首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations of forest mortality are increasing globally, but relatively little is known regarding the underlying mechanisms driving these events. Tree rings carry physiological signatures that may be used as a tool for retrospective analyses. We capitalized on a local soil water drainage event in 1982 that resulted in increased mortality within a stand of oak trees (Quercus robur), to examine the underlying physiological patterns associated with survival and death in response to soil water limitations. Pre-dawn water potentials showed more negative values for trees in the process of dying compared with those that survived. We used tree rings formed over the 123 years prior to mortality to estimate productivity from basal area increment (BAI, mm(2)), multiple xylem hydraulic parameters via anatomical measurements and crown-level gas exchange via carbon isotope discrimination (Δ, ‰). Oaks that died had significantly higher BAI values than trees that survived until the drainage event, after which the BAI of trees that died declined dramatically. Hydraulic diameter and conductivity of vessels in trees that died were higher than in surviving trees until the last 5 years prior to mortality, at which time both groups had similar values. Trees that died had consistently lower Δ values than trees that survived. Therefore, tree mortality in this stand was associated with physiological differences prior to the onset of soil water reduction. We propose that trees that died may have been hydraulically underbuilt for dry conditions, which predisposes them to severe hydraulic constraints and subsequent mortality. Measurements of above-ground/below-ground dry mass partitioning will be critical to future tests of this hypothesis. Based on these results, it is probable that pedunculate oak trees will experience greater future mortality if climate changes cause more severe droughts than the trees have experienced previously.  相似文献   

2.
Wood production represents a large but variable fraction of gross primary production (GPP) in highly productive Eucalyptus plantations. Assessing patterns of carbon (C) partitioning (C flux as a fraction of GPP) between above- and belowground components is essential to understand mechanisms driving the C budget of these plantations. Better knowledge of fluxes and partitioning to woody and non-woody tissues in response to site characteristics and resource availability could provide opportunities to increase forest productivity. Our study aimed at investigating how C allocation varied within one apparently homogeneous 90 ha stand of Eucalyptus grandis (W. Hill ex Maiden) in Southeastern Brazil. We assessed annual above-ground net primary production (ANPP: stem, leaf, and branch production) and total belowground C flux (TBCF: the sum of root production and respiration and mycorrhizal production and respiration), GPP (computed as the sum of ANPP, TBCF and estimated aboveground respiration) on 12 plots representing the gradient of productivity found within the stand. The spatial heterogeneity of topography and associated soil attributes across the stand likely explained this fertility gradient. Component fluxes of GPP and C partitioning were found to vary among plots. Stem NPP ranged from 554 g C m(-2) year(-1) on the plot with lowest GPP to 923 g C m(-2) year(-1) on the plot with highest GPP. Total belowground carbon flux ranged from 497 to 1235 g C m(-2) year(-1) and showed no relationship with ANPP or GPP. Carbon partitioning to stem NPP increased from 0.19 to 0.23, showing a positive trend of increase with GPP (R(2) = 0.29, P = 0.07). Variations in stem wood production across the gradient of productivity observed at our experimental site were a result of the variability in C partitioning to different forest system components.  相似文献   

3.
In 1986, four allopatric Eucalyptus species (E. camaldulensis Dehnh, E. saligna Smith, E. leucoxylon F. Muell and E. platypus Hook.) were planted together in a 480-mm rainfall zone, in 8-m wide contour belts as part of a plan to minimize waterlogging and secondary salinization. Throughout 1997, 1998 and 1999, there was significant inter-specific variation in predawn leaf water potential (Psi(pd)); however, maximum stomatal conductance (g(sm)) only differed significantly between species in mid to late summer. Relationships between g(sm) and Psi(pd) were significant and showed that stomata of E. camaldulensis were significantly more sensitive to Psi(pd), and presumably soil water potential, than stomata of E. leucoxylon or E. platypus. When applied to the Psi(pd) data, these relationships predicted that g(sm), and by inference transpiration, varied much less between species than Psi(pd). Diurnal measurements throughout the season confirmed this prediction, and showed that E. camaldulensis and E. saligna avoided drought by gaining access to deeper water, whereas E. leucoxylon and E. platypus maintained greater g(sm) at a given water stress than E. camaldulensis or E. saligna. Osmotic potentials measured after rehydration and water release curves of the leaves indicated that different mechanisms accounted for the apparent drought tolerance of E. leucoxylon and E. platypus. In summer, E. leucoxylon reduced osmotic potential at full and zero turgor by similar amounts compared with winter. In summer, E. platypus had a significantly lower bulk elastic modulus and relative water content at turgor loss point than E. camaldulensis, E. saligna or E. leucoxylon. This elastic adjustment resulted in a larger difference between osmotic potential at full and zero turgor in summer than in winter. The inherently low osmotic potential in E. leucoxylon and elastic adjustment in E. platypus resulted in turgor loss at a similar and significantly lower water potential than in E. camaldulensis or E. saligna. These results have implications for species selection for planting to manage groundwater recharge in areas prone to waterlogging and secondary salinization.  相似文献   

4.
The genus Mycosphaerella Johanson contains many pathogens capable of causing a severe impact on the growth of susceptible eucalypt species. The lack of knowledge about which species are present in Tasmania and their potential risk to the plantation industry prompted this study into the Mycosphaerella species occurring on Eucalyptus globulus and Eucalyptus nitens plantations in Tasmania. A total of 36 plantation and five road verge sites of E. globulus and E. nitens were sampled. Five Mycosphaerella species and three species from associated anamorph genera were isolated and identified in Tasmania; Mycosphaerella nubilosa, Mycosphaerella cryptica, Mycosphaerella tasmaniensis, Mycosphaerella grandis, Mycosphaerella vespa, Coniothyrium ovatum, Sonderhenia eucalypticola and Sonderhenia eucalyptorum. The most frequently isolated species with the highest incidence and severity of infection were M. cryptica and M. nubilosa. These two species appear to have the greatest potential to damage juvenile eucalypt plantations in Tasmania. A link between Mycosphaerella vespa and Coniothyrium ovatum is described for the first time.  相似文献   

5.
The ongoing global change could be an additional threat to the establishment and the long-term survival of Populus nigra L., an emblematic European riparian species. With the general aim of gaining insights into the adaptive potential of this species, we (i) quantified variations within and among three French P. nigra populations for key physiological attributes, i.e., water-use efficiency (assessed from bulk leaf carbon isotope discrimination, Δ(13)C), growth performance and related leaf traits, (ii) examined genotype and population by environment interactions, and (iii) explored the relationship between Δ(13)C and growth. Thirty genotypes were sampled in each of three naturally established populations and grown in two different sites, Orléans (ORL) and Guémené-Penfao (GMN). In ORL, two similar plots were established and different watering regimes were applied in order to test for the drought response. Significant variations were observed for all traits within and among populations irrespective of site and watering. Trait variation was larger within than among populations. The effect of drought was neither genotype- nor population-dependent, contrary to the effect of site. The population ranking was maintained in all sites and watering regimes for the two most complex traits: Δ(13)C and growth. Moreover, these two traits were unrelated, which indicates that (i) water-use efficiency and growth are largely uncoupled in this species, and (ii) the environmental factors driving genetic structuration for Δ(13)C and growth act independently. The large variations found within populations combined with the consistent differences among populations suggest a large adaptive potential for P. nigra.  相似文献   

6.
There is little information about variation in growth, wood density and carbon concentration in native tree and shrub species in Africa. This information is needed to make realistic projections about carbon sequestration of different species in different environments. Farmers manage natural regeneration of many native species in the drylands of Niger, so there is interest in carbon sequestration potential of the species. The objectives of this study were to determine: (1) if tree height, stem diameter, mean ring width, wood density and carbon concentration differ among five tree and shrub species (Combretum glutinosum, Combretum micranthum, Combretum nigricans, Guiera senegalensis, Piliostigma reticulatum) in Niger; (2) if variation within species is affected by land use type (parkland agroforests, woodlands), soil type (sandy, rocky), terrain type (temporarily flooded, flat, hill slope) and mean annual rainfall; and (3) if growth variables, wood density and carbon concentration are correlated in the five species. Environmental variables did not have strong effects on growth and wood variables of the species, and some effects differed among species. Height across species increased with mean annual rainfall. Stem diameter and mean ring width across species were greater in parkland agroforests than in woodlands. Carbon concentration was positively correlated with growth variables of four species, but was not correlated with wood density in most species. Correlations between wood density and growth differed in sign among some species. We conclude that above-ground carbon sequestration per tree probably increases with mean annual rainfall and is greater in parkland agroforests than in woodlands.  相似文献   

7.
Summary The influence of extractive content on the shrinkage behaviour in eucalypts was shown by mathematical extraction after making certain assumptions with respect to available data. The slope of the volumetric shrinkage/specific gravity (S/) ratio changed from negative to positive after the theoretical removal of alcohol/benzene/water soluble or NaOH soluble extractives. Statistical analysis of available data suggested that collapse was positively related to the encrusting and extraneous materials and negatively related to the polysaccharide cell wall component. Conversely, normal volumetric shrinkage was positively related to the polysaccharides and negatively related to lignin and extractive content. Mechanisms by which extractive content might influence collapse development were discussed. R-values (change in external volume during shrinkage or swelling per change in weight of equivalent volume of water) appeared to be negatively correlated with extractive content in eucalypts and calculations for other species showed that R progressively increased with cold and hot water extraction. Further analysis suggested that the apparent change in lumen dimensions suggested by particular R-values was mitigated by the bulking effect of extractives in the cell wall. A possible role for R as an indicator of dimensional stability was postulated.  相似文献   

8.
Summary An examination of shrinkage behaviour in a range of tree species has demonstrated clear differences between eucalypts and other species with respect to the volumetric shrinkage (S)/specific gravity () ratio. The equation S=f proposed by Stamm (1935a, 1952) to relate this ratio to the fibre saturation point (f) was inapplicable in eucalypts, both before reconditioning, where a highly negatively significant linear correlation was observed between S and , and after reconditioning where the correlation was not significant and the regression line indicated S to be nearly constant. Collapse was found to be highly negatively correlated with specific gravity in the eucalypt species and evidently was primarily responsible for the negative S/ relationship before reconditioning.In non-eucalypts S and were highly positively correlated, but the regression line did not pass through the origin and the slope was 10 to 14% less than the value of 28% suggested by Stamm for f. Only when the regression line was artificially forced through zero did the slope approach postulated fibre saturation point values. A power function was proposed as representing a more reasonable fit of the data.In line with these analyses, unit shrinkage (Su) was shown not to be equivalent to . This lack of equivalence was expressed as Su divided by basic density () which was termed the R-ratio and which was shown to be equal to the change in volume during shrinkage (or swelling) divided by the associated change in the weight of an equivalent volume of water. R was seldom equal to one, as required by the Stamm formula, and was negatively correlated with specific gravity in both eucalypts and non-eucalypts. A comparison of regression equations showed R values for eucalypts to be significantly different from those of non-eucalypts. Possible uses for the R-ratio were considered.  相似文献   

9.
Summary This study examined the relationships of wood specific gravity and selected mechanical properties (MOR, MOE and Cmax) with growth rate in 16 timber species from four distinct wood categories: 1) first softwood category (FSC); 2) second softwood category (SSC); 3) diffuse-porous wood category (DPC); and 4) ring-porous wood category (RPC). And genetic, silvicultural and environmental influence on the relationships was briefly discussed. Statistical results show that the relationships of specific gravity and the mechanical properties with growth rate vary remarkably with both the wood property and the wood category. In general, the mechanical properties in the FSC species decrease remarkably with increasing growth rate, while they appear to be less influenced in the SSC species. Compared with the softwoods studied, the physico-mechanical properties in the hardwoods studied are remarkably less influenced. In the DPC species, growth rate generally has very a little influence on both specific gravity and the mechanical properties. In the RPC species, the physico-mechanical properties appear not to decrease with increasing growth rate, and in some species they even tend to increase. Among the three mechanical properties studied, MOE is remarkably less influenced by growth rate than MOR and Cmax. Compared with specific gravity, however, the mechanical properties are generally more influenced by growth rate. Therefore, the impact of growth rate on wood mechanical properties in a species can not be estimated exactly through the relationship of wood specific gravity with growth rate. Path analysis reveals that growth rate has a large effect on the mechanical properties which can be accounted for by the affected specific gravity. In addition to this indirect effect through specific gravity, growth rate still has an additional effect on the mechanical properties which can not be explained by specific gravity. In the SFC species, such effect is significant, and this, to a lesser extent, applies to the DPC species. However, this effect is not remarkable in the SSC species and may be negligible in the RPC species.  相似文献   

10.
Reforestation in the tropics takes place across a wide variety of edaphic and climatic conditions. Reforestation trials have demonstrated that edaphic conditions may have a strong effect on species growth and survival. However it is unclear how the relative importance of soil conditions influences species survival and growth under varying amounts of rainfall and lengths of dry season.Two-year growth and mortality of 49 tree species were evaluated in four sites across Panama, representing a soil fertility-rainfall matrix. Despite strong contrasts in environmental conditions, 65% of individual species did not show consistent differences in growth between high- and low-fertility sites or between wet and dry sites. However, early growth and survival were more strongly affected by soil fertility than by rainfall patterns for the second-largest group; 30% of the species grew significantly better in both high-fertility sites than in both low-fertility sites, compared to 6% in both wet sites vs. both dry sites. In the two high-fertility sites, growth of 47% and 69% of the species was better than their across-site means. On the other hand, 55% and 73% of the species grew significantly slower than their across-site averages in the two low-fertility sites.Survival did not appear to be associated to either soil fertility or rainfall. In each site, only a few species had a significantly higher or lower within-site survival than across-site survival.Diversifying the choice of tree species increases the options for reforestation strategies that match species characteristics to local site conditions and to the objectives and management possibilities of landholders. Testing the performance of potential species under different site conditions in screening trials is paramount, both to inform selection from among the vast diversity of tree species in the tropics that show good growth and survival under different local site conditions and to filter out unsuitable species and avoid early failure of the reforestation effort.  相似文献   

11.
Specific leaf area (SLA; m2leaf kg?1leaf) is a key ecophysiological parameter influencing leaf physiology, photosynthesis, and whole plant carbon gain. Both individual tree-based models and other forest process-based models are generally highly sensitive to this parameter, but information on its temporal or within-stand variability is still scarce. In a 2–4-year-old Eucalyptus plantation in Congo, prone to seasonal drought, the within-stand and seasonal variability in SLA were investigated by means of destructive sampling carried out at 2-month intervals, over a 2-year period. Within-crown vertical gradients of SLA were small. Highly significant relationships were found between tree-average SLA (SLAt) and tree size (tree height, Ht, or diameter at breast height, DBH): SLAt ranged from about 9 m2 kg?1 for dominant trees to about 14–15 m2 kg?1 for the smallest trees. The decrease in SLAt with increasing tree size was accurately predicted from DBH using power functions. Stand-average SLA varied by about 20% during the year, with lowest values at the end of the 5-month dry season, and highest values about 2–3 months after the onset of the wet season. Variability in leaf water status according to tree size and season is discussed as a possible determinant of both the within-stand and seasonal variations in SLA.  相似文献   

12.
Foliage growth, mass- and area-based leaf nitrogen concentrations (Nm and N a) and specific leaf area (SLA) were surveyed during a complete vegetation cycle for two co-occurring savanna tree species: Crossopteryx febrifuga (Afzel. ex G. Don) Benth. and Cussonia arborea A. Rich. The study was conducted in the natural reserve of Lamto, Ivory Coast, on isolated and clumped trees. Leaf flush occurred before the beginning of the rainy season. Maximum leaf area index (LAI), computed on a projected canopy basis for individual trees, was similar (mean of about 4) for both species. Seasonal courses of the ratio of actual to maximum LAI were similar for individuals of the same species, but differed between species. For C. febrifuga, clumped trees reached their maximum LAI before isolated trees. The LAI of C. arborea trees did not differ between clumped and isolated individuals, but maximum LAI was reached about 2 months later than for C. febrifuga. Leaf fall was associated with decreasing soil water content for C. arborea. For C. febrifuga, leaf fall started before the end of the rainy period and was independent of changes in soil water content. These features lead to a partial niche separation in time for light resource acquisition between the two species. Although Nm, N a and SLA decreased with time, SLA and N a decreased later in the vegetation cycle for C. arborea than for C. febrifuga. For both species, N a decreased and SLA increased with decreasing leaf irradiance within the canopy, although effects of light on leaf characteristics did not differ between isolated and clumped trees. Given relationships between N a and photosynthetic capacities previously reported for these species, our results show that C. arborea exhibits higher photosynthetic capacity than C. febrifuga during most of the vegetation cycle and at all irradiances.  相似文献   

13.
We measured oxygen isotope ratios (delta18O) of xylem sap, phloem sap, leaves, wood and bark of Eucalyptus globulus Labill. growing in southwestern Australia. Carbon isotope ratios (delta13C) were measured in the dry matter of phloem sap, leaves and wood. Results were used to test several aspects of a mechanistic model of 18O enrichment and provided insights into post-photosynthetic variations in dry matter delta13C. Xylem water delta18O varied little within the tree crown, whereas variation at the landscape-level was more pronounced, with plantations near the coast being enriched by up to 3 per thousand compared with plantations less than 100 km inland. Phloem water was significantly enriched in 18O compared with xylem water in two of three sampling campaigns; mean enrichments were 0.5 and 0.8 per thousand. Phloem sap sugars exported from E. globulus leaves closely reflected observed leaf water enrichment when diurnal variation in photosynthesis was taken into account. Photosynthetic rates were higher in the morning than in the afternoon, whereas leaf water 18O enrichment increased to maximum values in the afternoon. A non-steady-state model of leaf water 18O enrichment accurately predicted observed values through a full diel cycle. Mean estimates of the proportion of organic oxygen effectively exchanging with xylem water during cellulose synthesis were close to 0.40 for both leaves and wood. Carbon isotope ratios of nascent xylem tissues did not differ from those of phloem sap sugars collected concurrently, whereas nascent leaf tissues were depleted in 13C by 2 per thousand compared with phloem sap sugars, suggesting that, in E. globulus, 13C enrichment of sink tissues compared with source leaves does not result from an enriching process within the sink tissue.  相似文献   

14.
We characterised the among species variability in leaf gas exchange and morphological traits under controlled conditions of seedlings of 22 tropical rainforest canopy species to understand the origin of the variability in leaf carbon isotope discrimination (Δ) among species with different growth and dynamic characteristics (successional gradient). Our results first suggest that these species pursue a consistent strategy in terms of Δ throughout their ontogeny (juveniles grown here versus canopy adult trees from the natural forest). Second, leaf Δ was negatively correlated with WUE and N, and positively correlated with gs, but among species differences in Δ were mainly explained by differences in WUE. Finally, species belonging to different successional groups display distinct leaf functional and morphological traits. We confirmed that fast growing early successional species maximise carbon assimilation with high stomatal conductance. In contrast, fast and slow growing late successional species are both characterised by low carbon assimilation values, but by distinct stomatal conductance and leaf morphological features. Along the successional gradient, these differences result in much lower Δ for the intermediate species (i.e. fast growing late successional) as compared to the two other groups.  相似文献   

15.
Four Turkish provenances and five Lebanese provenances of Cedrus libani A. Rich. and one Cypriot provenance of C. brevifolia Henry were compared during the third year of growth in a controlled-climate greenhouse after exposure to a well-watered or moderate-drought treatment. Effects of treatment on CO(2) assimilation (A), stomatal conductance (g(s)), (13)C isotope composition (delta(13)C), growth and biomass were assessed. Hydraulic conductivity and shoot vulnerability to cavitation were measured in well-watered plants only. The Lebanese provenances of C. libani had the highest growth rates, but were the most sensitive to drought. The Turkish provenances of C. libani showed moderate growth rates and moderate drought sensitivity. Cedrus brevifolia had the lowest growth rate and was least sensitive to drought. For each provenance, mean biomass values were positively correlated with delta(13)C and intrinsic water-use efficiency (A/g(s)), and negatively correlated with g(s). Drought reduced growth and favored carbon storage in roots, increasing the ratio of root biomass to aboveground biomass. The drought treatment increased delta(13)C and A/g(s). Specific hydraulic conductivity (K(s)) was similar for the provenance groups, whereas leaf-specific conductivity (K(l)) was lower in the Lebanese provenances than in the other provenances. Within each provenance group, provenances with the highest K(l) were most susceptible to xylem cavitation, but were also the most productive. Growth and drought adaptation were linked with precipitation in each provenance's native range.  相似文献   

16.
Trees adapted to mesic and xeric habits may differ in a suite of physiological responses that affect leaf-level carbon balance, including the relationship between photosynthesis (A) and respiration at night (R(n)). Understanding the factors that regulate physiological function in mesic and xeric species is critical for predicting changes in growth and distribution under changing climates. In this study, we examined the relationship between A and R(n), and leaf traits that may regulate A and R(n), in six Eucalyptus species native to mesic or xeric ecosystems, during two 24-h cycles in a common garden under high soil moisture. Peak A and R(n) generally were higher in xeric compared with mesic species. Across species, A and R(n) covaried, correlated with leaf mass per area, leaf N per unit area and daytime soluble sugar accumulation. A also covaried with g(s), which accounted for 93% of the variation in A within species. These results suggest that A and R(n) in these six Eucalyptus species were linked through leaf N and carbohydrates. Further, the relationship between A and R(n) across species suggests that differences in this relationship between mesic and xeric Eucalyptus species in their native habitats may be largely driven by environmental factors rather than inter-specific genetic variation.  相似文献   

17.
18.
Prasolova NV  Xu ZH 《Tree physiology》2003,23(10):675-684
Genetic variation in branchlet nutrient (N, P, K, Na, Ca, Mg, Mn and Fe) concentrations and mineral concentration (sum of branchlet P, K, Na, Ca, Mg, Mn and Fe concentrations) of 8-9-year-old hoop pine (Araucaria cunninghamii Ait. ex D. Don) half-sib families was assessed for four canopy positions at a wet site (23 families) and two canopy positions at an N- and water-limiting dry site (22 families) in relation to tree growth and associated branchlet carbon (delta13C) and oxygen (delta18O) isotope composition in southeast Queensland, Australia. Branchlet nutrient and mineral concentrations varied significantly among families and with canopy position and site. Depending on the canopy position sampled, the hoop pine family effect accounted for 0 to 13.8% of the total variation in branchlet N concentration, and for 0 to 30.3% of the total variation in branchlet mineral concentration at the wet site. The corresponding values for the family effect at the dry site were 0-13.3% for branchlet N concentration and 0-25.7% for branchlet mineral concentration. There were significant variations in branchlet P, K, Ca and Mg concentrations at both sites, and these variations differed with canopy position. Relationships between family means of branchlet N concentration and tree growth or delta13C or delta18O varied with canopy position at both sites. At the wet site, there were significant positive correlations between branchlet mineral concentration in the upper-outer or upper-inner canopy and tree height (r = 0.26 and 0.37, P < 0.01) and between branchlet mineral concentration and delta13C (r = 0.24, P < 0.01) in the upper-inner canopy, and a significant negative correlation between branchlet mineral concentration and delta13C (r = -0.21, P < 0.05) in the upper-outer canopy. At the dry site, branchlet mineral concentrations in the upper-inner and upper-outer canopy were significantly correlated with branchlet delta13C (r = -0.28 and -0.51, P < 0.01), and branchlet N concentration in the upper-inner canopy was significantly correlated with tree growth (r = 0.29, P < 0.01). A significant correlation between branchlet delta18O (an index of stomatal conductance) and branchlet mineral concentration at the dry site (r = 0.39, P = 0.020) indicated that stomatal conductance might be a factor regulating the variation in branchlet mineral concentration of the hoop pine families. Both branchlet N concentration and mineral concentration at particular canopy positions assist in selecting hoop pine families with improved tree growth and N- and water-use efficiency in environments where both N deficiency and a limited water supply are major factors affecting plantation productivity.  相似文献   

19.
Leaf growth, rate of leaf photosynthesis and tissue water relations of shoots of Eucalyptus marginata Donn ex Sm. (jarrah) seedlings were studied during a soil drying and rewatering cycle in a greenhouse experiment. Rates of leaf growth and photosynthesis were sensitive to water deficits. The rate of leaf growth decreased linearly with predawn leaf water potential to reach zero at -1.5 MPa. Rate of leaf growth did not recover completely within the first three days after rewatering. Midday photosynthetic rates declined to 40% of those of well-watered seedlings at a predawn leaf water potential of -1.0 MPa and reached zero at -2.2 MPa. Photosynthetic rate recovered rapidly following rewatering and almost fully recovered by the second day after rewatering. All tissue water relations parameters, except the bulk modulus of elasticity, changed significantly as the soil dried and recovered completely by the third day after rewatering. Changes in osmotic pressure at full turgor of 0.4 MPa indicated considerable capacity for osmotic adjustment. However, because there was little osmotic adjustment until predawn leaf water potential fell below -1.5 MPa, this capacity would not have enhanced seedling growth, although it may have increased seedling survival. The sensitivity of photosynthesis and relative water content to water deficits suggests that greenhouse-grown E. marginata seedlings behave like mesophytic plants, even though E. marginata seedlings naturally grow in a drought-prone environment.  相似文献   

20.
Saplings of Eucalyptus camaldulensis Dehn. Clone 4544, irrigated with water of differing salinities (2 to 28 dS m-1) and boron concentrations (1 to 30 mg l-1), integrated the history of these stresses through the discrimination of stable isotopes of carbon in leaf and woody tissues. Carbon isotope discrimination (delta) was reduced primarily by salinity. Decreases in discrimination in response to boron stress were detected in the absence of salinity stress, but the decreases were significant only in leaf tissues with visible boron injury. Sapwood core samples indicated that salinity- and boron-induced reductions in delta increased with increasing tree age. Absolute values of delta varied with location of leaf or wood tissue, but relative effects of salinity on the relationship between delta and transpiration efficiency (W) were similar. In response to increasing salinity stress, relative decreases in delta paralleled relative decreases in biomass and both indices yielded similar salt tolerance model parameters. The strong correlations between delta, tree fresh weight, leaf area and W suggest that delta is a useful parameter for evaluating salt tolerance of eucalyptus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号