severe signs of disease and a growth arrest period of 13 days. Vaccinated pigs challenged 2 weeks after vaccination did not excrete challenge virus, and pigs challenged 2 or 4 months after vaccination excreted far less virus than unvaccinated controls. The results demonstrate that intranasal ADV vaccination of pigs with moderate MDA titres protected them from 2 weeks to at least 4 months after vaccination. Immunity steadily declined, however, after vaccination.  相似文献   

3.
The vaccine efficacy of a genetically engineered deletion mutant strain of pseudorabies virus, strain 783, was compared with that of the conventionally attenuated Bartha strain. Strain 783 has deletions in the genes coding for glycoprotein I and thymidine kinase. In experiment 1, which had a 3-month interval between vaccination and challenge exposure, strain 783 protected pigs significantly (P less than 0.05) better against virulent virus challenge exposure than did the Bartha strain. The growth of pigs vaccinated with strain 783 was not arrested, whereas that of pigs vaccinated with the Bartha strain was arrested for 7 days. Of 8 pigs given strain 783, 4 were fully protected against challenge exposure; none of the pigs given strain Bartha was fully protected. In experiment 2, which had a 3-week interval between vaccination and challenge exposure, the growth of pigs vaccinated with strain 783 was arrested for 3.5 days, whereas that of pigs vaccinated with the Bartha strain was arrested for 6 days. In experiment 3, pigs with moderate titer of maternal antibodies were vaccinated twice IM or once intranasally with either strain 783 or Bartha and were challenge-exposed 3 months after vaccination. Pigs given strain 783 twice IM were significantly (P less than 0.05) better protected than were the other pigs. They had growth arrest of only 6 days, compared with 9 days for pigs of other groups, and shed less virus after challenge exposure. Results of this study indicate that the vaccine based on the deletion mutant strain 783 is more efficacious than is the Bartha strain of pseudorabies virus.  相似文献   

4.
Groups of pigs vaccinated with an inactivated bivalent vaccine containing porcine parvovirus (PPV) and pseudorabies virus (PRV) developed geometric mean titers (GMT) of humoral antibody for each of the viruses as high or slightly higher than those of other groups of pigs that were vaccinated with inactivated monovalent vaccines containing one or the other of the same viruses. An increase in GMT after challenge exposure of vaccinated pigs to live virus indicated that vaccination did not prevent virus replication. However, an indication that replication was less extensive in vaccinated pigs was provided by the following. Although neither vaccinated nor nonvaccinated (control) pigs had clinical signs after exposure to the live PPV, the effect of vaccination was evident by the fact that GMT were higher in nonvaccinated pigs after exposure than they were in vaccinated pigs. Conversely, all pigs exposed to live PRV had clinical signs, but these signs varied between mild-to-moderate and transient for vaccinated pigs to severe and fatal for nonvaccinated pigs.  相似文献   

5.
One month prior to breeding, sows were vaccinated with an attenuated pseudorabies virus vaccine or challenged with a field strain of pseudorabies virus. A third group of sows were not vaccinated or challenged before breeding. Pigs from these sows were vaccinated at 3, 6, or 12 weeks of age and challenged with virulent virus three weeks later. One pig from each litter served as an unvaccinated, unchallenged control. Serum neutralization titers of these pigs were monitored from birth until 22 weeks of age. Titers of the sows were monitored through breeding, gestation and farrowing. The maximum prefarrowing anti-pseudorabies virus titer in the field virus challenged sows occurred four weeks following challenge. A significant decline in titers occurred at farrowing. Titers rose from one week postfarrowing and then declined. Titers in the field virus infected sows were consistently two to threefold greater than those of the vaccinated sows. The maximum prefarrowing anti-pseudorabies virus titer in the vaccinated sows occurred six weeks following vaccination. The geometric mean titer in these sow's then decreased and increased for two weeks after farrowing. The results in the pigs can be summarized as follows: Pigs from control sows had a greater serological response following field virus challenge than following vaccination with a modified live virus. Pigs from control sows responded serologically to vaccination at 3, 6 and 12 weeks of age. Pigs from control sows which were challenged at 6, 9 and 15 weeks of age had similar antibody responses. Pigs from vaccinated sows had no increase in titer following vaccination at three and six weeks of age. Titers increased when these pigs were vaccinated at 12 weeks of age. There was no significant increase in mean titers of pigs from challenged sows following vaccination at 3, 6 and 12 weeks of age. Vaccinated pigs from control and vaccinated sows had a secondary response following challenge three weeks after vaccination.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The humoral antibody response of pseudorabies-immune pigs to reactivation of latent pseudorabies virus (PRV) was compared with the response following direct exposure to virulent PRV. Nine pigs that had been vaccinated for pseudorabies and later exposed to virulent virus to establish latent infection were given dexamethasone to reactivate latent virus (3 pigs), were exposed oronasally and parenterally to virulent virus (3 pigs), or were kept as nontreated controls (3 pigs). Sera collected from all 9 pigs just before and 3 weeks after treatment were tested by virus neutralization and radioimmunoprecipitation. The 3 pigs exposed directly to virulent virus and 2 of the 3 pigs given dexamethasone had a 4-fold or greater increase in neutralizing antibody titer. All 6 of these pigs had an increase in precipitating antibody activity. Precipitation patterns changed both quantitatively and qualitatively, especially for virus-coded proteins of relatively low molecular weight (less than 46 K). There were some differences in the precipitation patterns associated with sera of individual pigs. However, there was no clear indication of any difference between the 2 treatment groups and therefore no evidence that reactivation of latent virus is associated with any unique immunologic response that could be detected by radioimmunoprecipitation and used diagnostically. Clinical signs were limited to the 3 pigs that were exposed oronasally and parenterally to virulent virus even though the dexamethasone-treated pigs shed more virus for much longer than did those exposed directly to virus.  相似文献   

7.
Various procedures of vaccination for pseudorabies were compared for their effects on shedding, latency, and reactivation of attenuated and virulent pseudorabies virus. The study included 6 groups: group 1 (10 swine neither vaccinated nor challenge-exposed), group 2 (20 swine not vaccinated, but challenge-exposed), and groups 3 through 6 (10 swine/group, all vaccinated and challenge-exposed). Swine were vaccinated with killed virus IM (group 3) or intranasally (group 4), or with live virus IM (group 5) or intranasally (group 6). The chronologic order of treatments was as follows: vaccination (week 0), challenge of immunity by oronasal exposure to virulent virus (week 4), biopsy of tonsillar tissue (week 12), treatment with dexamethasone in an attempt to reactivate latent virus (week 15), and necropsy (week 21). Vaccination IM with killed or live virus and vaccination intranasally with live virus mitigated clinical signs and markedly reduced the magnitude and duration of virus shedding after challenge exposure. Abatement of signs and shedding was most pronounced for swine that had been vaccinated intranasally with live virus. All swine, except 4 from group 2 and 1 from group 4, survived challenge exposure. Only vaccination intranasally with live virus was effective in reducing the magnitude and duration of virus shedding after virus reactivation. Vaccination intranasally with killed virus was without measurable effect on immunity. Of the 55 swine that survived challenge exposure, 54 were shown subsequently to have latent infections by use of dexamethasone-induced virus reactivation, and 53 were shown to have latent infections by use of polymerase chain reaction (PCR) with trigeminal ganglia specimens collected at necropsy. Fewer swine were identified by PCR as having latent infections when other tissues were examined; 20 were identified by testing specimens of olfactory bulbs, 4 by testing tonsil specimens collected at necropsy, and 4 by testing tonsillar biopsy specimens. Eighteen of the 20 specimens of olfactory bulbs and 3 of the 4 tonsil specimens collected at necropsy in which virus was detected by PCR were from swine without detectable virus-neutralizing antibody at the time of challenge exposure. One pig that had been vaccinated intranasally with live virus shed vaccine virus from the nose and virulent virus from the pharynx concurrently after dexamethasone treatment. Evaluation of both viral populations for unique strain characteristics failed to provide evidence of virus recombination.  相似文献   

8.
A study of pseudorabies virus (PRV)-vaccinated pigs comparing the immune responses detected by the latex agglutination test (LAT) with responses detected by other routine tests for pseudorabies antibodies indicated that LAT was more sensitive than either the enzyme-linked immunosorbent assay (ELISA) or the serum virus neutralization test (SVNT). The LAT detected antibodies sooner than ELISA and SVNT in unvaccinated pigs after challenge with virulent PRV. The specificities of the 3 tests were found to be near 100%. The LAT is a good alternative to SVNT or ELISA for detection of PRV-specific antibodies.  相似文献   

9.
Two commercial Aujeszky's disease vaccines, a modified killed vaccine and a sub-unit vaccine, both carrying a deletion of glycoprotein-I, were evaluated in pigs. Each vaccine was administered to two groups of four pigs, twice at 4-week intervals, with two pigs held as unvaccinated controls. All pigs were challenged with a New Zealand field isolate of Aujeszky's disease virus 3 weeks after the second vaccination. The results indicate that the sub-unit vaccine was able to protect pigs against clinical Aujeszky's disease much better than the pigs vaccinated with the modified killed vaccine when challenged with a virulent virus. However, the amount and the duration of virulent virus excretion following challenge was greater with the sub-unit vaccine than the modified killed vaccine. Pigs vaccinated with the sub-unit vaccine were shown to be latently infected following challenge. Latent infection was demonstrated by excretion of Aujeszky's disease virus from the nasal cavity after dexamethasone treatment and seroconversion of a sentinel in contact pigs to Aujeszky's disease virus.  相似文献   

10.
We compared 3 modified-live pseudorabies virus (PRV) vaccine strains, administered by the intranasal (IN) or IM routes to 4- to 6-week-old pigs, to determine the effect of high- and low-challenge doses in these vaccinated pigs. At the time of vaccination, all pigs had passively acquired antibodies to PRV. Four experiments were conducted. Four weeks after vaccination, pigs were challenge-exposed IN with virulent virus strain Iowa S62. In experiments 1 and 2, a high challenge exposure dose (10(5.3) TCID50) was used, whereas in experiments 3 and 4, a lower challenge exposure dose (10(2.8) TCID50) was used. This low dose was believed to better simulate field conditions. After challenge exposure, pigs were evaluated for clinical signs of disease, weight gain, serologic response, and viral shedding. When vaccinated pigs were challenge-exposed with a high dose of PRV, the duration of viral shedding was significantly (P less than 0.05) lower, and body weight gain was greater in vaccinated pigs, compared with nonvaccinated challenge-exposed pigs. Pigs vaccinated IN shed PRV for fewer days than pigs vaccinated IM, but this difference was not significant. When vaccinated pigs were challenge-exposed with a low dose, significantly (P less than 0.05) fewer pigs vaccinated IN (51%) shed PRV, compared with pigs vaccinated IM (77%), or nonvaccinated pigs (94%). Additionally, the duration of viral shedding was significantly (P less than 0.05) shorter in pigs vaccinated IN, compared with pigs vaccinated IM or nonvaccinated pigs. The high challenge exposure dose of PRV may have overwhelmed the local immune response and diminished the advantages of the IN route of vaccination.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Live-virus and inactivated-virus vaccines were used to immunize sows against pseudorabies (Aujeszky's disease) virus. To test the efficacy of the vaccination, 53 pigs of different ages were taken from the 1st and the 2nd litters of vaccinated sows and placed separately in isolation units. The pigs were challenge exposed with virulent pseudorabies virus and examined for clinical signs, virus excretion, and serologic reaction. The challenge inoculum caused severe nervous or respiratory signs of disease in 12 of the 13 control pigs, with a mortality of 76%. The pigs from the 1st litters of sows vaccinated with the live-virus vaccine did not become sick, whereas 2 of the 9 pigs (22%) from the 2nd litters had clinical signs and died of pseudorabies. All pigs from sows vaccinated with the inactivated-virus vaccine remained healthy. The results of virus isolation from oronasal swabs, combined with the serotest results, indicated that challenge exposure of all except 1 of the pigs resulted in a subclinical infection with the formation of active immunity.  相似文献   

12.
The period during which pigs are protected after vaccination is important for the successful usage of a marker vaccine against classical swine fever virus (CSFV) in an eradication programme. In four animal experiments with different vaccination-challenge intervals we determined the duration of protection of an E2 subunit marker vaccine in pigs after a single vaccination. Unvaccinated pigs were included in each group to detect transmission of the challenge virus.Three groups of six pigs were vaccinated once and subsequently inoculated with the virulent CSFV strain Brescia after a vaccination-challenge interval of 3, 51/2, 6 or 13 months. All vaccinated pigs, 16 out of 18, with neutralising antibodies against CSFV at the moment of challenge, 3, 51/2, 6 or 13 months later, survived, whereas unvaccinated control pigs died from acute CSF or were killed being moribund. A proportion of the vaccinated pigs did however develop fever or cytopenia after challenge and two vaccinated pigs were viremic after challenge. Virus transmission of vaccinated and challenged pigs to unvaccinated sentinel pigs did not occur in groups of pigs which were challenged 3 or 6 months after a single vaccination. Two out of eight vaccinated pigs that were found negative for CSFV neutralising antibody at 13 months after vaccination died after subsequent challenge.The findings in this study demonstrate that pigs can be protected against a lethal challenge of CSFV for up to 13 months after a single vaccination with an E2 subunit marker vaccine.  相似文献   

13.
Sequential changes in the humoral immune response of pigs to pseudorabies virus (PRV) after each of several exposures to the virus were evaluated by determining virus neutralization (VN) and radioimmunoprecipitation (RIP) activities of sera collected at selected intervals. Pigs were vaccinated intramuscularly with live attenuated virus (6 pigs), inactivated attenuated virus (6 pigs), or inactivated virulent virus (6 pigs). All pigs were challenged oronasally with virulent virus 3 weeks later and 12 (4 pigs of each vaccine group) were subsequently treated with dexamethasone in an attempt to reactivate latent virus. The relatively low serum titers of VN antibody that were raised by vaccination (titers ranged from 2 to 32) increased markedly (at least 16-fold) for all pigs after exposure to virulent virus. After dexamethasone treatment, the VN titers of 2 pigs increased 16-fold, whereas those of the other 10 dexamethasone-treated pigs and the 6 nontreated pigs either remained the same or increased only minimally (i.e., no more than 2-fold). The results of RIP using 35S-methionine-labeled viral proteins were initially similar to those of VN in that the low levels of serum RIP activity detected after vaccination increased markedly after subsequent exposure to virulent virus. In contrast to VN, however, most pigs (11 of 12) treated with dexamethasone had a clear increase in serum RIP activity. The increase was particularly striking for viral proteins of relatively low (less than 46K) molecular weight. Precipitating activity for 14C-glucosamine-labeled viral glycoproteins was not detected until after pigs were exposed to virulent virus. The increase in RIP activity detected after dexamethasone treatment was likely due to an additional antigenic stimulus associated with virus reactivation. However, virus was isolated from nasal swabs of only 4 of the 12 treated pigs. None of the results appeared to be affected appreciably by the type of vaccine used for initial immunization.  相似文献   

14.
Ten-week-old pigs with high levels of maternally derived antibody (MDA) against Aujeszky's disease virus (ADV) were given either a single intranasal vaccination or one or two doses (with an interval of three weeks) of commercially available attenuated ADV vaccines intramuscularly. The pigs did not produce a clear neutralising antibody response to ADV. However, pigs vaccinated intranasally and pigs given two doses of attenuated ADV vaccines were protected against intranasal challenge with virulent ADV two months after the first vaccination. Pigs given one parenteral dose of attenuated ADV vaccine were insufficiently protected. Protection was shown by shorter periods of growth arrest and fever and a greater reduction of virulent virus shedding after challenge in vaccinated pigs than in unvaccinated control pigs. Although intranasal vaccination conferred protection comparable to two parenteral doses of attenuated vaccines, it reduced shedding of virulent virus much more effectively. These results, together with those of other studies, show that intranasal vaccination confers better protection against Aujeszky's disease in pigs with MDA than parenteral vaccination. However, the efficacy of intranasal vaccination also decreases with increasing levels of MDA at the time of vaccination.  相似文献   

15.
The influence of vaccine genotype and route of administration on the efficacy of pseudorabies virus (PRV) vaccines against virulent PRV challenge was evaluated in a controlled experiment using five genotypically distinct modified live vaccines (MLVs) for PRV. Several of these MLVs share deletions in specific genes, however, each has its deletion in a different locus within that gene. Pigs were vaccinated with each vaccine, either via the intramuscular or intranasal route, and subsequently challenged with a highly virulent PRV field strain. During a 2-week period following challenge with virulent PRV, each of the vaccine strains used in this study was evaluated for its effectiveness in the reduction of clinical signs, prevention of growth retardation and virulent virus shedding. One month after challenge, tissues were collected and analyzed for virulent PRV latency load by a recently developed method for the electrochemiluminescent quantitation of latent herpesvirus DNA in animal tissues after PCR amplification. It was determined that all vaccination protocols provided protection against clinical signs resulting from field virus challenge and reduced both field virus shedding and latency load after field virus challenge. Our results indicated that vaccine efficacy was significantly influenced by the modified live vaccine strain and route of administration. Compared to unvaccinated pigs, vaccination reduced field virus latency load in trigeminal ganglia, but significant differences were found between vaccines and routes of administration. We conclude that vaccine genotype plays a role in the effectiveness of PRV MLVs.  相似文献   

16.
The efficacy of a new Haemophilus parasuis vaccine for pigs was investigated. The vaccine contains H parasuis serotype 5 cells and is adjuvanted with Diluvac Forte (Intervet). Groups of pigs were vaccinated at five and seven weeks with 2 ml and their littermates served as unvaccinated controls. The vaccinated pigs were protected against a challenge with another strain of Hparasuis serotype 5 at two, eight and 17 weeks after the second vaccination, whereas the controls became very ill. The susceptibility of the pigs to the infection decreased with increasing age. After a heterologous challenge with H parasuis serotypes 1, 12, 13 and 14, two weeks after the second vaccination, the vaccine also gave clear protection. The severity of the illness among the control pigs differed with the different serotypes.  相似文献   

17.
The avirulent Bartha's K strain of pseudorabies virus (PRV) was used to vaccinate 8 pigs at 10 weeks of age by the intransal route (experiment 1). On postvaccination days (PVD) 63 and 91, pigs were treated with corticosteroids. Viral shedding could not be detected. Explant cultures of trigeminal ganglia and tonsils did not produce virus. Four pigs with maternal antibody were vaccinated intranasally with Bartha's (attenuated) K strain of PRV at 10 weeks of age and were challenge exposed with a virulent strain of PRV on PVD 63 (experiment 2). Corticosteroid treatment, starting on postchallenge exposure day 70 (PVD 133) resulted in viral shedding in 1 of 4 pigs. In another pig of these 4, a 2nd corticosteroid treatment was required to trigger reactivation. In both pigs, sufficient reactivated virus was excreted to infect susceptible sentinel pigs. Restriction endonuclease analysis indicated that viruses isolated from the 2 pigs after challenge exposure and corticosteroid treatment were indistinguishable from the virulent virus. Evidence was not obtained for simultaneous excretion of vaccinal and virulent virus. Of 4 pigs without maternal antibody vaccinated twice with 1 of 2 inactivated PRV vaccines, challenge exposed on PVD 84, and treated with corticosteroids on postchallenge exposure day 63 (PVD 147), 1 was latently infected, as evidenced by the shedding of PRV (experiment 3). However, its sentinel pig remained noninfected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A mutant of pseudorabies virus (PRV) deficient in thymidine kinase (TK-) activity was isolated and characterized. The mutant grew well in cell culture and did not revert to the thymidine kinase-positive phenotype. The PRV-TK- was not virulent when inoculated intranasally into 3-to 4-week-old pigs and could not be reactivated from the ganglia of these pigs by explantation and cocultivation with susceptible cells several weeks after virus inoculation. Pigs that had been exposed to PRV-TK- were immune to challenge exposure with a virulent strain of PRV. Furthermore, the challenge virus was not recovered from the ganglia of most of these pigs, indicating that colonization of the ganglia by a super-infecting virulent PRV strain was considerably reduced by vaccination.  相似文献   

19.
The development of a classical swine fever (CSF) subunit marker vaccine, based on viral envelope glycoprotein E2, and a companion diagnostic test, based on a second viral envelope glycoprotein E(RNS), will be described. Important properties of the vaccine, such as onset and duration of immunity, and prevention of horizontal and vertical transmission of virus were evaluated. A single dose of the vaccine protected pigs against clinical signs of CSF, following intranasal challenge with 100LD(50) of virulent classical swine fever virus (CSFV) at 2 weeks after vaccination. However, challenge virus transmission to unvaccinated sentinels was not always completely inhibited at this time point. From 3 weeks up to 6 months after vaccination, pigs were protected against clinical signs of CSF, and no longer transmitted challenge virus to unvaccinated sentinels. In contrast, unvaccinated control pigs died within 2 weeks after challenge. We also evaluated transmission of challenge virus in a setup enabling determination of the reproduction ratio (R value) of the virus. In such an experiment, transmission of challenge virus is determined in a fully vaccinated population at different time points after vaccination. Pigs challenged at 1 week after immunization died of CSF, whereas the vaccinated sentinels became infected, seroconverted for E(RNS) antibodies, but survived. At 2 weeks after vaccination, the challenged pigs seroconverted for E(RNS) antibodies, but none of the vaccinated sentinels did. Thus, at 1 week after vaccination, R1, and at 2 weeks, R=0, implying no control or control of an outbreak, respectively. Vertical transmission of CSFV to the immune-incompetent fetus may lead to the birth of highly viraemic, persistently infected piglets which are one of the major sources of virus spread. Protection against transplacental transmission of CSFV in vaccinated sows was, therefore, tested in once and twice vaccinated sows. Only one out of nine once-vaccinated sows transmitted challenge virus to the fetus, whereas none of the nine twice-vaccinated sows did. Finally, our data show that the E(RNS) test detects CSFV-specific antibodies in vaccinated or unvaccinated pigs as early as 14 days after infection with a virulent CSF strain. This indicates that the E2 vaccine and companion test fully comply with the marker vaccine concept. This concept implies the possibility of detecting infected animals within a vaccinated population.  相似文献   

20.
The efficacy of a commercial swine influenza vaccine based on A/New Jersey/8/76 (H1N1) and A/Port Chalmers/1/73 (H3N2) strains was tested against challenge with an H1N2 swine influenza virus. Influenza virus-seronegative pigs were vaccinated twice with the vaccine when they were four and eight weeks old, or with the same vaccine supplemented with an H1N2 component. Control pigs were left unvaccinated. Three weeks after the second vaccination, all the pigs were challenged intratracheally with the swine influenza strain Sw/Gent/7625/99 (H1N2). The commercial vaccine induced cross-reactive antibodies to H1N2, as detected by the virus neutralisation (VN) assay, but VN antibody titres were 18 times lower than in the pigs vaccinated with the H1N2-supplemented vaccine. The challenge produced severe respiratory signs in nine of 10 unvaccinated control pigs, which developed high H1N2 virus titres in the lungs 24 and 72 hours after the challenge. Vaccination with the commercial vaccine resulted in milder respiratory signs, but H1N2 virus replication was not prevented. Mean virus titres in the pigs vaccinated with the commercial vaccine were 1-5 log10 lower than in the controls at 24 hours but no different at 72 hours. In contrast, the H1N2-supplemented vaccine prevented respiratory disease in most pigs. There was a 4-5 log10 reduction in the mean virus titre at 24 hours in the pigs vaccinated with this vaccine, and no detectable virus replication at 72 hours. These data indicate that the commercial swine influenza vaccine did not confer adequate protection against the H1N2 subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号