首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High pressure liquid chromatographic determination of aflatoxins in corn.   总被引:1,自引:0,他引:1  
A high pressure liquid chromatographic (HPLC) method is proposed for determining aflatoxins in corn. The sample is extracted with methanol-10% NaCl (4 + 1), pigments are precipitated with zinc acetate, and the extract is cleaned up on a small (2 g) silica gel column. Aflatoxins in the purified extract are resolved by normal phase HPLC on a microparticulate (10 micrometer) silica gel column with water-saturated chloroform-cyclohexane, acetonitrile solvent, and detected by fluorescence on a silica gel-packed flowcell. The method was compared with chloroform-water extraction of the official CB method on 15 samples of contaminated corn. In 5 of the 6 samples containing aflatoxins B1, B2, G1, and G2, methanol-10% NaCl extracted more aflatoxin than did cloroform-water, as measured both by HPLC and by thin layer chromatography. In samples containing only B1 and B2, the 2 extraction solvents were virtually equivalent. Agreement was good between HPLC and TLC for each extraction solvent. Average recovery of aflatoxins B1, B2, G1, and G2 added to yellow cornmeal at 3 levels was greater than 90%.  相似文献   

2.
A high pressure liquid chromatographic method has been developed for determining aflatoxins B1, B2, G1, and G2 in peanut butter. The method is based on extraction with acidified aqueous methanol, partition of the aflatoxin into methylene chloride, and purification of the extract on a 2 g silica gel column. The extracted aflatoxins are resolved on a microparticulate (10 micrometer) porous silica gel column in ca 10 min with a water-washed chloroform-cyclohexane-acetonitrile solvent that contains 2% isopropanol. The fluorescence detection system determines aflatoxins B1, B2, G1, and G2 at low levels, i.e., 0.25 ppb B1, 0.5 ppb G1, and 0.2 ppb B2 and G2. Multiple assays of 5 samples of naturally contaminated peanut butters containing total aflatoxins (B1 + B2 + G1 + G2) at levels of 1, 2, 3, 9, and 17 ppb gave intralaboratory coefficients of variation of 7, 4, 4, 11, and 3%, respectively. Samples spiked at levels of 5, 9, and 17 ppb total aflatoxins showed recoveries of 79, 81, and 81%, respectively.  相似文献   

3.
Roasting aflatoxin-contaminated corn will reduce toxin levels. A quantitative analysis for aflatoxin in roasted corn has been developed by modifying a cleanup technique for green coffee extracts approved as official first action by the AOAC. A chloroform extract is partially purified on a Florisil column, and thin layer chromatographic (TLC) plates are developed with methylene chloride-chloroform-isoamyl alcohol-formic acid (81+15+3+1). Recoveries average 101% and the sensitivity limit is 5 ppb aflatoxin B1. A 2-dimensional TLC procedure can also be used to separate the aflatoxins from background interferences.  相似文献   

4.
A simple, rapid, and solvent-efficient method for determining aflatoxins in corn and peanut butter is described. Aflatoxins B1, B2, G1, and G2 were extracted from 50 g sample with 200 mL methanol-water (85 + 15). A portion of the extract was diluted with 10% NaCl solution to a final concentration of 50% methanol, and then defatted with hexane. The aflatoxins were partitioned into chloroform. The chloroform solution was evaporated, and the residue was placed on a 0.5 g disposable silica gel column. The column was washed with 3 mL each of hexane, ethyl ether, and methylene chloride. Aflatoxins were eluted with 6 mL chloroform-acetone (9 + 1). The solvent was removed by evaporation on a steam bath, and the aflatoxins were determined using thin layer chromatography (TLC) with silica gel plates and a chloroform-acetone (9 + 1) developing solvent. Overall average recovery of aflatoxin B1 from corn was 82%, and the limit of determination was 2 ng/g. For mass spectrometric (MS) confirmation, aflatoxin B1 in the extract from 3 g sample (20 ng/g) was purified by TLC and applied by direct on-column injection at 40 degrees C into a 6 m fused silica capillary gas chromatographic column. The column was connected directly to the ion source. After injection, the temperature was rapidly raised to 250 degrees C, and the purified extract was analyzed by negative ion chemical ionization MS.  相似文献   

5.
A multimycotoxin thin layer chromatographic method is described for the analysis of corn. Aflatoxins are extracted from the samples with acetonitrile-water, and sodium bicarbonate is added to separate the acidic ochratoxin from zearalenone and aflatoxin B1. After chloroform extraction, 1N NaOH is added to separate zearalenone and aflatoxin B1. The separated mycotoxins are spotted on TLC plates, which are then examined under ultraviolet light. The following recoveries (%) were obtained for corn samples: aflatoxin B1 71, ochratoxin A 87, and zearalenone 85. The limits of detection for the respective mycotoxins were 2, 40, and 200 ppb.  相似文献   

6.
A collaborative study of a liquid chromatographic method for the determination of aflatoxins B1, B2, G1, and G2 was conducted in laboratories located in the United States, Canada, South Africa, and Switzerland. Twenty-one artificially contaminated raw peanuts, peanut butter, and corn samples containing varying amounts of aflatoxins B1, B2, G1, and G2 were distributed to participating laboratories. The test portion was extracted with methanol-0.1N HCl (4 + 1), filtered, defatted with hexane, and then partitioned with methylene chloride. The concentrated extract was passed through a silica gel column. Aflatoxins B1 and G1 were derivatized with trifluoroacetic acid, and the individual aflatoxins were determined by reverse-phase liquid chromatography with fluorescence detection. Statistical analysis of the data was performed to determine or confirm outliers, and to compute repeatability and reproducibility of the method. For corn, relative standard deviations for repeatability (RSDr) for aflatoxin B1 ranged from 27.2 to 8.3% for contamination levels from 5 through 50 ng/g. For raw peanuts and peanut butter, RSDr values for aflatoxin B1 were 35.0 to 41.2% and 11.2 to 19.1%, respectively, for contamination levels from 5 through 25 ng/g. RSDr values for aflatoxins B2, G1, and G2 were similar. Relative standard deviations for reproducibility (RSDr) for aflatoxin B1 ranged from 15.8 to 38.4%, 24.4 to 33.4%, and 43.9 to 54.0% for corn, peanut butter, and raw peanuts, respectively. The method has been adopted official first action for the determination of aflatoxins B1, B2, G1, and G2 in peanut butter and corn at concentrations greater than or equal to 13 ng total aflatoxins/g.  相似文献   

7.
A simple method is proposed for determination of aflatoxins in vegetable oils. The method was successfully applied to both crude and degummed oils. The oil sample, dissolved in hexane, was applied to a silica column and washed with ether, toluene, and chloroform; aflatoxins were eluted from the column with chloroform-methanol (97 + 3). As quantitated by thin layer chromatography and liquid chromatography, the oils analyzed contained aflatoxin B1 at levels of 5-200 micrograms/kg. Recoveries of aflatoxin B1 standards added to aflatoxin-free oils were between 89.5 and 93.5%, with coefficients of variation of 6.3-8.0%.  相似文献   

8.
A new method is described for the determination of aflatoxin M1 in milk and dairy products by thin layer chromatography. The main characteristic is the extraction system using an alkaline solution. Lipids are removed by centrifuging at low temperatures, and the aflatoxins are then extracted with CHCl3. The method has 2 options: Technique II (detection limit 0.02 ppb) requires cleanup on a chromatographic column; this is not necessary in Technique I (detection limit 0.1 ppb). The recovery rate in both techniques is over 92.8% in milk and yoghurt. This method may also be used for other aflatoxins. Because of the advantages of the method, Technique II is recommended for aflatoxin M1 control in milk, where a low detection limit is necessary. Technique I is proposed for experimental aflatoxin production studies in dairy products, which require analysis of a large number of samples but which do not require a very low detection limit.  相似文献   

9.
beta-Cyclodextrin enhances the fluorescence of aflatoxins B1 and G1 in aqueous systems. This effect was utilized in developing a unique reverse-phase liquid chromatographic (LC) method for determination of aflatoxins B1, B2, G1, and G2 (B1 detection limit 1 ppb), without preparing derivatives of B1 and G1. The aflatoxins are dissolved in methanol or the mobile phase for injection onto the LC system. Using a mobile phase of methanol-beta-cyclodextrin (1 + 1), the aflatoxins are resolved on a C18 column. Fluorescence of the aflatoxins is enhanced by post-column introduction of an aqueous concentrated beta-cyclodextrin solution. All 4 aflatoxins elute within 10 min in the order G2, G1, B2, B1. Fluorescence responses for B1 and G1 standards were linear over the concentration range 0.5-10 ng, yielding correlation coefficients (r) of 0.9989 and 1.000, respectively. The average peak response ratio for G1:B1 for the mobile phase-enhancement solution described was 0.765 with a coefficient of variation (CV) of 0.98%. CVs were 6.2, 9.0, and 7.5% for multiple assays of aflatoxin B1 in 3 samples of naturally contaminated corn. For samples of corn spiked to a total B1 content of 8.3 ng/g, average B1 recovery was 90% (CV 11.7%).  相似文献   

10.
A simple, rapid enzyme-linked immunoassay (ELISA) was used to evaluate the performance of each step (extraction, filtration, solvent partition, and silica gel column chromatography) of a solvent-efficient thin-layer chromatographic (TLC) method which is undergoing interlaboratory collaborative study for the determination of aflatoxin B1 in corn, raw peanuts, and peanut butter. The apparent average recoveries using the ELISA method were about 30 to 50% higher than those using the TLC method if only the amount of B1 added to the samples was used in the calculations. After the cross-reaction of the antibody with other aflatoxins added to the samples was considered, the amounts recovered approached the levels of aflatoxins added in all 3 commodities tested. With no cleanup treatment, ELISA recoveries at aflatoxin B1 levels above 7.5 ng/g were 84, 79, and 103% for corn, raw peanuts, and peanut butter, respectively. The coefficients of variation were between 5.2 and 25.2%. With each cleanup step in the TLC method, ELISA detected a progressive decrease in recovery from 150.5 to 105.3% (before correction for the presence of other aflatoxins) or from 93.5 to 65.4% (after correction for other aflatoxins) of B1 added to the samples. The ELISA data support the conclusion obtained from previous studies that cleanup treatments were not necessary in the ELISA. When large amounts of other aflatoxins are present, an understanding of the cross-reactivity of antibody with other aflatoxins in the ELISA is essential for final interpretation of the data.  相似文献   

11.
An interlaboratory study of a negative ion chemical ionization mass spectrometric (MS) confirmation procedure for aflatoxin B1 was conducted in laboratories in the United States, England, and West Germany. Twelve partially purified, dry film extracts from naturally and artificially contaminated roasted peanuts, cottonseed, and ginger root containing varying quantities of aflatoxin B1 were distributed to the participating laboratories. The extracts required additional cleanup before MS analysis, using either an acidic alumina column and preparative thin layer chromatography (TLC) or a 2-dimensional TLC procedure. Recovery of purified aflatoxin B1 was influenced by the degree of recovery of sample from acid alumina and/or the TLC plate and incomplete elution of aflatoxin B1 from silica gel. Factors affecting MS confirmation included the purity and recovery of aflatoxin and MS instrument sensitivity. Aflatoxin B1 identity was confirmed in 19.5, 90.9, and 100% of samples containing less than 5, 5-10, and greater than 10 ng aflatoxin B1/g product, respectively, by solid probe introduction using full mass scans. The MS method has been adopted official first action.  相似文献   

12.
A method is described for simple and rapid determination of aflatoxins in corn, buckwheat, peanuts, and cheese. Aflatoxins were extracted with chloroform-water and were purified by a Florisil column chromatographic procedure. Column eluates were concentrated and spotted on a high performance thin layer chromatographic (HPTLC) plate, which was then developed in chloroform-acetone (9 + 1) and/or ether-methanol-water (94 + 4.5 + 1.5) or chloroform-isopropanol-acetone (85 + 5 + 10). Each aflatoxin was quantitated by densitometry. The minimum detectable aflatoxin concentrations (micrograms/kg) in various test materials were 0.2, B1; 0.1, B2; 0.2, G1; 0.1, G2; and 0.1, M1. Recoveries of the aflatoxins added to corn, peanut, and cheese samples at 10-30 micrograms/kg were greater than 69% (aflatoxin G2) and averaged 91%, B1; 89%, B2; 91%, G1; 78%, G2; and 92%, M1. The simple method described was compared with the AOAC CB method, AOAC BF method, and AOAC milk and cheese method. These methods were applied to corn, peanut, and cheese composites spiked with known amounts of aflatoxins, and to naturally contaminated buckwheat and cheese. Recoveries were much lower for the BF method compared with our simple method and the CB method.  相似文献   

13.
A 2-step chromatographic separation, using both thin layer chromatography (TLC) and high pressure liquid chromatography (HPLC), in conjunction with the high sensitivity of laser fluorometry permits extension of the detection limits of aflatoxin contamination in corn to 0.1 ppb (microgram/kg) with a 26% root mean square variation. Aflatoxin B1 is extracted from corn with water-methanol and cleaned up by TLC. The recovery of aflatoxin from the TLC plates was linear from 10 to 1000 pg. Aflatoxin B1 is converted to the more highly fluorescent B2A derivative by treatment with 1N HCl. Experiments with aflatoxin B1 standard establish a constant conversion to B2A over approximately 3 orders of magnitude in B1 concentration. An extract of the B2A aflatoxin derivative is injected onto a reverse phase HPLC column. A flowing droplet of eluant is irradiated by an amplitude-modulated 325 nm He-Cd ion laser beam, and fluorescence from the droplet is detected by a lock-in amplifier in phase with the laser modulation. Several chromatograms are presented that demonstrate the capability of this procedure for removing interfering components in the corn extract.  相似文献   

14.
A joint project was undertaken by the Food Safety and Inspection Service (FSIS) and the Agriculture Research Service branches of the U.S. Department of Agriculture to determine the presence of aflatoxins in the U.S. meat supply during a drought year. In 1988, high incidences of aflatoxins occurred in corn grown in regions of the Midwest, Southeast, and South. Six states were identified as having serious aflatoxin contamination in their corn crop: Virginia, North and South Carolina, Texas, Iowa, and Illinois. Swine liver and pillars of diaphragm (muscle) tissues were sampled by federal FSIS Inspectors in plants located in these states. A worstcase sampling plan was conducted. Samples were taken in January 1989 from hogs fed corn soon after harvest and in April 1989 from hogs fed corn originally stored and then fed in the spring. A modification of the official AOAC method for the thin-layer chromatography (TLC) determination of aflatoxins in animal tissue was used to permit quantitation by LC with fluorescence detection. The official AOAC TLC confirmation of identity method was used to confirm all positive samples with B1 concentrations greater than 0.04 ppb and M1 concentrations greater than 0.1 ppb. Sixty samples in the January group and 100 samples in the April group were assayed. Concentrations of aflatoxins B1 and M1 in the first group of pig livers ranged from 0.04 to 0.06 ppb. The identity of aflatoxin B1 was confirmed in all positive samples. Aflatoxin M1 could not be confirmed in any of the positive liver samples because the method was insufficiently sensitive for this aflatoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Aflatoxins are a group of very carcinogenic mycotoxins that can be found on a wide range of food commodities including nuts, cereals, and spices. In this study, the first LC-MS/MS stable isotope dilution assay (SIDA) for the determination of aflatoxins in foods was developed. The development of this method was enabled by easily accessible isotope-labeled (deuterated) aflatoxins B2 and G2, which were synthesized by catalytic deuteration of aflatoxin B1 and G1, purified, and well-characterized by NMR and MS. All four aflatoxins of interest (B1, B2, G1, and G2) were quantified in food samples by using these two labeled internal standards. The response factors (RF) of the linear calibrations were revealed to be matrix independent for labeled aflatoxin B2/aflatoxin B2 and labeled aflatoxin G2/aflatoxin G2. For labeled aflatoxin B 2/aflatoxin B 1 and labeled aflatoxin B2/aflatoxin G1 matrix-matched calibration was performed for the model matrices almonds and wheat flour, showing significant differences of the RFs. Limits of detection (LOD) were determined by applying a statistical approach in the presence of the two model matrices, yielding 0.31 microg/kg (aflatoxin B1), 0.09 microg/kg (aflatoxin B2), 0.38 microg/kg (aflatoxin G1), and 0.32 microg/kg (aflatoxin G2) for almonds (similar LODs were obtained for wheat flour). Recovery rates were between 90 and 105% for all analytes. Coefficients of variation (CV) of 12% (aflatoxin B1), 3.6% (aflatoxin B2), 14% (aflatoxin G1), and 4.8% (aflatoxin G2) were obtained from interassay studies. For further validation, a NIST standard reference food sample was analyzed for aflatoxins B1 and B2. The method was successfully applied to determine trace levels of aflatoxins in diverse food matrices such as peanuts, nuts, grains, and spices. Aflatoxin contents in these samples ranged from about 0.5 to 6 microg/kg.  相似文献   

16.
A study was conducted to determine the accuracy and precision of 3 AOAC methods, secs 26.026-26.031 (CB), secs 26.032-26.036 (BF), and secs 26.052-26.060 (cottonseed), and the Romer quantitative method for the thin-layer chromatographic (TLC) determination of aflatoxins B1, B2, G1, and G2 in raisins. The samples were spiked at a level of 10 micrograms total aflatoxins/kg. The TLC development systems were: ether-methanol-water (94 + 4.5 + 1.5) and chloroform-acetone (9 + 1). The interaction between the 4 methods and the 2 development systems was also studied. The average recoveries were 88, 80, 75, and 93% with coefficients of variation of 14.0, 10.4, 14.0, and 9.6% for aflatoxin B1 using the CB, BF, cottonseed, and Romer methods, respectively. Statistical analysis showed no difference in the results obtained using the 2 TLC development systems.  相似文献   

17.
Procedures from 2 methods, one for aflatoxins B1 and M1 in eggs and one for aflatoxicol in milk, blood, and liver, have been combined to determine the 3 toxins in eggs. The sample is blended with sodium chloride-saturated water and this mixture is then blended with acetone. After separation from the solid residue, the aqueous acetone extract is defatted with petroleum ether. The toxins are next partitioned into chloroform and separated from interferences on a silica gel column. Aflatoxicol is determined by fluorescence measurement after separation on a C18 reverse phase liquid chromatographic column, and aflatoxins B1 and M1 are determined by fluorescence densitometry after separation on a silica gel thin layer chromatographic plate. In a recovery study with eggs, mean recoveries of aflatoxicol added at levels of 0.1, 0.05, and 0.025 ng/g were 87, 77, and 78%, respectively. Mean recoveries of aflatoxins B1 and M1 added at a level of 0.1 ng/g were 75 and 87%, respectively, and at an added level of 0.05 ng/g were 86 and 75%. The within-laboratory precision (repeatability) ranged from 2 to 13%.  相似文献   

18.
The difference between the CB and Best Foods methods in extracting aflatoxins from peanut products has been studied. The CB method yields 60, 121, 35, and 22% higher results for aflatoxins B1, B2, G1, and G2, respectively for 4 samples of peanut meal and 6 samples of peanut butter studied. Both reverse phase liquid chromatography and thin layer chromatography were used to quantitate the extracted aflatoxins.  相似文献   

19.
A multimycotoxin thin layer chromatographic screening method is described which is applicable to most animal feedstuffs. Interference from nonspecific lipid, pigment, and other components of simple and mixed feeds is reduced to a minimum by using a membrane cleanup step. Aflatoxins B1, B2, G1, and G2, citrinin, diacetoxyscirpenol, ochratoxin A, patulin, penitrem A, sterigmatocystin, T-2 toxin, and zearalenone may be reliably detected. The sensitivity of the method is generally low for mixed feeds but even so aflatoxin B1 can be detected at a level of 3 ppb and ochratoxin A at 80 ppb. While the basic method is less sensitive for sterigmatocystin (330 ppb), patulin (600 ppb), zearalenone (1000 ppb), and the trichothecenes (1000-4000 ppb), it may be adapted so as to reduce the above detection limits when the presence of these toxins is suspected. Lower levels may be detected in extracts of simple feeds.  相似文献   

20.
A study is presented for the quantitative fluorodensitometric analysis of aflatoxins in spices, in particular nutmeg (Semen myristicae). Samples were extracted with chloroform, followed by silica gel column cleanup according to the AOAC officail first action method, 26.019(a), and by 2-dimensional thin layer chromatography according to the antidiagonal technique. The method includes a confirmatory test for aflatoxins by hemiacetal formation. The concentrations of aflatoxins in samples were determined by measurement of the fluorescent intensities of the separated aflatoxin spots from sample and standards on the same chromato-plate with a reflectance flying-spot sensitometer. With such a technique, a coefficient of variation value of 5.22 plus or minus 1.24% (P = 99%) was calculated for a series of 5 standard B-1 spots and averaged for 13 TLC plates, demonstrating the precision of the chromatographic and densitometric procedures. An average recovery of 108.4 plus or minus 5.8% (P = 95%) was obtained for 11 spiked nutmeg extracts (5.0-20.0 mu-g B-1 added/kg), whereas an average recovery of 92.6 plus or minus 4.9 (P = 95%) was established for 13 spiked nutmeg samples (5.0-20.0 mu-g B-1 added/kg). The coefficient of variation of the complete analytical procedure for ground nutmeg was 8.80%. In a survey on the occurrence of aflatoxins in 40 commercial nutmeg samples (covering 12 different brands) in The Netherlands, aflatoxins were detected in 30 ground samples (32 ground samples analyzed) in concentrations ranging from 1.0 to 23.2 mu-g B-1/kg or 2.7 to 36.5 mu-g B-1 + B-2 + G-1 + G-2/kg, whereas no aflatoxins were present in whole nutmeg kernels (8 samples analyzed). The lowest level of detection was 1.0 mu-g B-1/kg. In addition, 50 commercial spices consisting of 19 different types of commodities other than nutmeg wer assayed for aflatoxins according to the same procedure. No aflatoxins were detected in these samples, with the exception of 1 sample of bay leaf which contained 5.1 mu-g B-1/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号