首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties distinct from those of conventional insulators, can be realized in mercury telluride-cadmium telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the electronic state changes from a normal to an "inverted" type at a critical thickness d(c). We show that this transition is a topological quantum phase transition between a conventional insulating phase and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss methods for experimental detection of the QSH effect.  相似文献   

2.
The single-particle energy spectra of graphene and its bilayer counterpart exhibit multiple degeneracies that arise through inherent symmetries. Interactions among charge carriers should spontaneously break these symmetries and lead to ordered states that exhibit energy gaps. In the quantum Hall regime, these states are predicted to be ferromagnetic in nature, whereby the system becomes spin polarized, layer polarized, or both. The parabolic dispersion of bilayer graphene makes it susceptible to interaction-induced symmetry breaking even at zero magnetic field. We investigated the underlying order of the various broken-symmetry states in bilayer graphene suspended between top and bottom gate electrodes. We deduced the order parameter of the various quantum Hall ferromagnetic states by controllably breaking the spin and sublattice symmetries. At small carrier density, we identified three distinct broken-symmetry states, one of which is consistent with either spontaneously broken time-reversal symmetry or spontaneously broken rotational symmetry.  相似文献   

3.
Recent experimental work on locally gated graphene layers resulting in p-n junctions has revealed the quantum Hall effect in their transport behavior. We explain the observed conductance quantization, which is fractional in the bipolar regime and an integer in the unipolar regime, in terms of quantum Hall edge modes propagating along and across the p-n interface. In the bipolar regime, the electron and hole modes can mix at the p-n boundary, leading to current partition and quantized shot-noise plateaus similar to those of conductance, whereas in the unipolar regime transport is noiseless. These quantum Hall phenomena reflect the massless Dirac character of charge carriers in graphene, with particle/hole interplay manifest in mode mixing and noise in the bipolar regime.  相似文献   

4.
Quantum Hall effect in a gate-controlled p-n junction of graphene   总被引:1,自引:0,他引:1  
The unique band structure of graphene allows reconfigurable electric-field control of carrier type and density, making graphene an ideal candidate for bipolar nanoelectronics. We report the realization of a single-layer graphene p-n junction in which carrier type and density in two adjacent regions are locally controlled by electrostatic gating. Transport measurements in the quantum Hall regime reveal new plateaus of two-terminal conductance across the junction at 1 and 32 times the quantum of conductance, e(2)/h, consistent with recent theory. Beyond enabling investigations in condensed-matter physics, the demonstrated local-gating technique sets the foundation for a future graphene-based bipolar technology.  相似文献   

5.
Goldman VJ  Su B 《Science (New York, N.Y.)》1995,267(5200):1010-1012
In experiments on resonant tunneling through a "quantum antidot" (a potential hill) in the quantum Hall (QH) regime, periodic conductance peaks were observed as a function of both magnetic field and back gate voltage. A combination of the two periods constitutes a measurement of the charge of the tunneling particles and implies that charge deficiency on the antidot is quantized in units of the charge of quasi-particles of the surrounding QH condensate. The experimentally determined value of the electron charge e is 1.57 x 10(-19) coulomb = (0.98 +/- 0.03) e for the states v = 1 and v = 2 of the integer QH effect, and the quasi-particle charge is 5.20 x 10(-20) coulomb = (0.325 +/- 0.01)e for the state v = (1/3) of the fractional QH effect.  相似文献   

6.
We present data from an induced gallium arsenide (GaAs) quantum wire that exhibits an additional conductance plateau at 0.5(2e2/h), where e is the charge of an electron and h is Planck's constant, in zero magnetic field. The plateau was most pronounced when the potential landscape was tuned to be symmetric by using low-temperature scanning-probe techniques. Source-drain energy spectroscopy and temperature response support the hypothesis that the origin of the plateau is the spontaneous spin-polarization of the transport electrons: a ferromagnetic phase. Such devices may have applications in the field of spintronics to either generate or detect a spin-polarized current without the complications associated with external magnetic fields or magnetic materials.  相似文献   

7.
The oxide superconductors, particularly those recently discovered that are based on La(2)CuO(4), have a set of peculiarities that suggest a common, unique mechanism: they tend in every case to occur near a metal-insulator transition into an odd-electron insulator with peculiar magnetic properties. This insulating phase is proposed to be the long-sought "resonating-valence-bond" state or "quantum spin liquid" hypothesized in 1973. This insulating magnetic phase is favored by low spin, low dimensionality, and magnetic frustration. The preexisting magnetic singlet pairs of the insulating state become charged superconducting pairs when the insulator is doped sufficiently strongly. The mechanism for superconductivity is hence predominantly electronic and magnetic, although weak phonon interactions may favor the state. Many unusual properties are predicted, especially of the insulating state.  相似文献   

8.
Inelastic light scattering by low-energy spin-excitations reveals three distinct configurations of spin of electron double layers in gallium arsenide quantum wells at even-integer quantum Hall states. The transformations among these spin states appear as quantum phase transitions driven by the interplay between Coulomb interactions and Zeeman splittings. One of the transformations correlates with the emergence of a spin-flip intersubband excitation at vanishingly low energy and provides direct evidence of a link between quantum phase transitions and soft collective excitations in a two-dimensional electron system.  相似文献   

9.
Carbon nanotube quantum resistors   总被引:1,自引:0,他引:1  
The conductance of multiwalled carbon nanotubes (MWNTs) was found to be quantized. The experimental method involved measuring the conductance of nanotubes by replacing the tip of a scanning probe microscope with a nanotube fiber, which could be lowered into a liquid metal to establish a gentle electrical contact with a nanotube at the tip of the fiber. The conductance of arc-produced MWNTs is one unit of the conductance quantum G0 = 2e2/h = (12.9 kilohms)-1. The nanotubes conduct current ballistically and do not dissipate heat. The nanotubes, which are typically 15 nanometers wide and 4 micrometers long, are several orders of magnitude greater in size and stability than other typical room-temperature quantum conductors. Extremely high stable current densities, J > 10(7) amperes per square centimeter, have been attained.  相似文献   

10.
Experiments on a nearly spin degenerate two-dimensional electron system reveals unusual hysteretic and relaxational transport in the fractional quantum Hall effect regime. The transition between the spin-polarized (with fill fraction nu = 1/3) and spin-unpolarized (nu = 2/5) states is accompanied by a complicated series of hysteresis loops reminiscent of a classical ferromagnet. In correlation with the hysteresis, magnetoresistance can either grow or decay logarithmically in time with remarkable persistence and does not saturate. In contrast to the established models of relaxation, the relaxation rate exhibits an anomalous divergence as temperature is reduced. These results indicate the presence of novel two-dimensional ferromagnetism with a complicated magnetic domain dynamic.  相似文献   

11.
Mesoscopic quantum phase coherence is important because it improves the prospects for handling quantum degrees of freedom in technology. Here we show that the development of such coherence can be monitored using magnetic neutron scattering from a one-dimensional spin chain of an oxide of nickel (Y2BaNiO5), a quantum spin fluid in which no classical static magnetic order is present. In the cleanest samples, the quantum coherence length is 20 nanometers, which is almost an order of magnitude larger than the classical antiferromagnetic correlation length of 3 nanometers. We also demonstrate that the coherence length can be modified by static and thermally activated defects in a quantitatively predictable manner.  相似文献   

12.
In several metals, including URhGe, superconductivity has recently been observed to appear and coexist with ferromagnetism at temperatures well below that at which the ferromagnetic state forms. However, the material characteristics leading to such a state of coexistence have not yet been fully elucidated. We report that in URhGe there is a magnetic transition where the direction of the spin axis changes when a magnetic field of 12 tesla is applied parallel to the crystal b axis. We also report that a second pocket of superconductivity occurs at low temperature for a range of fields enveloping this magnetic transition, well above the field of 2 tesla at which superconductivity is first destroyed. Our findings strongly suggest that excitations in which the spins rotate stimulate superconductivity in the neighborhood of a quantum phase transition under high magnetic field.  相似文献   

13.
An electron hopping on non-coplanar spin sites with spin chirality obtains a complex phase factor (Berry phase) in its quantum mechanical amplitude that acts as an internal magnetic field, and is predicted to manifest itself in the Hall effect when it is not cancelled. The present combined work of transport measurement, neutron scattering, and theoretical calculation provides evidence that the gigantic anomalous Hall effect observed in Nd2Mo2O7, a pyrochlore ferromagnet with geometrically frustrated lattice structure, is mostly due to the spin chirality and the associated Berry phase originating from the Mo spin tilting.  相似文献   

14.
We demonstrate a quantum coherent electron spin filter by directly measuring the spin polarization of emitted current. The spin filter consists of an open quantum dot in an in-plane magnetic field; the in-plane field gives the two spin directions different Fermi wavelengths resulting in spin-dependent quantum interference of transport through the device. The gate voltage is used to select the preferentially transmitted spin, thus setting the polarity of the filter. This provides a fully electrical method for the creation and detection of spin-polarized currents. Polarizations of emitted current as high as 70% for both spin directions (either aligned or anti-aligned with the external field) are observed.  相似文献   

15.
We observe a strong Kondo effect in a semiconductor quantum dot when a small magnetic field is applied. The Coulomb blockade for electron tunneling is overcome completely by the Kondo effect, and the conductance reaches the unitary limit value. We compare the experimental Kondo temperature with the theoretical predictions for the spin- 12 Anderson impurity model. Excellent agreement is found throughout the Kondo regime. Phase coherence is preserved when a Kondo quantum dot is included in one of the arms of an Aharonov-Bohm ring structure, and the phase behavior differs from previous results on a non-Kondo dot.  相似文献   

16.
The field of semiconductor spintronics explores spin-related quantum relativistic phenomena in solid-state systems. Spin transistors and spin Hall effects have been two separate leading directions of research in this field. We have combined the two directions by realizing an all-semiconductor spin Hall effect transistor. The device uses diffusive transport and operates without electrical current in the active part of the transistor. We demonstrate a spin AND logic function in a semiconductor channel with two gates. Our study shows the utility of the spin Hall effect in a microelectronic device geometry, realizes the spin transistor with electrical detection directly along the gated semiconductor channel, and provides an experimental tool for exploring spin Hall and spin precession phenomena in an electrically tunable semiconductor layer.  相似文献   

17.
We report a manifestation of first-order magnetic transitions in two-dimensional electron systems. This phenomenon occurs in aluminum arsenide quantum wells with sufficiently low carrier densities and appears as a set of hysteretic spikes in the resistance of a sample placed in crossed parallel and perpendicular magnetic fields, each spike occurring at the transition between states with different partial magnetizations. Our experiments thus indicate that the presence of magnetic domains at the transition starkly increases dissipation, an effect also suspected in other ferromagnetic materials. Analysis of the positions of the transition spikes allows us to deduce the change in exchange-correlation energy across the magnetic transition, which in turn will help improve our understanding of metallic ferromagnetism.  相似文献   

18.
Magnetic bistability, as manifested in the magnetization of ferromagnetic materials or spin crossover in transition metal complexes, has essentially been restricted to either bulk materials or to very low temperatures. We now present a molecular spin switch that is bistable at room temperature in homogeneous solution. Irradiation of a carefully designed nickel complex with blue-green light (500 nanometers) induces coordination of a tethered pyridine ligand and concomitant electronic rearrangement from a diamagnetic to a paramagnetic state in up to 75% of the ensemble. The process is fully reversible on irradiation with violet-blue light (435 nanometers). No fatigue or degradation is observed after several thousand cycles at room temperature under air. Preliminary data show promise for applications in magnetic resonance imaging.  相似文献   

19.
Graphene provides a rich platform to study many-body effects, owing to its massless chiral charge carriers and the fourfold degeneracy arising from their spin and valley degrees of freedom. We use a scanning single-electron transistor to measure the local electronic compressibility of suspended graphene, and we observed an unusual pattern of incompressible fractional quantum Hall states that follows the standard composite fermion sequence between filling factors ν = 0 and 1 but involves only even-numerator fractions between ν = 1 and 2. We further investigated this surprising hierarchy by extracting the corresponding energy gaps as a function of the magnetic field. The sequence and relative strengths of the fractional quantum Hall states provide insight into the interplay between electronic correlations and the inherent symmetries of graphene.  相似文献   

20.
Optically pumped nuclear magnetic resonance (OPNMR) measurements were performed in two different electron-doped multiple quantum well samples near the fractional quantum Hall effect ground state nu = 13. Below 0.5 kelvin, the spectra provide evidence that spin-reversed charged excitations of the nu = 13 ground state are localized over the NMR time scale of about 40 microseconds. Furthermore, by varying NMR pulse parameters, the electron spin temperature (as measured by the Knight shift) could be driven above the lattice temperature, which shows that the value of the electron spin-lattice relaxation time tau1s is between 100 microseconds and 500 milliseconds at nu = 13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号