首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using three varieties of Brassica rapa, cv. Hauarad (accession 708), cv. Maoshan-3 (714) and cv. Youbai (715), as the maternal plants and one variety of B. oleracea cv. Jingfeng-1 (6012) as the paternal plant, crosses were made to produce interspecific hybrids through ovary culture techniques. A better response of seed formation was observed when ovaries were cultured in vitro at 9–12 days after pollination on the basal MS and B5 media supplemented with 6-benzylaminopurine (BA) and naphthylacetic acid (NAA). The best response was observed for cross 714×6012 with the rate of seeds per ovary reaching 43.0%. Seeds for cross 715×6012 showed the best germination response (66.7%) on the regeneration medium (MS+1.0 mg l–1 BA+0.05 mg l–1 NAA). In all three cross combinations, good response in terms of root number and length of plants was observed on the root induction medium (MS+1.0 mg l–1 BA+0.1 mg l–1 NAA). A better response was observed for the regenerated plants cultured for 14 days than for 7 days. The ovary-derived plants with well-developed root system were hardened for 8 days and their survival rate reached over 80%. Cytological studies showed that the chromosome number of all plants tested was 19 (the sum of both parents), indicating that these regenerated plants were all true hybrids of B. rapa (n = 10) × B. oleracea (n = 9). The regenerated plants were doubled with colchicine treatment, and the best response in the crosses 708×6012, 714×6012 and 715×6012 was observed when treated with 170 mg l–1 colchicine for up to 30 h and their doubling frequency reached 52, 56 and 62%, respectively.  相似文献   

2.
Stem rot caused by Sclerotinia sclerotiorum is one of the most devastating diseases of rapeseed (Brassica napus L.) which causes huge loss in rapeseed production. Genetic sources with high level of resistance has not been found in rapeseed. In this study, 68 accessions in six Brassica species, including 47 accessions of B. oleracea, were evaluated for leaf and stem resistance to S. sclerotiorum. Large variation of resistance was found in Brassica, with maximum differences of 5- and 57-folds in leaf and stem resistance respectively. B. oleracea, especially its wild types such as B. rupestris, B. incana, B. insularis, and B. villosa showed high level of resistance. Our data suggest that wild types of B. oleracea possess tremendous potential for improving S. sclerotiorum resistance of rapeseed.  相似文献   

3.
Self-incompatibility (SI) is a widespread mechanism in flowering plants that promotes outbreeding and thereby increases genetic diversity. Recognition specificity in Brassica is achieved by the interaction of the female determinant S-receptor kinase (SRK) and its ligand, the male determinant S-locus protein 11 (SP11). The interaction between SP11 and SRK triggers the signaling cascade in an S-haplotype-specific manner and results in the rejection of self-pollen, but the signal components involved are still not well characterized. S haplotypes are widespread in self-compatible amphidiploid B. napus, and the interaction of heterozygous S haplotypes causes the loss of SI. This review highlights the recent advances made towards understanding the genetic analysis, distribution, and evolution of S haplotypes, the signal factors, and the potential of SI in B. napus hybrid breeding program.  相似文献   

4.
A self-incompatible (SI) line, S-1300, and its maintainer 97-wen135, a self-compatible (SC) line, were used to study the inheritance of maintenance for self-incompatibility in B. napus. The ratio of SI plants to SC plants from S-1300 × 97-wen135 F2 and (S-1300 × 97-wen135) × 97-wen135 was 346:260 and 249:232, fitting the expected ratio of 9:7 and 1:1, respectively. Based on these observations, here we propose a genetic model in which two independent loci, S locus and S suppressor locus (sp), are predicted to control the inheritance of maintenance for self-incompatibility in B. napus. The genotypes of S-1300 and 97-wen135 are S 1300 S 1300 sp 1300 sp 1300 and S 135 S 135 sp 135 sp 135 , respectively. S 135 is dominant to S 1300 , but coexistence of sp 1300 and sp 135 fails to suppress S locus. Both S 1300 and S 135 can be suppressed by sp 135 , while sp 1300 can suppress S 135 but not S 1300 . The model contains two characteristics: that a dominant S locus exists in self-compatible B. napus, and that co-suppression will occur when sp loci are heterozygous. The model has been validated by the segregation of S phenotypes in the (S-1300 × 97-wen135) × S-1300, the progenies of SC S-1300 × 97-wen135 F2 plants and DH population developed from S-1300 × 97-wen135 F1. This is the first study to report co-suppression of S suppressor loci in B. napus. The genetic model will be very useful for developing molecular markers linked to maintenance for self-incompatibility and for dissecting the mechanism of SI/SC in B. napus.  相似文献   

5.
The oilseed Brassica rapa flowers and matures earlier than B. oleracea, as well as their amphidiploid B. napus. Therefore, earliness of B. rapa has been investigated as a source of variation for earliness in B. napus breeding programs. Variation for days to flower exists in B. oleracea; however, its earliest flowering variant B. alboglabra flowers 2–3 weeks later than B. napus. We hypothesized that the C genome of B. alboglabra carries alleles for early flowering which are different from the C-genome alleles of B. napus; and these alleles can be used for the improvement of B. napus. To test this, we examined flowering time in pedigree and DH populations from two B. napus × B. alboglabra crosses. A B. napus line with about a week earlier flowering than the B. napus parent was achieved through reconstitution of its C genome following pedigree selection. Introgression of the B. alboglabra allele in the early flowering pedigree lines is also evident from the presence of B. alboglabra-specific SSR alleles in this line. However, application of doubled haploidy failed to generate any line that flowered earlier than the B. napus parent, which is probably due to the difficulty of obtaining large numbers of euploid B. napus DH lines from this interspecific cross. Thus, we demonstrate that a trait of the diploid species, which apparently looks undesirable, might in fact be highly valuable for the improvement of amphidiploids; and knowledge from this research can also be applied for other traits.  相似文献   

6.
The results are presented of two single seed descent (SSD) breeding programmes for swedes (Brassica napus L. var. napobrassica Peterm). The first programme produced cultivar Virtue and was done as part of a research programme on heterosis. It involved the production and trialling in 1991 of 95 F6 families from a single cross made in 1985 between lines derived from cultivars Criffel and Marian. Six F6 families were mass multiplied in polythene tunnels in 1992, using blowflies as pollinators, and trialled in 1993 and 1994 before Virtue was entered into National List (NL) trials in 1995. The second programme was done as a commercially funded breeding programme and involved the production and trialling in 1999 of 1,037 F6 families from 15 crosses made in 1993. Fifty F6 families were advanced to F7 in a glasshouse in 2000 and assessed in 2001. Six F7 families were mass multiplied in polythene tunnels in 2002 and trialled in 2003. Two cultivars, Gowrie and Lomond, from the cross between Airlie and Invitation, were produced from the programme and entered NL trials in 2004. The SSD was traditional in the sense that each advanced family was descended from a different F2 plant without selection and a glasshouse was used for the selfing generations. However, it differed from the schemes that have been operated for soybean and spring cereals in that it was not possible to grow two or three generations a year because of the vernalization requirements of swedes, and it was not possible to grow a large number of plants at really high density because the inflorescences needed to be covered with Glassine bags to prevent cross pollination. In yield trials over 4 years, Gowrie had the highest dry-matter yield (12.59 t/ha) of the three new cultivars, out yielded Magres (11.28 t/ha) and other shopping swedes, but was not as high yielding as cultivar Kenmore (13.44 t/ha) which had been produced by pedigree inbreeding with selection. A modified SSD breeding scheme is recommended in which family selection is practised at F3.  相似文献   

7.
The germplasm with exotic genomic components especially from Sea Island cotton (Gossypium barbadense L. Gb) is the dominant genetic resources to enhance fiber quality of upland cotton (G. hirsutum L., Gh). Due to low efficiency of phenotypic evaluation and selection on fiber quality, genetic dissection of favorable alleles using molecular markers is essential. Genetic dissection on putative Gb introgressions related to fiber traits were conducted by SSR markers with mapping populations derived from a cross between Luyuan343 (LY343), a superior fiber quality introgression line (IL) with genomic components from Gb, and an elite Upland cotton cv. Lumianyan#22 (LMY22). Among 82 polymorphic loci screened out from 4050 SSRs, 42 were identified as putative introgression alleles. A total of 29 fiber-related QTLs (23 for fiber quality and six for lint percentage) were detected and most of which clustered on the putative Gb introgression chromosomal segments of Chr.2, Chr.16, Chr.23 and Chr.25. As expected, a majority of favorable alleles of fiber quality QTLs (12/17, not considering the QTLs for fiber fineness) came from the IL parent and most of which (11/12) were conferred by the introgression genomic components while three of the six (3/6) favorable alleles for lint percentage came from the Gh parent. Validation of these QTLs using an F8 breeding population from the same cross made previously indicated that 13 out of 29 QTLs showed considerable stability. The results suggest that fiber quality improvement using the introgression components could be facilitated by marker-assisted selection in cotton breeding program.  相似文献   

8.
Forsythia suspensa and F.Courtaneur’ were used as female parents to cross with Abeliophyllum distichum in 2011 and an intergeneric hybrid of F. suspensa × A. distichum was obtained, though with very low seed set. The morphological characteristics, flower fragrance and volatile organic compounds of flowers were analysed. The intergeneric hybrid had intermediate morphological characteristics of both parents and flower fragrance and was confirmed as a true intergeneric hybrid by amplified fragment length polymorphism (AFLP) markers. Compared with its mother parent (F. suspensa), flowers of the intergeneric hybrid are pale yellow with delicate fragrance. Volatile organic compounds of flowers were retrieved by purge-and-trap techniques, and determined by gas chromatography and mass spectrometry (GC–MS). The main volatile organic components of F. suspensa were isoprenoids, while the main volatile organic components of A. distichum and the hybrid of F. suspensa × A. distichum were aliphatics. To determine the time and the site of intergeneric hybridizing barriers occured, the pollen tubes’ behavior after pollination was observed under fluorescence microscopy. It was found that significant pre-fertilization incompatibility existed in intergeneric crossing combinations [F. ‘Courtaneur’ (Pin) × A. distichum (Thrum) and F. suspensa (Pin) × A. distichum (Thrum)], and only a few pollen tubes of A. distichum penetrated into the ovaries of Forsythia. In our research, an intergeneric hybrid between Forsythia and Abeliophyllum was obtained for the first time, which will provide a solid foundation for expanding the flower color range of Forsythia and breeding fragrant-flowered cultivars.  相似文献   

9.
Sclerotinia stem rot (SR) is one of the most devastating diseases of canola/rapeseed. Quantitative trait loci (QTL) analyses were carried out to identify loci responsible for resistance to SR in three doubled haploid DH populations (H1, H2 and H3). Petiole inoculation technique PIT was used to evaluate the all populations for resistance to SR. Genetic maps were developed using sequence related amplified polymorphism SRAP and simple sequence repeat SSR markers. Genetic maps of the H1 and H2 populations were developed using 508 and 478 markers, respectively. Previously published genetic map of the H3 population was also used in this study. The QTL analysis was carried out for each replicate separately as well as on the average of all the replicates. The numbers of identified QTL in each analysis varied from four to six in the H1 population, three to six in the H2 population and two to six in the H3 population. A number of common QTL were identified between the replicates of each population. Two common QTL were identified on linkage group A7 and C6 between the H1 and H3 populations and one QTL on A9 between the H2 and H3 populations. We are the first to report, identification of common QTL between different populations of Brassica napus.  相似文献   

10.
The pol cytoplasmic male-sterility system has been widely used as a component for utilization of heterosis in Brassica napus and offers an attractive system for study on nuclear–mitochondrial interactions in plants. Genetic analyses have indicated that one dominant gene, Rfp, was required to achieve complete fertility restoration. As a first step toward cloning of this restorer gene, we attempted molecular mapping of the Rfp locus using the amplified fragment length polymorphism (AFLP) technique combined with bulked segregant analysis (BSA) method. A BC1 population segregating for Rfp gene was used for tagging. From the survey of 1,024 AFLP primer combinations, 13 linked AFLP markers were obtained and five of them were successfully converted into sequence characterized amplified region (SCAR) markers. A population of 193 plants was screened using these markers and the closest AFLP markers flanking Rfp were at the distances of 2.0 and 5.3 cM away, respectively. Further the AFLP or SCAR markers linked to the Rfp gene were integrated to one doubled-haploid (DH) population derived from the cross Quantum × No.2127-17 available in our laboratory, and Rfp gene was mapped on N18, which was the same as the previous report. These molecular markers will facilitate the marker-assisted selection (MAS) of pol CMS restorer lines.  相似文献   

11.
In the last decade, the cabbage seedpod weevil (Ceutorhynchus obstrictus (Marsham)) has become a major insect pest of canola (Brassica napus L.) in Canada reducing seed yields up to 35%. Therefore, the benefits of developing weevil resistant germplasm to canola breeders and the industry would reduce input costs, pesticide use, environmental degradation and increase yield. Yellow mustard (Sinapis alba L.) is resistant to C. obstrictus (CSPW), although the exact mechanism is not known (McCaffrey et al. 1999). A unique canola population was generated at the University of Guelph from a cross between B. napus and S. alba through embryo rescue and backcrossed to canola several times prior to double haploid (DH) production. Approximately one-half of this DH population had canola quality glucosinolate concentration (<16 μmol/g) and was used for further breeding. The hypothesis was that some DH progeny from this cross inherited resistance to CSPW from S. alba. Weevil infestation levels were assessed for the B. napus × S. alba BC2 and BC3 DH populations in the field over 7 years in Alberta where weevil pressure is strong to establish the resistant or susceptible status of these lines. The basic objectives for this study were to confirm field resistance in the B. napus × S. alba germplasm in Ontario and to identify any biochemical markers associated with resistance/susceptibility. Canola doubled haploid lines derived from BC2 or BC3 families were field screened for resistance (R) followed by chemical analysis of glucosinolates to detect biochemical polymorphisms correlated with CSPW resistance using High Performance Liquid Chromatography (HPLC). Two polymorphic peaks were found, one each, from extracts of upper cauline leaves and Stage 3 pod seed, with retention times of ~23 and 19 min, respectively. These HPLC peaks consistently correlated with larval infestation data and the peak differences between R and S DH lines were significant. Therefore, these two peaks can be considered as biochemical markers in this breeding germplasm and may play a role in rapid and early detection of CSPW resistance.  相似文献   

12.
The development of rapeseed cultivars (Brassica napus L.) with high oleic acid and low linolenic acid is highly desirable for food and industrial applications. In this study, the Korean rapeseed cultivar Tamla was used for ethyl methanesulfonate (EMS)-induced mutagenesis and seed oils were screened up to generation M7 for high oleate mutants. Two mutant populations (M7) with an average of approximately 76% oleic acid content were isolated. Yield components between two mutant populations and untreated Tamla plants were not substantially different, although the mutants in the vegetative stage were slightly smaller in size than Tamla. Genomic analyses of six fatty acid desaturase (four FAD2 and two FAD6) genes revealed that the elevated oleic acid content in the mutants is the result of single gene mutations. Changes in DNA sequence were observed in two genes out of six fatty acid desaturase (four FAD2 and two FAD6). FAD2-2 exhibited a 2-bp deletion in the upstream region of the gene in the two mutants, resulting in a severely truncated polypeptide (57 aa instead of 469 aa), while six point mutations in the other gene did not result in changes in the amino acid sequence. Based on these results, FAD2-2, an endoplasmic reticulum (ER) oleic acid desaturase, is affected in the mutants, resulting in a ~ 7% increase in oleic acid content in comparison to untreated Tamla plants. The induced mutants could be utilized for the development of high oleic oil rapeseed varieties and for regulatory studies of lipid metabolism in seed oils.  相似文献   

13.
Molecular markers have been successfully used in rice breeding however available markers based on Oryza sativa sequences are not efficient to monitor alien introgression from distant genomes of Oryza. We developed O. minuta (2n = 48, BBCC)-specific clones comprising of 105 clones (266–715 bp) from the initial library composed of 1,920 clones against O. sativa by representational difference analysis (RDA), a subtractive cloning method and validated through Southern blot hybridization. Chromosomal location of O. minuta-specific clones was identified by hybridization with the genomic DNA of eight monosomic alien additional lines (MAALs). The 37 clones were located either on chromosomes 6, 7, or 12. Different hybridization patterns between O. minuta-specific clones and wild species such as O. punctata, O. officinalis, O. rhizomatis, O. australiensis, and O. ridleyi were observed indicating conservation of the O. minuta fragments across Oryza spp. A highly repetitive clone, OmSC45 hybridized with O. minuta and O. australiensis (EE), and was found in 6,500 and 9,000 copies, respectively, suggesting an independent and exponential amplification of the fragment in both species during the evolution of Oryza. Hybridization of 105 O. minuta specific clones with BB- and CC-genome wild Oryza species resulted in the identification of 4 BB-genome-specific and 14 CC-genome-specific clones. OmSC45 was identified as a fragment of RIRE1, an LTR-retrotransposon. Furthermore this clone was introgressed from O. minuta into the advanced breeding lines of O. sativa.  相似文献   

14.
Pseudomonas syringae is the main pathogen responsible for bacterial blight disease in pea and can cause yield losses of 70%. P. syringae pv. pisi is prevalent in most countries but the importance of P. syringae pv. syringae (Psy) is increasing. Several sources of resistance to Psy have been identified but genetics of the resistance is unknown. In this study the inheritance of resistance to Psy was studied in the pea recombinant inbred line population P665 × ‘Messire’. Results suggest a polygenic control of the resistance and two quantitative trait loci (QTL) associated with resistance, Psy1 and Psy2, were identified. The QTL explained individually 22.2 and 8.6% of the phenotypic variation, respectively. In addition 21 SSR markers were included in the P665 × ‘Messire’ map, of which six had not been mapped on the pea genome in previous studies.  相似文献   

15.
Broadening the genetic base of the C genome of Brassica napus canola by use of B. oleracea is important. In this study, the prospect of developing B. napus canola lines from B. napus?×?B. oleracea var. alboglabra, botrytis, italica and capitata crosses and the effect of backcrossing the F1’s to B. napus were investigated. The efficiency of the production of the F1’s varied depending on the B. oleracea variant used in the cross. Fertility of the F1 plants was low—produced, on average, about 0.7 F2 seeds per self-pollination and similar number of BC1 seeds on backcrossing to B. napus. The F3 population showed greater fertility than the BC1F2; however, this difference diminished with the advancement of generation. The advanced generation populations, whether derived from F2 or BC1, showed similar fertility and produced similar size silique with similar number of seeds per silique. Progeny of all F1’s and BC1’s stabilized into B. napus, although B. oleracea plant was expected, especially in the progeny of F1 (ACC) owing to elimination of the A chromosomes during meiosis. Segregation distortion for erucic acid alleles occurred in both F2 and BC1 resulting significantly fewer zero-erucic plants than expected; however, plants with?≤?15% erucic acid frequently yielded zero-erucic progeny. No consistent correlation between parent and progeny generation was found for seed glucosinolate content; however, selection for this trait was effective and B. napus canola lines were obtained from all crosses. Silique length showed positive correlation with seed set; the advanced generation populations, whether derived from F2 or BC1, were similar for these traits. SSR marker analysis showed that genetically diverse canola lines can be developed by using different variants of B. oleracea in B. napus?×?B. oleracea interspecific crosses.  相似文献   

16.
The recessive mutation of the XANTHA gene (XNT) transforms seedlings and plants into a yellow color, visually distinguishable from normal (green) rice. Thus, it has been introduced into male sterile lines as a distinct marker for rapidly testing and efficiently increasing varietal purity in seed and paddy production of hybrid rice. To identify closely linked markers and eventually isolate the XNT gene, two mapping populations were developed by crossing the xantha mutant line Huangyu B (indica) with two wild type japonica varieties; a total of 1,720 mutant type F2 individuals were analyzed for fine mapping using polymorphic InDel markers and high dense microsatellite markers. The XNT gene was mapped on chromosome 11, within in a fragment of ~100 kb, where 13 genes are annotated. The NP_001067671.1 gene within the delimited region is likely to be a candidate XNT gene, since it encodes ATP-dependent chloroplast protease ATP-binding subunit clp A. However, no sequence differences were observed between the mutant and its parent. Bioinformatics analysis demonstrated that four chlorophyll deficient mutations that were previously mapped on the same chromosome are located outside the XNT region, indicating XNT is a new gene. The results provide useful DNA markers not only for marker assisted selection of the xantha trait but also its eventual cloning.  相似文献   

17.
The objective of this study was to develop diallel population hybrids by crossing selected germplasm and to determine the gene effects and genetic control of yield and yield components using diallel analysis. A complete diallel including reciprocals was made during 2003 and 2004 between five alfalfa cultivars of different geographic origin. For each pairwise cross, five plants were chosen at random from each of the two cultivars (~100 florets per plant) to obtain the F1 generation. A spaced plant field was established in 2006 which included the five alfalfa cultivars (parents) and their 20 diallel hybrids (F1). The results of the diallel analysis suggest that the genetic control of major agronomic traits is determined by both additive gene action (accumulation of frequency of desirable alleles represented by significant GCA effects) and nonadditive gene action (complementary gene interactions represented by significant SCA effects). This type of gene action expression in alfalfa also determines the way in which breeding is carried out and brings about changes in the methods used and has given rise to the idea of the semi-hybrid breeding of this crop. The concept involves: breeding alfalfas within the population, identification of heterotic germplasm, and the production of seed of the population hybrid (PH).  相似文献   

18.
A system for the production of transgenic faba bean by Agrobacterium-mediated transformation was developed. This system is based upon direct shoot organogenesis after transformation of meristematic cells derived from embryo axes. Explants were co-cultivated with A. tumefaciens strain EHA105/pGlsfa, which harbored a binary vector containing a gene encoding a sulphur rich sunflower albumin (SFA8) linked to the bar gene. Strain EHA 101/pAN109 carrying the binary plasmid containing the coding sequence of a mutant aspartate kinase gene (lysC) from E. coli in combination with neomycinphosphotransferase II gene (nptII) was used as well. The coding sequences of SFA8 and LysC genes were fused to seed specific promoters, either Vicia faba legumin B4 promoter (LeB4) or phaseolin promoter, respectively. Seven phosphinothricin (PPT) resistant clones from Mythos and Albatross cultivars were recovered. Integration, inheritance and expression of the transgenes were confirmed by Southern blot, PCR, enzyme activity assay and Western blot.  相似文献   

19.
In a previously made cross Brassica napus cv. Oro (2n = 38) × Capsella bursa-pastoris (2n = 4x = 32), one F1 hybrid with 2n = 38 was totally male sterile. The hybrid contained no complete chromosomes from C. bursa-pastoris, but some specific AFLP (amplified fragment length polymorphism) bands of C. bursa-pastoris were detected. The hybrid was morphologically quite similar to ‘Oro’ except for smaller flowers with rudimentary stamens but normal pistils, and showed good seed-set after pollination by ‘Oro’ and other B. napus cultivars. The fertility segregation ratios (3:1, 1:1) in its progenies indicated that the male sterility was controlled by a single recessive gene. In the pollen mother cells of the male sterile hybrid, chromosome pairing and segregation were normal. Histological sectioning of its anthers showed that the tapetum was multiple layers and was hypertrophic from the stage of sporogenic cells, and that the tetrads were compressed by the vacuolated and disaggregated tapetum and no mature pollen grains were formed in anther sacs, thus resulting in male sterility. The possible mechanisms for the production of the male sterile hybrid and its potential in breeding are discussed.  相似文献   

20.
The rice leaffolder (RLF), Cnaphalocrocis medinalis is an important pest of rice that causes severe damage in many areas of the world. The plants were transformed with fully modified (plant codon optimized) synthetic Cry1C coding sequences as well as with the hpt and gus genes, coding for hygromycin phosphotransferase and β-glucuronidase, respectively. Cry1C sequences placed under the control of doubled 35S promoter plus the AMV leader sequence, and hpt and gus genes driven by cauliflower mosaic virus 35S promoter, were used in this study. Embryogenic calli after cocultivation with Agrobacterium were selected on the medium containing hygromycin B. A total of 67 hygromycin-resistant plants were regenerated. PCR and Southern blot analyses of primary transformants revealed the stable integration of Cry1C coding sequences into the rice genome with predominant single copy integration. R1 progeny plants disclosed a monogenic pattern (3:1) of transgene segregation as confirmed by molecular analyses. These transgenic lines were highly resistant to rice leaffolder (RLF), Cnaphalocrocis medinalis as revealed by insect bioassay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号