首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphate sorption capacity estimated by Piper's (1942) ‘anion exchange capacity’ and Bache and Williams's (1971) phosphate sorption index were correlated with soil pH, clay, organic matter, ‘free iron oxides’ and ‘extractable aluminium’ (McLean et al., 1958) for topsoil and subsoil samples from twenty tropical and twenty British acidic soil profiles. These two groups of soils did not differ significantly in phosphate sorption. Extractable aluminium and free iron oxide were well correlated with phosphate sorption, free iron oxide being superior to aluminium in freely drained British soils but not in poorly drained ones. Organic matter content correlated well with phosphate sorption for the poorly drained British soils, and for the tropical soils when sorption capacitywas measured using a high phosphate concentration.  相似文献   

2.
The influence of iron oxides on phosphate adsorption by soil   总被引:3,自引:0,他引:3  
Soils from Denmark and Tanzania were extracted with ammonium acetate (controls), EDTA to dissolve amorphous iron oxides, and dithionite-EDTA (DE) to dissolve crystalline iron oxides. The phosphate adsorption capacities of the extracted soils were taken as the maximum quantity of phosphate adsorbed computed from the Langmuir equation. The decreases in the phosphate adsorption capacity following EDTA extraction and DE extraction were attributed to the removal of iron oxides. Close correlations (P<0.001) were found (i) between EDTA-extractable iron (amorphous iron oxides) and the decrease in phosphate adsorption capacity following EDTA extraction, and (ii) between the difference between DE-extractable iron and EDTA-extractable iron (crystalline iron oxides) and the further decrease in phosphate adsorption capacity following DE extraction. The phosphate adsorption capacity, estimated to be approximately 2.5 μmol P m?2, was in good agreement with the capacity of various synthetic iron oxides. The calculated phosphate adsorption capacity of soil iron oxides, obtained from the contents and specific surfaces of amorphous and crystalline iron oxides together with the phosphate adsorption capacity per m2 for synthetic iron oxides, compared favourably with the measured phosphate adsorption capacity.  相似文献   

3.
Abstract

The extractant Mehlich‐1 is routinely used in Brazil for determination of soil nutrients, whereas Mehlich‐3 has been suggested as a promising extractor for soil fertility evaluation. Both were used for extraction of molybdenum (Mo) in Brazilian soils with Mo dosage by the KI+H2O2 method. The Langmuir and Freundlich isotherms were used to study soil Mo adsorption. Mehlich‐1 extracted more Mo than Mehlich‐3 in soils with high contents of organic matter, clay, and iron (Fe) oxides. Mehlich‐3 and Mehlich‐1 extractions correlated positively and significantly with amorphous Fe oxides, crystalline Fe oxides, and organic matter. Molybdenum recovering rates correlated to crystalline Fe oxides and clay contents but not to organic matter, pH, and Mo adsorption capacity. Amorphous and crystalline Fe oxides, clay, and organic matter were responsible for most of the Mo adsorption. The Langmuir isotherm described better the Mo adsorption to soil amorphous Fe oxides and organic matter than the Freundlich isotherm.  相似文献   

4.
The herbicide glyphosate and inorganic phosphate are strongly adsorbed by inorganic soil components, especially aluminium and iron oxides, where they seem to compete for the same adsorption sites. Consequently, heavy phosphate application may exhaust soil's capacity to bind glyphosate, which may lead to pollution of drain‐ and groundwater. Adsorption of phosphate and glyphosate to five contrasting Danish surface soils was investigated by batch adsorption experiments. The different soils adsorbed different amounts of glyphosate and phosphate, and there was some competition between glyphosate and phosphate for adsorption sites, but the adsorption of glyphosate and phosphate seemed to be both competitive and additive. The competition was, however, less pronounced than found for goethite and gibbsite in an earlier study. The soil's pH seemed to be the only important factor in determining the amount of glyphosate and phosphate that could be adsorbed by the soils; consequently, glyphosate and phosphate adsorption by the soils was well predicted by pH, though predictions were somewhat improved by incorporation of oxalate‐extractable iron. Other soil factors such as organic carbon, the clay content and the mineralogy of the clay fraction had no effect on glyphosate and phosphate adsorption. The effect of pH on the adsorption of glyphosate and phosphate in one of the soils was further investigated by batch experiments with pH adjusted to 6, 7 and 8. These experiments showed that pH strongly influenced the adsorption of glyphosate. A decrease in pH resulted in increasing glyphosate adsorption, while pH had only a small effect on phosphate adsorption.  相似文献   

5.
Fourteen soils from Colombia and Brazil provided a wide range of sorption characteristics. Curves of sorbed phosphate that was exchangeable to 32P were described by Freundlich's equation, and of non-exchangeable phosphate by Temkin's equation. Exchangeable phosphate was associated with aluminium in poorly-crystalline oxides and in organic complexes. Non-exchangeable phosphate was related to aluminium in organic complexes, and especially to the ratio of AI/C in them. In Nigerian soils similar mechanisms controlled sorption of phosphate but oxides and organic complexes of iron were important. The concentration of phosphate in solution when affinities of soil for exchangeable and non-exchangeable phosphate are equal, and the importance of organic matter, are discussed in relation to soil management and to responses of crops to fertilizer phosphate. The results indicate that sorption curves should not be split into sections.  相似文献   

6.
Phosphate sorption on topsoil and subsoil samples from different soils located in the eastern part of Germany was studied. Two models were fitted to sorption data obtained after 4 and 40 d of gentle shaking. The models differ with respect to the fractions of iron and aluminium (hydr)oxides that are considered and whether the phosphate initially sorbed in the soil is taken into zccount. Oxalate-extractable P, (Pox), appears to be a major part of the total soil P. The total P sorption measured, F, was predominantly related to the amounts of amorphous iron (Feox) and aluminium (Alox). A significant relation between crystalline iron (Fed– Feox) and total P sorption was not found. Reversibly adsorbed phosphate (Pi), measured after 40 d reaction time, was a function of clay content and content of amorphous iron and aluminium (hydr)oxides.  相似文献   

7.
Low‐molecular‐weight (LMW) organic acids exist widely in soils, especially in the rhizosphere, and the adsorption of these acids may affect their reactions in soils. The adsorption behaviour of phthalic acid and salicylic acid by two variable charge soils (a Rhodic Ferralsol and a Haplic Acrisol) was investigated. Both soils exhibited great adsorption capacity for these organic acids, with a greater affinity for phthalic acid. The Rhodic Ferralsol adsorbed more organic acids of both kinds than the Haplic Acrisol, which was consistent with the content of iron and aluminum oxides in the two soils. The iron oxides in these soils played a significant role in adsorption of the organic acids, whilst the soil aluminosilicate minerals, such as kaolinite, showed a small adsorption capacity. The presence of phosphate and sulphate caused a decrease in the adsorption of both organic acids because of their competition with them for sorption sites. The phosphate showed a bigger inhibition on the adsorption than sulphate as a result of a greater amount of phosphate adsorbed by the soils. The adsorption of both organic acids was affected by pH only slightly at pH < 4.5. However, the adsorption decreased with the increase in pH at pH > 4.5. A similar trend was observed for the phosphate system, but the opposite was seen for the sulphate system. This suggests that the inhibition of sulphate on the adsorption of the organic acids decreased with the increase in pH, because the adsorption of sulphate decreased strongly with increasing pH.  相似文献   

8.
The various iron fractions were quantified by selective dissolution (Fed, Feo, Fet) in four Red Mediterranean soils, developed on metarhyolite and metadolerite. They were similar in all profiles. A strong trend of iron removal from the surface horizon and of its subsequent illuvial translocation to the argillic horizons was observed. In all profiles, Feo was not related to the organic matter content indicating the Mediterranean xeric soil environment. The Feo/Fed ratio and the percentage of crystalline iron oxides (Fed-Feo) suggested that the pedoenvironment in which the profiles P1, P2 were formed, allowed the high crystallization of iron oxides. As indicated by the Fed/Fet values, the weathering process was more intense in the metarhyolite-developed soils. In contrast, the metadolerite-developed soils present conditions of poorly crystallized iron oxides and a lower degree of development.  相似文献   

9.
Influence of soil reaction, redox conditions and organic matter on the phosphate content of soil solutions Samples of seven agriculturally used soils of different composition (Ap-horizons), one marine underwater soil and two garbage composts were adjusted in suspensions (soil-water-ratio 1:3) to different pH values between 3 and 8 by additions of NaOH or HCl. By a different degree of aeration the redox potential was kept constant at selected values between +600 and ?300 mV. After an incubation period of 22–24 days under controlled Eh-pH-conditions the content of total phosphate and orthophosphate was measured in the equilibrium solutions. At oxidizing conditions all soil and compost samples show the lowest phosphate content in solution at pH S6. At higher and lower pH values the phosphate content increases. The results indicate that the phosphate concentration is determined by adsorption/desorption processes – mainly connected with iron oxides – and not by dissolution or precipitation of definite phosphorus compounds. Under reducing conditions the phosphate content increases in the equilibrium solutions of all samples. Especially in samples with high content of sulphides a considerable increase of the phosphate concentration could be measured at Eh values below +300 mV at pH 5, +200 mV at pH 6, and ± 0 mV at pH7 and 8. Below these values phosphate containing iron(II1) oxides were reduced and – with further decreasing redox potentials – transformed to iron sulphides. In samples without sulphide formation the phosphate mobilization is much lower. With increasing amount of soluble organic matter the phosphate content of the solutions also increases because of phosphate desorption by organic anions or complexation of aluminium and iron from phosphate adsorbing compounds. But also the content of soluble organically bound phosphate increases and may amount to 70 % of the total phosphate content in solution.  相似文献   

10.
The influence of iron oxides on the surface area of soil   总被引:2,自引:0,他引:2  
Soils from Denmark and Tanzania have been extracted with ammonium acetate (controls), EDTA to dissolve amorphous iron oxides, and dithionite-EDTA (DE) to dissolve crystalline iron oxides. The surface areas of the extracted soils have been determined by applying the BET equation to nitrogen adsorption and by water adsorption at 19 percent relative humidity. High correlations (P < 0.001) were found (i) between EDTA-extractable iron (amorphous iron oxides) and the decrease in the surface area following EDTA extraction, and (ii) between the difference between DE-extractable iron and EDTA-extractable iron (crystalline iron oxides) and the further decrease in the surface area following DE extraction. The calculated specific surfaces of both the amorphous and the crystalline iron oxides varied from soil to soil but without any definite trend. The means of all the soils investigated may therefore serve as reasonable estimates of the specific surfaces of amorphous and crystalline iron oxides in soil.  相似文献   

11.
Abstract

The importance of various soil components on copper (Cu) retention by Spodosois was investigated. Copper sorption and extraction were conducted on samples from the B horizon from six Danish Spodosois. The investigation was conducted on untreated samples, on hydrogen peroxide‐treated samples (to remove organic matter), on oxalate‐treated samples [to remove amorphous to poorly crystalline aluminum (Al) and iron (Fe) oxides], on hydroxylamine‐treated samples [to remove manganese (Mn) oxides]. Subfractions treated with hydrogen peroxide (H2O2) were further treated with oxalate and citrate‐bicarbonate‐dithionite (CBD). Sorption of Cu from an initial 10‐6 M solution after 48 hours was determined in the pH range 3 to 7 using 0.1M sodium nitrate (NaNO3) as the background electrolyte. The pH‐dependent sorption curve (sorption edge) was shifted to a higher pH with decreasing Al oxide content in the soils, and for the treated sample after removal of organic matter and Al and Fe oxides. A negligible effect was seen after removal of the Mn oxides because of their low abundance. Extraction of sorbed Cu at pH 4 to 6 with 0.1M nitric acid (HNO3) for 24 hours confirmed the sorption results, in inasmuch as removal of the Al (and Fe) oxides increased Cu extractability. Therefore, it was concluded that in the soils investigated, Cu retention is mainly determined by the oxalate‐extractable Al fraction with a minor contribution due to crystalline Fe oxides.  相似文献   

12.
The influence of selective removal of organically bonded metals and organic matter on soil microstructure was investigated. Two samples of soils with different mineralogical, chemical and mechanical composition were treated with acetylacetone in both polar and non-polar solvents to dissolve amorphous organic iron and aluminium, and with hydrogen peroxide to destroy organic matter. Transmission electron micrographs of ultrathin sections and scanning electron micrographs of <5?μm fractions of the extracted soils showed distinct changes of microstructure of clays after successive removal of cementing agents. Although untreated soils showed flocculent or honeycomb structure, soils with organic matter and organically bonded metals removed showed turbostratic domain structure with stepped clusters. The changes in microstructure of soils following extraction were confirmed by determination of pore-size distribution and total cumulative volume of pores using the mercury porosimetry method. In addition, the surface area of the extracted soils was determined by water adsorption. The results showed that organically bonded iron and aluminium and organic matter distinctly influence the fabric of microstructure as flocculating agents.  相似文献   

13.
Abstract

The influence of soil organic matter on selenite sorption was investigated in the selenite adsorption capacity and the surface particle charge change by ligand exchange reaction using the hydrogen peroxide (H2O2) treatment and the ignition treatment of two Andosols. The removal of organic carbon (C) in soils accelerated selenite sorption, implying that organic matter of soils had negative influence on the selenite adsorption on the soils. Positive charge decrease on soil particles, concomitant proton consumption, and release of silicon (Si), sulfate (SO4 2‐), and organic C were observed in selenite sorption by the soils. The development of surface particle negative charge with selenite sorption was smaller in the H2O2‐treated soil than in the original soils and was scarcely observed in the ignition‐treated soil. It can be assumed that the increase of negative charge by selenite sorption was attributed to new negative sites borne by released insoluble organic matter and negative charge development directly by selenite sorption was small.  相似文献   

14.
Various properties capable of neutralizing environmental pollution (aggregate stability, buffer capacity and ion adsorption capacity) were determined in spoil from a lignite mine in Galicia (northwest Spain) and in mine soils of four and seven years age developed from this spoil. Buffer capacity and the adsorption of copper, cadmium and phosphate increased markedly with soil age, whereas the dispersion ratios of both macro- and micro-aggregates decreased sharply. These changes are attributed to the known increase in organic matter and extractable iron and aluminium. These components aid interparticle binding and create both exchange sites and specific adsorption sites. The ultimate causes are thought to be the successful establishment of an active field plant cover, the considerable colloid content of the parent material, the management of the mine soils and the climatic conditions of the area, which favour both the accumulation of soil organic matter and the weathering of the parent material.  相似文献   

15.
The relationship and mechanisms among weathering processes, cation fluxes, clay mineralogy, organic matter composition and stability were studied in soils developing on basaltic material in southern Italy (Sicily). The soils were transitions between Phaeozems and Vertisols. Intense losses of the elements Na, Ca and Mg were measured indicating that weathering has occurred over a long period of time. The main weathering processes followed the sequence: amphibole, mica, volcanic glass or if ash was the primary source → smectite → interstratified smectite–kaolinite → kaolinite. Kaolinite formation was strongly related to high Al, Mg and Na losses. The good correlation between oxyhydroxides and kaolinite in the soils suggests that (macro)aggregates have formed due to physical or electrostatic interactions between the 1:1 clay minerals and oxides. The stability of organic matter was investigated with a H2O2-treatment that assumes that chemical oxidation mimics the natural oxidative processes. The ratio of C after the H2O2 treatment to the total organic C ranged from 1–28%. No correlation between clay content and organic matter (labile or stable fraction) was found. The refractory organic fraction was enriched in aliphatic compounds and did not greatly interact with the kaolinite, smectite or poorly crystalline Fe or Al phases. A part of this fraction (most probably proteins) was bound to crystalline Fe-oxides. In contrast, the oxidisable fraction showed a strong relationship with poorly crystalline oxyhydroxides and kaolinite. Surprisingly, smectite did not contribute to the stabilisation of any of the organic C fractions. The stabilisation of organic matter in the soils has, therefore, two main mechanisms: 1) the protection of labile (oxidisable with H2O2) organic matter, including also aromatic-rich compounds such as charcoal, by the formation of aggregates with oxyhydroxides and kaolinite and 2) the formation of a refractory fraction enriched in aliphatic compounds.  相似文献   

16.
Abstract

To evaluate contributions of organic matter, oxides, and clay fraction to copper (Cu) adsorption in six characterized soils, adsorption isotherms and distribution coefficients were obtained by a batch experimental method. Copper adsorption isotherms from untreated soil, organic matter removed from samples, and organic‐matter‐ and oxide‐removed samples were compared with curve patterns and correlated to Langmuir and Freundlich models. Copper sorption data on untreated soils described L or H‐curves, whereas in soils deprived of any component, their curves were S‐type. Distribution coefficients allowed knowing Cu adsorption capacity of untreated soil and of organic matter, oxides, and clay fraction. Soil organic matter is the main component that affects Cu adsorption as long as soil pH is near neutrality. At acid pH, oxides are the main component that affects Cu adsorption, although to a much smaller extent than organic matter near neutral conditions. Soil pH is the main soil factor that determines Cu adsorption.  相似文献   

17.
Abstract

The capacity of 36 Western Australian soils to adsorb phosphorus (P) was measured by three different methods: P retention index (PRI), P buffering capacity (PBC), and P adsorption (PA). The P adsorption values measured by all three methods varied markedly with soil type. When the P adsorption values were correlated with several soil properties, using simple and multiple linear regressions, PRI, PBC, or PA values were found to be significantly correlated with the aluminium oxide content of the soils. In addition, PBC and PRI was correlated with organic carbon content. The role of aluminium oxide (Al2O3) in the soil was apparently more important in determining the P adsorption capacity of the soils than that of iron (Fe), even though the iron oxide (Fe2O3)content of all the soils studied was consistently higher than the aluminium oxide content. The relationship between P adsorption and the selected soil properties, as determined by multiple linear regression, explained 45–59% of the variation: arabic PRI = ‐10.87 + 9.94 organic C (%) + 160.02 Al2O3 (%), r2 = 0.45.

arabic PBC = ‐0.004 + 1.532 organic C (%) + 22.26 Al2O3 (%), r2 = 0.57.

arabic PA = 3.52 + 248.75 Al2O3 (%), r2 = 0.59.

  相似文献   

18.
邻苯二甲酸和水杨酸在可变电荷土壤中的吸附行为   总被引:3,自引:1,他引:3  
肖双成  徐仁扣 《土壤学报》2005,42(6):1006-1011
研究了2种低分子量有机酸邻苯二甲酸和水杨酸在2种代表性可变电荷土壤红壤和砖红壤中的吸附行为。结果表明,可变电荷土壤对有机酸的吸附容量较大,对邻苯二甲酸的吸附亲和力大于对水杨酸的亲和力,在砖红壤中2种有机酸的吸附量大于在红壤中的,这与土壤的游离铁、铝氧化物的含量一致。土壤氧化铁在有机酸吸附中起着重要作用,粘土矿物如高岭石对有机酸的吸附量很小。有机酸的吸附涉及专性吸附和静电吸附2种机制,并以前者为主。当pH小于4.5时,pH的改变对有机酸的吸附影响不大;当pH大于4.5时,有机酸的吸附量随pH的增加而减小。  相似文献   

19.

Purpose

The phosphate adsorption on natural adsorbents is of particular importance in regulating the transport and bioavailability of phosphates in environmental system. In soils, oxides are often associated with organic matter and form mineral-organic complexes. The aim of the present paper was to investigate the mechanisms of phosphate adsorption on these complexes.

Materials and methods

Phosphate adsorption on uncoated and humic acid (HA)-coated iron oxide complexes was investigated at different ionic strengths and pH by isotherm experiments and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy.

Results and discussion

Results showed that HA-coated iron oxide complexes caused a decrease in the specific surface area (SSA) and the isoelectric point (IEP) of oxides. Phosphate adsorption on iron oxides was insensitive to changes of ionic strength, while it increased on the complexes with increasing ionic strength. The presence of HA decreased the maximum adsorption and the affinity of phosphate on the complexes. The zeta potential of phosphate-bound iron oxides linearly reduced with the increment of phosphate surface coverage, while the zeta potential of complexes with adsorbed phosphate kept at the same level. ATR-FTIR analysis suggested the formation of phosphate-metal complexation. The presence of HA promotes the formation of the monodentate phosphate complexes at pH 4.5 and significantly influenced phosphate species at pH 8.5.

Conclusions

The amount of phosphate adsorbed was reduced, and the phosphate speciation was also influenced when phosphate was adsorbed on HA-coated iron oxide complexes compared with phosphate adsorption on pure goethite and hematite.
  相似文献   

20.
Abstract

Information on the redistribution of applied micronutrients into different fractions as a result of lime application is important to predict plant accumulation of nutrients and to select appropriate chemical extraction procedures for evaluation of micronutrient availability. The present work was carried out to study the influence of liming on the availability and redistribution of zinc (Zn) and copper (Cu) among soil fractions. Additionally, the effect of liming was evaluated on the recovery of these micronutrients by different chemical extractants (Mehlich‐1, Mehlich‐3, and diethylenetriaminepentaacetate (DTPA), which were correlated with Zn and Cu concentrations in corn (Zea mays L.) plants and soil fractions (exchangeable, organic matter, amorphous iron oxides, and crystalline iron oxides). The results showed that Zn added to soil samples that did not receive lime was retained mainly in the exchangeable and organic matter fractions. The liming resulted in distribution of Zn into iron oxides and as a result decreased the plant accumulation of Zn. Mehlich‐3 was the most efficient extractant to predict the plant accumulation of Zn in the acid soils, whereas DTPA was the most efficient in the limed soils. The oxide crystalline fraction was the major fraction responsible for retaining Cu in the soils. However, Cu added to soil was distributed mainly into organic matter. Mehlich‐3 was the most suitable extractant for predicting the bioavailability of Cu in limed or unlimed soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号