共查询到16条相似文献,搜索用时 62 毫秒
1.
为了克服人工家畜体尺测量耗时、应激大和工作强度大等问题,提出了一种基于单视角点云镜像的猪只体尺测量方法。首先使用单Xtion深度相机采集包含猪体的场景点云图像序列,并人工筛选出包含背部弯曲程度较小猪体的场景点云图像,然后基于随机采样一致性算法和聚类分割算法自动化分割目标猪体并对其进行姿态归一化,检测单视角猪体点云对称面,并利用对称面镜像获取完整猪体,最后利用自主研发的体尺测量软件测量猪只体尺。试验结果表明,利用该方法测量体长的平均相对误差为5.00%,臀宽测量的平均相对误差为7.40%,臀高测量的平均相对误差为5.74%。该方法为猪只体尺测量提供了切实可行的新途径。 相似文献
2.
基于深度信息的草莓三维重建技术 总被引:1,自引:0,他引:1
以盆栽和高架两种栽培模式生长环境下的草莓植株为研究对象,提出了一种基于深度信息分割聚类的草莓冠层结构形态三维重建算法。首先,以深度信息的不连续性特征作为草莓植株逐层分割的重要依据,以深度二维图像作为全局参考指标,提出深度信息步进方法,自动提取冠层点云;其次,改进密度聚类算法,有效滤除随机、跳边和背景噪声;最后,改进基于Harris算子的多源图像融合算法,实现彩色图像与强度图像的配准及点云颜色的映射,三维重建出具有颜色信息的草莓冠层结构形态。为验证该算法的有效性,将三维重建后冠层的平均单叶长度及A-B线距离作为评价指标,试验结果表明,模型的平均单叶长度计算正确率为93%左右,A-B线距离计算正确率为97%左右,研究结果可为草莓采摘机器人果实识别过程中枝叶空间结构关系的构建提供技术支持。 相似文献
3.
基于三维点云的苹果树叶片三维重建研究 总被引:2,自引:0,他引:2
叶片是果树冠层的重要组成部分,对其进行三维重建研究不仅可以对叶片形态特征进行分析,还能为冠层光照分布计算以及果树整形修剪提供理论基础。三维激光扫描仪以非接触、高效、快速获取数据的优势被大量应用于三维空间信息采集工作中。本文提出一种基于三维点云的苹果树叶片结构形态三维重建方法。首先针对叶片的形态特点选择合适的三维激光扫描仪获取苹果叶片三维点云;基于包围盒法搜索K邻域,计算点云中点与其邻域点的平均距离,并设定距离阈值作为判定中心点是否为离散点的依据,进而确定离散点并去除;利用最小二乘原理实现点云局部曲面拟合以及法向量、曲率的计算,提取叶片边界点;对于非边界点部分,根据中心点法向量与其邻域法向量的关系,对点进行不同程度的精简;最后对处理后的叶片点云完成三维重建。结果表明,构建的叶片模型能够较好的保留叶片的三维形态特征,可以为果树冠层重建和光照分布计算提供基础。 相似文献
4.
基于点云数据的树木三维重建方法改进 总被引:1,自引:0,他引:1
激光点云数据以其详尽、高精度的三维信息,在森林参数估算、精确重建植物形态结构三维模型方面具有特殊优势。为进一步提高三维模型精度,综合集成多种算法,在改进现有PC2Tree软件基础上,基于点云数据进行树木三维重建。首先根据树木局部点云的主方向相似度和局部点云轴向分布密度分离枝干与树叶;其次采取水平集和最小二乘法提取枝干部分的骨架点,通过下采样方法提取冠层部分的特征点;最后根据骨架点和特征点拓扑结构重构树木三维模型。以樟树为例,分析枝叶分割精度,自动分割与手动分割结果相近;以无叶的鸡蛋花树为例,分析重建模型精度,模型主枝长度相对误差范围集中在0~8.0%,半径相对误差范围集中在0~10%;枝条重建过程避免了噪声点的干扰,对噪声点具有一定的不敏感性;重建三维模型与原始点云吻合度高,基本解决了冠层内部枝干遮挡严重带来的三维建模困难的问题;依据模型提取树高、冠幅、胸径、体积等参数,增加了重建模型的应用范围。 相似文献
5.
种薯芽眼的准确识别是实现智能切块的重要前提。为解决种薯芽眼机器视觉识别易出现误判和不易获取芽眼三维位置信息而导致切块不均匀的问题,提出一种基于激光三维重建的种薯芽眼识别方法。确定点云获取过程中ROI区域消除采集过程中背景的影响,通过工业相机与线激光器相配合连续采集移动种薯的激光光条图像获取其点云数据;根据点云密度去除随机噪声和裙边噪声,提高点云质量,降低芽眼误判率。采用体素滤波算法稀疏点云,提高识别效率;通过对种薯表面任意点的局部邻域进行平面拟合后获取点云法向量,构建加权协方差矩阵参数化种薯表面点云,根据矩阵特征值大小设定的动态阈值对种薯表面点云进行初步筛选,得到种薯芽眼判别的候选点,采用欧式聚类算法获取候选点的点云簇,选取每个点云簇中最大特征值点为关键点,利用计算关键点和邻域内其他点构成的中心线连线向量与法向量夹角余弦值对关键点再次筛选,最终确定种薯各个芽眼位置。试验结果表明,芽眼识别率为95.13%,芽眼误识别率为4.87%,可为马铃薯种薯智能化切块时芽眼识别提供参考。 相似文献
6.
针对果树三维重构中存在建模精度低、成本高、拓扑结构差等问题,提出一种基于Kinect v2传感器的果树表型三维重建与骨架提取方法。首先,使用Kinect v2传感器采集不同视角下的果树点云数据;其次,对植株点云进行尺度不变特征变换的特征点检测,对关键点使用快速点特征直方图算法进行特征向量计算,通过随机抽样一致性方法提纯点云的初始位置,经初始变换后使用改进的迭代最近点算法进行精配准、拼接形成完整点云;最后,使用Delaunay三角剖分解构点云数据对缺失点云进行填充,使用Dijkstra最短路径算法对最小生成树进行求取,通过迭代去除冗余分量对骨架进行简化,使用圆柱拟合算法估算枝干骨架,将枝干骨架变为封闭凸包多面体,实现果树的枝干三维重建。实验结果表明:采用本文所提建模方法点云平均配准误差为0.52cm,枝干平均重构误差不超过3.52%,重建效果良好。研究成果可为果园评估作物状态、智能化修剪等研究提供数据支持。 相似文献
7.
为提高奶牛称量的工作效率,降低劳动强度,提出一种基于三维重建的奶牛体重预估方法。首先搭建奶牛深度视频获取平台,利用Kinect相机分别采集奶牛俯视与侧视视角数据,选取深度视频中同步的俯视帧与侧视帧并转换为点云,去除复杂背景提取奶牛点云;然后利用一帧不同步的侧视点云将同步侧视点云中缺失区域补全,配准俯视与侧视点云后,基于俯视点云中奶牛脊柱的位置选取对称面,利用单视角侧视点云获取得到双视角点云,完成奶牛体表点云的重建;最后进行点云曲面重建,利用曲面模型的体积与表面积建立奶牛体重预估模型。利用29头奶牛数据验证模型效果,结果表明,奶牛曲面模型整体表面积、去除四肢及头部的体积与体重呈显著正相关,体重预估绝对误差在-18.67~23.34kg之间,相对误差均小于3.40%,平均相对误差为2.04%。 相似文献
8.
基于运动恢复结构的玉米植株三维重建与性状提取 总被引:1,自引:0,他引:1
针对传统的玉米植株性状测量方法存在主观性强、劳动强度大、有损伤等问题,提出了基于运动恢复结构(Structure from motion,SfM)的户外玉米植株三维重建方法,并提取了株高、单株最小包围盒体积、茎粗、叶面积、叶片数、叶夹角等11个性状参数。采用前期研制的小车,在户外采集不同视角下的玉米植株图像(采集间距为5~6 cm),基于SfM算法获取玉米植株三维点云;运用直通滤波、圆柱拟合和条件欧氏聚类算法自动分割单株、茎秆和叶片等点云数据,基于距离最值遍历、三角面片化等算法实现株高、茎粗、叶面积等11个性状的准确、无损测量。结果表明,与人工测量值相比,测得的株高、茎粗和叶面积的平均绝对百分比误差分别为3.163%、4.760%和19.102%,均方根误差分别为3.557 cm、1.540 mm、48.163 cm2,决定系数分别为0.970、0.842、0.901。研究表明,本文方法适用于作物表型户外测量,为表型研究提供了一种新的作物表型户外测量方法,同时还证明,株高和单株最小包围盒体积可以显著区分低地上部生物量玉米植株和高地上部生物量玉米植株。 相似文献
9.
基于深度图像的猪体尺检测系统 总被引:9,自引:0,他引:9
为实现生猪饲养过程中体尺无接触检测,设计了一套基于双目视觉原理的猪体尺检测系统。针对色彩图像提取猪体轮廓易受污物和光照干扰的问题,提出基于深度图像的猪体轮廓提取算法。使用双目视觉系统获得猪体深度图像,利用帧差法提取猪只高度信息,并基于高度信息二值化图像,获得猪体轮廓;结合优化的基于凹陷结构的拐点提取算法,筛选体尺检测关键点,计算体长、体宽、体高、臀宽、臀高5个体尺,编写了基于以上算法的猪体尺检测程序。双目视觉系统三维检测的实验室验证表明:在2 m物距范围内,系统三维检测相对误差均小于1%;系统在实际猪场对32组猪体尺检测结果表明:与手工测量猪体尺相比,本系统检测的体尺平均相对误差在2%左右,平均误差小于2 cm。试验证明基于深度图像的猪体尺检测系统不容易受到脏污和光照干扰,能够实现生猪饲养过程中猪体尺的无接触检测。 相似文献
10.
基于消费级深度相机的玉米植株三维重建 总被引:2,自引:0,他引:2
根据植物表型分析对植物三维重建的需求,针对植物特征点不易提取而影响三维重建的问题,提出了一种基于深度相机的植物三维重建方法。首先,对深度相机进行内部参数标定和深度畸变矫正,以获取准确的深度信息;然后,固定好相机和转盘的相对位置,精确地计算出在当前深度相机的坐标空间下、转盘旋转一个固定角度θ对应的矩阵T;最后,按旋转角θ等间隔转动转盘,获取一系列点云,并结合矩阵T实现点云拼接,完成三维重建。通过与使用商业软件Skanect的重建结果进行对比,本文重建方法只需要配准一次,还原度更高,效率更好,鲁棒性更强,满足植物形态测量需求。 相似文献
11.
12.
为了获取果实生长期的外形参数指标,监控果实发育状况,提出了一种基于局部点云的苹果外形指标估测方法。该方法可以通过局部点云数据估测苹果的体积、高度、直径等外形指标参数。利用椭球曲面方程构建苹果几何模型,并计算苹果几何模型的高度、直径、体积。使用Kinect V2相机从任意角度获取点云数据,采用直通滤波法去除点云数据的背景,用包围盒算法精简点云得到苹果局部点云数据后,采用粒子群算法将苹果局部点云数据与苹果模型进行空间匹配,并用遗传算法求解苹果最优匹配模型的参数,利用苹果最优匹配模型参数估测与其匹配的真实苹果的外形指标。实验采集了250个苹果顶部、侧面和底部的局部点云数据,使用本文方法分别估测了250个苹果在3个角度下的外形指标,并对估测值与真实值进行线性回归分析,各个指标的线性回归拟合度R~2均高于0. 7。其中,侧面拍摄时拟合效果最好,R2最高为0. 948。在各个角度下苹果体积估测的平均误差不大于16. 16 mL,高度估测的平均误差不大于2. 92 mm,直径估测的平均误差不大于2. 35 mm,估测结果的平均误差较小,在允许误差范围内。实验结果表明,基于局部点云的苹果外形指标估测方法具有较强的实用性。 相似文献
13.
基于RGB-D相机的果树三维重构与果实识别定位 总被引:4,自引:0,他引:4
为实现对果园果实机器人采摘提供科学可靠的技术指导,提出了一种基于RGB-D相机的苹果果树三维重构以及进行果实立体识别与定位的方法。使用RGB-D相机快速获取自然光照条件下果树的彩色图像和深度图像,通过融合果树图像彩色信息和深度信息实现了果树的三维重构;对果树的三维点云进行 R-G 的色差阈值分割和滤波去噪处理,获得果实区域的点云信息;基于随机采样一致性的点云分割方法对果实点云进行三维球体形状提取,得到每个果实质心的三维空间位置信息和果实半径。实验结果表明,提出的果树三维重构和果实立体识别与定位方法具有较强的实时性和鲁棒性,在0.8~2.0 m测量范围内,顺光和逆光环境中果实正确识别率分别达95.5%和88.5%;在果实拍摄面的点云区域被遮挡面积超过50%的情况下正确识别率达87.4%;果实平均深度定位偏差为8.1 mm;果实平均半径偏差为4.5 mm。 相似文献
14.
15.
基于RGB-D相机的油菜分枝三维重构与角果识别定位 总被引:5,自引:0,他引:5
为实现高效低成本的油菜植株三维建模和表型参数在线测量,提出一种基于RGB-D相机的油菜分枝三维重建和角果识别定位方法。使用Kinect传感器拍摄角果期油菜分枝在4个视角下的彩色图像和深度图像,进而获取油菜植株的三维点云并滤波。对配准的点云进行旋转变换,计算点云的曲面法矢量和曲率,并由曲率相近的点构成配对点对,再使用基于KD-tree搜索的最近点迭代(ICP)算法实现点云的初配准。将初配准误差作为参考值,调整ICP算法的对应点距离阈值,使用初配准的操作流程对初配准得到的新点云进行再次配准,完成精配准。结合该三维重建方法和针对性的彩色图像处理方法,得到去除主茎的单分枝油菜角果的完整点云,再进行欧氏聚类实现单个角果的空间定位。实验结果表明,提出的三维重建方法具有较强的实时性和鲁棒性,单个角果的三维形态清晰可见,点云平均距离误差小于0. 48 mm,角果总体识别正确率不小于96. 76%。 相似文献