首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolation and culture of rabbit primordial germ cells   总被引:2,自引:0,他引:2  
Primordial germ cells (PGCs) are embryonic precursors of the gametes of adult animals and are considered stem cells of the germline. Since their proliferation in vitro correlates well with the schedule of developmental changes in vivo, they might be interesting research tools for genomic imprinting, germ-cell tumors and fertility. Furthermore, once primordial germ cells are separated and placed on a feeder layer with cytokines, they become cultured pluripotent cell lines called embryonic germ (EG) cells. EG cells share several important characteristics with embryonic stem (ES) cells as they can also contribute to the germ line of chimeras. To investigate the characteristics of PGCs and establish rabbit EG (rEG) cells, we cultured rabbit PGCs (rPGCs) in vitro with various combinations of leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF) and forskolin on inactivated mouse embryonic fibroblast (MEF) feeder layers. The present study found PGC proliferation in early cultures and induction of rEG-like colonies. These cells expressed pluripotent markers, such as alkaline phosphatase activity, OCT-4, Sox-2 and SSEA-1, in the undifferentiated state; however, the cells did not develop into a teratoma when injected into the kidney capsules of SCID mice, although the restricted differentiation potentials to neural cells were determined via embryoid body formation. From these characteristics and further characterization of the germ stem cell markers Vasa, SCP-1 and SCP-3, we suggested that these were hybrid cells with characteristics somewhere between PGC and EG cells.  相似文献   

2.
胚胎干细胞的研究与应用   总被引:9,自引:0,他引:9  
胚胎干细胞(ES细胞)是由早期胚胎内细胞团或盈儿原始生殖细胞分离克隆出的具有发育全能性的细胞,是动物多种组织细胞的祖细胞。由于ES细胞与克隆动物、转基因动物、组织工程、临床克隆治疗和发育生物学、遗传学以及昨动物疾病模型等研究与应用的关系密切,引起广大学者的关注和兴趣。尤其是从1999年以来,人类ES细胞研究取得很大进展,人们渴望该技术尽快成熟,应用于临床医学克隆治疗,在世界范围内掀起了ES细胞的研究热潮。海峡两岸应组织多学科、多行业、多单位的科技工作者协同攻关,使该项研究尽快取得突破性进展。  相似文献   

3.
Many reports described cell lines derived in domestic species, which presented several important features typical of embryonic stem cells (ESCs). Such features unfortunately did not include the capacity to generate germ-line chimeras, therefore limiting the possibility to use these cells as tools for the genetic manipulation. However, farm animal ESCs may still be useful for the generation of transgenic animals as usually have a self-renewal capacity more prolonged than normal primary cultures thus increasing the possibility to transform and select cells to be used as nucleus donors in cloning procedures. Farm animal ESCs may also be an excellent experimental model in pre-clinical trials, assessing the feasibility of cell therapy because of the close morphological and physiological resemblance to humans of species like the pig. However, the persistent lack of standard methods for the derivation, maintenance and characterization of ESCs in domestic species stimulated the search for alternatives. Embryonic germ cells may represent such an alternative. Indeed, these cells showed a higher plasticity than ESCs as contributed to embryonic development forming chimeric newborns but, as for ESCs, standardization is still far away and efficiency is very low. Recent results indicated spermatogonial stem cells as possible tools for germ-line genetic modifications with some proof of principle results already achieved. But, a real break through could arrive from the multipotent germ-line stem cells, virtually equivalent to ESC, derived from newborn and adult mouse testis.  相似文献   

4.
Embryonic stem (ES) cells are pluripotent cell lines with the capacity of self-renewal and a broad differentiation plasticity. They are derived from pre-implantation embryos and can be propagated as a homogeneous, uncommitted cell population for an almost unlimited period of time without losing their pluripotency and their stable karyotype. Murine ES cells are able to reintegrate fully into embryogenesis when returned into an early embryo, even after extensive genetic manipulation. In the resulting chimeric offspring produced by blastocyst injection or morula aggregation, ES cell descendants are represented among all cell types, including functional gametes. Therefore, mouse ES cells represent an important tool for genetic engineering, in particular via homologous recombination, to introduce gene knock-outs and other precise genomic modifications into the mouse germ line. Because of these properties ES cell technology is of high interest for other model organisms and for livestock species like cattle and pigs. However, in spite of tremendous research activities, no proven ES cells colonizing the germ line have yet been established for vertebrate species other than the mouse (Evans and Kaufman, 1981; Martin, 1981) and chicken (Pain et al., 1996). The in vitro differentiation capacity of ES cells provides unique opportunities for experimental analysis of gene regulation and function during cell commitment and differentiation in early embryogenesis. Recently, pluripotent stem cells were established from human embryos (Thomson et al., 1998) and early fetuses (Shamblott et al., 1998), opening new scenarios both for research in human developmental biology and for medical applications, i.e. cell replacement strategies. At about the same time, research activities focused on characteristics and differentiation potential of somatic stem cells, unravelling an unexpected plasticity of these cell types. Somatic stem cells are found in differentiated tissues and can renew themselves in addition to generating the specialized cell types of the tissue from which they originate. Additional to discoveries of somatic stem cells in tissues that were previously not thought to contain these kinds of cells, they also appear to be capable of developing into cell types of other tissues, but have a reduced differentiation potential as compared to embryo-derived stem cells. Therefore, somatic stem cells are referred to as multipotent rather than pluripotent. This review summarizes characteristics of pluripotent stem cells in the mouse and in selected livestock species, explains their use for genetic engineering and basic research on embryonic development, and evaluates their potential for cell therapy as compared to somatic stem cells.  相似文献   

5.
Pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are able to differentiate into all cell lineages of the embryo proper, including germ cells. This pluripotent property has a huge impact on the fields of regenerative medicine, developmental biology and reproductive engineering. Establishing the germ cell lineage from ESCs/iPSCs is the key biological subject, since it would contribute not only to dissection of the biological processes of germ cell development but also to production of unlimited numbers of functional gametes in vitro. Toward this goal, we recently established a culture system that induces functional mouse primordial germ cells (PGCs), precursors of all germ cells, from mouse ESCs/iPSCs. The successful in vitro production of PGCs arose from the study of pluripotent cell state, the signals inducing PGCs and the technology of transplantation. However, there are many obstacles to be overcome for the robust generation of mature gametes or for application of the culture system to other species, including humans and livestock. In this review, we discuss the requirements for a culture system to generate the germ cell lineage from ESCs/iPSCs.  相似文献   

6.
胚胎干细胞及种系嵌合体的研究进展   总被引:1,自引:0,他引:1  
胚胎干细胞是着床前的囊胚内细胞团或早期胎儿的原始生殖细胞经体外分化抑制培养建立的多能性细胞系 ,具有与胚胎细胞相似的形态特征和分化潜能 ,体外培养时保持未分化状态 ,可以传代增殖。改变维持胚胎干细胞不分化的培养条件 ,胚胎干细胞可自发分化成多细胞结构。在一定诱导下 ,胚胎干细胞可向多个方向分化 ,并生成多种功能细胞。胚胎干细胞注入到胚泡期胚胎或与桑椹期胚胎聚合 ,可以参与包括性腺在内的各种组织的嵌合体的形成。胚胎干细胞在细胞分化与调控 ,胚胎发育 ,遗传病 ,肿瘤 ,免疫和组织或器官移植等研究中显示着广泛的应用前景。而种系嵌合体的获得是实现 ES细胞途径的决定步骤 ,低的种系嵌合率则是制约 ES细胞应用的关键。提高供体 PGCs在受体生殖腺中的比例 ,缩短 ES细胞的体外培养时间 ,以及注入早期发育阶段的受体胚胎等都能提高种系嵌合率。文章从多个方面综述了胚胎干细胞的最新研究成果 ,并着重以禽类 ES细胞为例论述了种系嵌合体的检测方法 ,种系嵌合率的影响因素以及提高种系嵌合率的方法  相似文献   

7.
研究采用 1 4~ 1 8d兔胎儿的生殖嵴及周围组织与其同源成纤维细胞共培养 ,低糖DMEM +1 0 %NBS +1 0 %FCS +1 0ng/mLLIF +1 0ng/mLSCF+0 1mol/Lβ 巯基乙醇 +1 0 0U/mL青霉素 +80U/mL链霉素作培养基 ,分离出兔原始生殖细胞 (PGC) ,克隆并多次传代。从原始生殖细胞 (PGC)中获得胚胎生殖细胞 (EG)细胞集落 ,1 4d胎儿原代观察到类EG细胞集落 ,传至 4代后丢失。 1 6d胎儿的类EG只传 2代 ,1 8d胎儿没有得到EG细胞集落。EG细胞具有干细胞的诸多特征 ,呈典型的团块状聚集生长 ,碱性磷酸酶 (AKP)染色呈阳性 ,在衰老饲养层的培养基中生长形成类胚体、上皮细胞、神经细胞和成纤维细胞等  相似文献   

8.
Transplantation of bovine germinal cells into mouse testes   总被引:5,自引:0,他引:5  
To develop techniques for spermatogonial transplantation in bulls, it is essential to have an effective bioassay procedure to evaluate the transplantation efficiency of spermatogonial stem cell collection, purification, and culture techniques. The objective of the present study was to develop a mouse bioassay model to evaluate transplantation efficiency of fresh and cultured bovine germ cells. Bull calves of four ages (1, 2, 3, and 4 mo) were used as a source of donor testes cells. Two calves were used for each age point, one calf was experimentally made cryptorchidistic at 1 wk of age and the other left normal. A STO (mouse fibroblast) feeder cell line was used to culture bovine testes cells for 2 wk preceding transfer into recipient testes. Immunodeficient nude mice (nu/nu) in which endogenous spermatogenesis had been abolished by busulfan treatment served as recipient animals for transplantation. Donor bovine germ cells were microinjected into mouse seminiferous tubules. Mouse testes were analyzed 2 wk after transplant with the use of a bovine-specific antibody and whole-mount immunohistochemistry for the presence of bovine donor germ cells. Bovine testis cells were present in all recipient mouse testes analyzed. Fresh bovine testes cells were observed as colonies of round cells within mouse seminiferous tubules, indicating spermatogonial expansion and colonization; however, cultured bovine testes cells appeared as fibrous tissue and not as spermatogenic colonies. The average number of colonies resulting from donor cryptorchid testes was not different (P > 0.05) from noncryptorchid, 56+/-4 and 78+/-7, respectively. Fresh donor cells from calves older than 1 mo gave rise to a greater average number of colonies within recipient testes (P <0.05) (1 mo, 33+/-4; 2 mo, 70+/-8; 3 mo, 63+/-6; 4 mo, 87+/-9). Fresh bovine germ cells are capable of colonization in the busulfan-treated nude mouse testis, making it a suitable model for evaluation and development of spermatogonial transplant techniques in bulls.  相似文献   

9.
Transplantation of male germ line stem cells from a donor animal to the testes of an infertile recipient was first described in 1994. Donor germ cells colonize the recipient's testis and produce donor-derived sperm, such that the recipient male can distribute the genetic material of the germ cell donor. Germ cell transplantation represents a functional reconstitution assay for male germ line stem cells and as such has vastly increased our ability to study the biology of stem cells in the testis and define phenotypes of infertility. First developed in rodents, the technique has now been used in a number of animal species, including domestic mammals, chicken and fish. There are three major applications for this technology in animals: first, to study fundamental aspects of male germ line stem cell biology and male fertility; second, to preserve the reproductive potential of genetically valuable individuals by male germ cell transplantation within or between species; third, to produce transgenic sperm by genetic manipulation of isolated germ line stem cells and subsequent transplantation. Transgenesis through the male germ line has tremendous potential in species in which embryonic stem cells are not available and somatic cell nuclear transfer has limited success. Therefore, transplantation of male germ cells is a uniquely valuable approach for the study, preservation and manipulation of male fertility in animals.  相似文献   

10.
11.
Proteins encoded by p63 gene a have structural similarity with tumor suppressor p53, and were thought to induce cell cycle arrest and apoptosis during development. The p63 proteins are also expressed in the basal cells of many epithelial tissues in the adult, and supposed to play important roles in maintaining the epidermal stem cells. Previously, we reported the p63 expression in the testis of mouse embryos, suggesting their involvement in the growth arrest and apoptosis of testicular germ cells (Nakamuta and Kobayashi, J. Vet. Med. Sci. 65:853-856). In this study, we investigated the timing of this p63 expression in the germ cells during migration and colonization to the gonads. Immunohistochemical analysis of mice from embryonic day (E) 7.5 to E12.5 demonstrated that p63 positive reactivity was seen as early as E8.5 when the founder cells of germ cells, primordial germ cells (PGCs), were located in the hind gut epithelium, but PGCs were negative for p63 at E7.5 when they first appeared. p63 is expressed as six isoforms, resulting from alternative splicing at C-terminus and by the use of two promoters that generate variations at N-terminal end. RT-PCR analyses suggested that different types of p63 mRNAs were likely to be expressed in PGCs during development. These results imply that p63 may be involved in the regulation of PGC development by controlling the gene expression required for their migration and colonization to the gonads.  相似文献   

12.
The continuous production of mammalian sperm is maintained by the proliferation and differentiation of spermatogonial stem cells, which originate from primordial germ cells in the early embryo. Previously, we reported that the transplantation of fetal male gonadal tissue into the recipient testis was effective obtaining functional sperm. This transplantation technique is a promising new approach for the preservation of testicular function in a mutant animal with embryonic lethality. In the present study, we examined whether spermatogenesis from fetal male germ cells is induced under ectopic conditions in male and female recipients. Nine to 10 weeks after the transplantation of male gonads prepared from embryos at 12.5 or 16.5 days post gestation, male germ cell differentiation occurred under the skin of male and female recipient nude mice. Histological analyses revealed that grafted gonads contained haploid germ cells such as round or elongated spermatids. Furthermore, we succeeded in obtaining normal progeny by injecting the ectopically produced round spermatids into the cytoplasm of oocytes, even when the male germ cells had been generated in female recipients. These results indicate that the transplantation of fetal male gonads under the skin of recipient mice is a useful technique for obtaining functional male gametes.  相似文献   

13.
Embryonic stem cells have had a significant impact on understanding gene function and gene interactions through the use of genetically engineered mice. However, the genetic context (ie, mouse strain) in which these modifications in alleles are made may have a considerable effect on the phenotypic changes identified in these mice. In addition, tissue- and time-specific gene expression systems may generate unanticipated outcomes. This article discusses the history of embryonic stem cells, reviews how mouse strain can affect phenotype (using specific examples), and examines some of the caveats of conditional gene expression systems.  相似文献   

14.
山羊PGCs用于分离与克隆类ES细胞   总被引:11,自引:1,他引:10  
选择健康成年本地白山羊,自然发情,配种后44d取胎儿,以传统的原始生殖细胞(PGCs)分离与克隆的方法和PGCs与其胎儿生殖嵴周围组织细胞共同培养的方法获得类胚胎干细胞(类ES细胞),并对山羊类ES细胞在不同饲养层上进行培养。结果表明,采用传统方法与共培养的方法并添加细胞因子均能分离获得类ES细胞。分离获得的类ES细胞在同源(山羊)胎儿细胞饲养层上生长效果较好,可传4代或5代,而在小鼠原代成纤维细胞饲养层上类ES细胞仅传3代。另外,共培养不添加细胞因子组仅获1个ES细胞集落,传代后丢失。  相似文献   

15.
16.
The transition from male primitive germ cells (gonocytes) to type A spermatogonia in the neonatal testis is the initial process and a crucial process in spermatogenesis. However, in large domestic animals, the physiological and biochemical characteristics of germ cells during the developmental processes remain largely unknown. In this study, we characterized bovine germ cells in the developing testis from the neonatal stage to the adult stage. The binding of the lectin Dolichos biflorus agglutinin (DBA) and the expression of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) were restricted to gonocytes in the neonatal testis and spermatogonia in the adult testis. Gonocytes also expressed a germ cell marker (VASA) and stem cell markers (NANOG and OCT3/4), while the expressions of these markers in the adult testis were restricted to differentiated spermatic cells and were rarely expressed in spermatogonia. We subsequently utilized these markers to characterize gonocytes and spermatogonia after culture in vitro. Spermatogonia that were collected from the adult testis formed colonies in vitro only for one week. On the other hand, gonocytes from the neonatal testis could proliferate and form colonies after every passage for 1.5 months in culture. These colonies retained undifferentiated states of gonocytes as confirmed by the expression of both germ cell and stem cell markers. Moreover, a transplantation assay using immunodeficient mice testes showed that long-term cultured cells derived from gonocytes were able to colonize in the recipient testis. These results indicated that bovine gonocytes could maintain germ cell and stem cell potential in vitro.  相似文献   

17.
Stem cell based cell therapies offer significant potential for the field of regenerative medicine. Human amniotic fluid stem cells (hAFSCs) are an attractive source for lineage-specific differentiated stem cell therapy since they have properties that are able to differentiate into cells representing all three germ layers. To better understand the fate and location of implanted hAFSCs, a means to monitor cells in living subjects is essential. Here, we showed that differentiated cells, such as neurogenic, endothelial, and myogenic cells, derived from hAFSCs can be effectively labeled by the FITC-incorporated silica-coated nanoparticles, MNPs@SiO2 (FITC), although the labeling efficacy and cytotoxicity were distinct depending on the differentiated cell type. In addition, we observed that MNPs@SiO2-labeled cells provided sufficient signals for detection by optical and confocal microscope imaging when transplanted into the mice. These results suggest that the fluorescent dye incorporated MNPs@SiO2 are a useful tool for the cell labeling and in vivo tracking of differentiated cells derived from hAFSCs.  相似文献   

18.
The increasing focus on the pig as a biomedical model calls for studies which investigate morphological and molecular mechanisms during initial embryonic development in this species. In the pig, the paternal genome is actively demethylated in the zygote, whereas the maternal genome remains methylated. The major genome activation occurs at the four-cell stage, when prominent ribosome-synthesizing nucleoli develop in the blastomeres, allowing for trophectoderm and inner cell mass (ICM) differentiation. Unlike in mice, the pluripotency gene OCT4 is initially expressed in both compartments. The ICM differentiates into epiblast and hypoblast approximately at the time of hatching from the zona pellucida, and subsequently the loss of the Rauber's layer results in an uncovered epiblast establishing the embryonic disc again in contrast to mice. This particular and protracted ICM/epiblast biology may contribute to the lack of success in culturing porcine embryonic stem cells. The embryonic disc subsequently becomes polarized by a posterior thickening, which includes ingression of the first extra-embryonic mesoderm. Thereafter, the primitive streak forms and gastrulation results in formation of the somatic germ layers and germline, i.e. the primordial germ cells. The latter remain pluripotent for a period and may be isolated and cultured as embryonic germ cells in vitro .  相似文献   

19.
Lymphoma is the third most common cancer diagnosed in children, and T-cell lymphoma has the worst prognosis based on clinical observations. To date, a lymphoma model with uniform penetrance has not yet been developed. In this study, we generated a p53 deficient mouse model by targeting embryonic stem cells derived from a C57BL/6J mouse strain. Homozygous p53 deficient mice exhibited a higher rate of spontaneous tumorigenesis, with a high spontaneous occurrence rate (93.3%) of malignant lymphoma. Because tumor models with high phenotypic consistency are currently needed, we generated a lymphoma model by a single intraperitoneal injection of 37.5 or 75 mg/kg N-methyl-N-nitrosourea to p53 deficient mice. Lymphoma and retinal degeneration occurred in 100% of p53+/− mice administered with higher concentrations of N-methyl-N-nitrosourea, a much greater response than those of previously reported models. The main anatomic sites of lymphoma were the thymus, spleen, bone marrow, and lymph nodes. Both induced and spontaneous lymphomas in the thymus and spleen stained positive for CD3 antigen, and flow cytometry detected positive CD4 and/or CD8 cells. Based on our observations and previous data, we hypothesize that mice with a B6 background are prone to lymphomagenesis.  相似文献   

20.
Inbred laboratory mouse strains are highly divergent in their immune response patterns as a result of genetic mutations and polymorphisms. The generation of genetically engineered mice (GEM) has, in the past, used embryonic stem (ES) cells for gene targeting from various 129 substrains followed by backcrossing into more fecund mouse strains. Although common inbred mice are considered "immune competent," many have variations in their immune system-some of which have been described-that may affect the phenotype. Recognition of these immune variations among commonly used inbred mouse strains is essential for the accurate interpretation of expected phenotypes or those that may arise unexpectedly. In GEM developed to study specific components of the immune system, accurate evaluation of immune responses must take into consideration not only the gene of interest but also how the background strain and microbial milieu contribute to the manifestation of findings in these mice. This article discusses points to consider regarding immunological differences between the common inbred laboratory mouse strains, particularly in their use as background strains in GEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号