首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostaglandin F2 alpha (PGF2 alpha) was injected on d 5, 8 or 11 postestrus in ewes to determine how stage of the estrous cycle would affect PGF2 alpha-induced changes in concentrations of ovarian and pituitary hormones and intervals to the onset of estrus and the preovulatory surge of luteinizing hormone (LH). Initial concentrations of progesterone and average values during the 12 h after PGF2 alpha were related positively to the day of cycle on which PGF2 alpha was administered. Patterns of decline in progesterone after injection of PGF2 alpha were similar among the 3 d. Concentrations of LH in plasma increased in a similar manner from 0 to 12 h in all ewes. After 12 h LH continued to increase, plateaued or declined in ewes treated on d 5, 8 or 11, respectively. Initial concentrations of follicle stimulating hormone (FSH) in plasma were related positively to day of treatment. After treatment with PGF2 alpha, FSH increased within 2 h on d 5 but declined by that time on d 8 or 11. Concentrations of estradiol following treatment did not vary with day. The onset of estrus and the preovulatory surge of LH occurred at 36 and 35, 40 and 45, and 48 and greater than 48 h in ewes treated on d 5, 8 or 11, respectively. It is concluded that: 1) the initial increase in LH is dependent on a decrease in plasma progesterone and 2) differences in patterns of secretion of gonadotropins before the preovulatory surge of LH might be caused by differences in progesterone or progesterone:-estradiol ratio when luteal regression is induced on different days of the estrous cycle.  相似文献   

2.
Regulation of pulsatile LH secretion by ovarian steroids in the heifer   总被引:1,自引:0,他引:1  
Two experiments were conducted to evaluate relationships among luteinizing hormone (LH), estradiol-17 beta (E2) and progesterone secretion during the preovulatory period in the heifer after prostaglandin F2 alpha (PGF2 alpha)-induced regression of the corpus luteum. A second objective was to elucidate the effects of E2 in regulating LH secretion. In Exp. 1, LH, E2 and progesterone concentrations were determined in serial samples collected during the preovulatory period after PGF2 alpha-induced luteal regression in five Red Angus X Hereford heifers. Progesterone declined to 1 ng/ml by 12 h after the second injection of PGF2 alpha. Frequency of LH pulses increased linearly (P less than .01), whereas no change in amplitude of LH pulses was detected before the preovulatory LH surge. This resulted in a linear increase (P less than .01) in mean LH concentrations. Estradiol also increased in a linear manner (P less than .01), and the rise in E2 was parallel to the increase in mean LH concentrations. In Exp. 2, 12 Angus X Hereford heifers were ovariectomized and administered either 13.5- or 27-cm silastic implants containing E2 at ovariectomy. Four heifers served as nonimplanted controls. Thirty-one days after ovariectomy all heifers were bled at 12-min intervals for 6 h. Frequency of LH pulses declined linearly (P less than .03) while mean LH (P less than .09) and pulse amplitude (P less than .01) increased linearly as E2 dose increased. These results indicate that a reduction in progesterone increases the frequency of LH pulses during the follicular phase of the estrous cycle in cattle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Dairy goats were given IM injections of 125 micrograms of cloprostenol sodium on day 6 of the estrous cycle (prostaglandin F [PGF] 6, n = 22) or day 12 of the estrous cycle (PGF 12, n = 26). Mean +/- SE hours from injection to onset of behavioral estrus and proportion of goats responding were 46 +/- 4.2 (range, 12 to 88 hours) and 95% and 48 +/- 2.9 (range, 34 to 68 hours) and 100% for groups PGF 6 and PGF 12, respectively. There was no significant difference between the groups in mean time to onset of estrus, but variances about the means were different. Of the does in groups PGF 6 and PGF 12, 67 and 85%, respectively, had signs of onset of estrus between 36 and 60 hours after administration of PGF. Mean (+/- SE) hours from injection to time of peak concentrations of luteinizing hormone (LH) were 62 +/- 3.1 and 64 +/- 2.1 for groups PGF 6 and PGF 12, respectively. Of the does in groups PGF 6 and PGF 12, 86 and 100%, respectively, had LH peaks. Of the does in groups PGF 6 and PGF 12, 68 and 77%, respectively, had peak concentrations of LH between 48 and 72 hours after administration of PGF. All does in groups PGF 6 and PGF 12 had concentrations of progesterone greater than or equal to 1.0 ng/ml on the day of administration of PGF. Concentrations decreased to less than 1.0 ng/ml by 48 hours after injection in all does except 1 in group PGF 6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of superovulatory treatment (FSH-P vs human menopausal gonadotropin, HMG) and of route of administration (i.m. vs. i.v.) of prostaglandin F2 alpha (PGF2 alpha) on hormonal profiles were determined in 32 Angus x Hereford heifers. Heifers were superstimulated with either FSH-P (total of 26 mg) or HMG (total of 1,050 IU) beginning on d 9 to 12 of an estrous cycle and PGF2 alpha (40 mg) was administered at 60 and 72 h after the beginning of superovulatory treatments. Heifers were artificially inseminated three times at 12-h intervals beginning 48 h after PGF2 alpha treatment. Blood serum samples were collected immediately before treatments began, at 12-h intervals during the first 60 h, each 4 h during the next 96 h, and each 12 h until day of embryo collection. Concentrations of LH and FSH were not affected by hormone treatments, route of PGF2 alpha injection, or interactions between them. Estradiol-17 beta (E2-17 beta) levels were higher (P less than .05) in HMG- than in FSH-P-treated heifers 60 h after gonadotropin treatment. Peak concentration of E2-17 beta occurred earlier (P less than .05) in HMG- than in FSH-P-treated heifers and earlier in heifers injected with PGF2 alpha i.m. than in those injected i.v. Progesterone concentrations were not influenced by treatment or route of PGF2 alpha administration, but were affected (P less than .01) by the interactions between treatment and route of PGF2 alpha administration. Progesterone declined to basal levels earlier in the FSH-P- than in the HMG-treated heifers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The goal of this study was to determine the effects of short-term feed withdrawal on reproductive and metabolic hormones during the luteal phase of the estrous cycle in mature ewes. Mature ewes observed in estrus were assigned randomly to control and fasted groups (n = 10 per group Trials 1 and 2). For Trials 1 and 2, control ewes had ad libitum access to feed, whereas fasted ewes were not fed from d 7 through 11 of their estrous cycle; on d 12, all ewes were treated with 10 mg of PGF2alpha, and fasted ewes were gvien ad libitum access to feed. For Trial 1, blood samples were collected daily through fasting and at 2-h intervals following PGF2alpha for 72 h. Serum concentrations of insulin (P < or = 0.002) and IGF-I (P < or = 0.01), but not GH (P > or = 0.60), were decreased during fasting compared with fed ewes. Serum concentrations of 29 (P = 0.02) and 34 kDa (P = 0.04) IGFBP were greater in fasted ewes at 96 h after initiation of fasting than in control ewes. Two control and four fasted ewes in Trial 1 did not exhibit a preovulatory surge release of LH by 72 h. Therefore, Trial 2 was conducted so that the timing of the LH surge could be predicted following the collection of blood samples at 2-h intervals for 112 h and then at 6-h intervals until 178 h following PGF2alpha administration and realimentation. The magnitude of the preovulatory LH surge in Trial 2 was decreased (P = 0.009) and delayed (P = 0.04), and serum concentrations of estradiol were diminished (P < or = 0.03) 12 h before the LH surge in fasted ewes. Ovulation rates were not influenced (P > or = 0.32) by fasting in Trials 1 and 2. Serum concentrations of progesterone in both Trials 1 and 2 were, however, greater (P < 0.001) in fasted than in control ewes. A third trial with ovariectomized ewes was conducted to determine whether the increased serum concentrations of progesterone observed in fasted ewes during Trials 1 and 2 were ovarian-derived. Ovariectomized ewes were implanted with progesterone-containing intravaginal implants and allotted to control (n = 5) or fasted (n = 5) treatment groups and fed as described for Trials 1 and 2. Similar to intact ewes, serum concentrations of progesterone were approximately twofold greater (P < 0.001) in fasted than in control implanted ovariectomized ewes. In summary, feed withdrawal for 5 d during the luteal phase of the estrous cycle increased serum concentrations of progesterone and evoked endocrine changes that could perturb the subsequent estrous cycle.  相似文献   

6.
The role of prostaglandin F2 alpha (PGF2 alpha) in embryonic loss following induced endotoxemia was studied in mares that were 21 to 44 days pregnant. Thirteen pregnant mares were treated with a nonsteroidal anti-inflammatory drug, flunixin meglumine, to inhibit the synthesis of PGF2 alpha caused by Salmonella typhimurium endotoxin given IV. Flunixin meglumine was administered either before injection of the endotoxin (group 1, -10 min; n = 7), or after endotoxin injection into the mares (group 2, 1 hour, n = 3; group 3, 2 hours, n = 3); 12 pregnant mares (group 4) were given only S typhimurium endotoxin. In group 4, the secretion of PGF2 alpha, as determined by plasma 15-keto-13,14-dihydro-PGF2 alpha concentrations, was biphasic, initially peaking at 30 minutes followed by a second, larger peak approximately 105 minutes after the endotoxin was given IV. When flunixin meglumine was administered at -10 minutes, synthesis of PGF2 alpha was inhibited for several hours, after administration of flunixin meglumine at 1 hour, the second secretory surge of PGF2 alpha was blocked, and administration of the drug at 2 hours did not substantially modify the secretion of PGF2 alpha. Plasma progesterone concentrations were unchanged after endotoxin injections were given in group 1. In group 2, progesterone values decreased less than 2 ng/ml and remained low for several days. In group 3 and group 4, progesterone concentrations decreased to values less than 0.5 ng/ml by 48 hours after endotoxin injections were given.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Luteinizing hormone (LH) surge and follicle rupture act as trigger to start corpus luteum (CL) formation. Thus, we aimed to investigate whether a dominant follicle that has not been exposed to an LH surge can become a functional CL. For this purpose, follicular fluid from the dominant follicles (DF) of cows was aspirated before or after a GnRH-induced LH surge, and subsequent CL formation was observed. Holstein cows were divided into four groups as follows: Luteal phase, a DF was aspirated 7 days after GnRH injection; Pre-LH surge, a DF was aspirated 42 h after PGF(2alpha) injection during the mid luteal phase; Post-LH surge, a DF was aspirated 24 h after GnRH injection following PGF(2alpha); and Intact follicle, ovulation was induced by GnRH injection after PGF(2alpha). Observation of morphological changes in the aspirated follicle using color Doppler ultrasonography and blood sampling was performed on Days 0, 3, 6, and 9 (Day 0 = follicle aspiration). CL formation following DF aspiration was observed only in the Post-LH surge group. In both the Luteal phase and Pre-LH surge groups, however, none of the cows showed local blood flow at the aspirated site or CL formation. Luteal blood flow area, CL volume, and plasma progesterone concentration in the Post-LH surge group were no different from those in the Intact follicle group. The present results clearly demonstrate that rather than follicle rupture, it is the LH surge that is essential for CL formation in cows.  相似文献   

8.
The effect of the uterus on luteal lifespan and pattern of secretion of progesterone following early weaning of calves from anestrous beef cows was studied. Calves were weaned from 15 anestrous beef cows 23 to 33 d postpartum, and cows were allotted to a control (sham surgery, n = 8) or a hysterectomy (n = 7) group, with surgery performed at weaning. Cows in the hysterectomy group were injected (im) with 25 mg prostaglandin F2 alpha (PGF2 alpha) approximately 20 d after first estrus (d 0). The interval from weaning to estrus was longer (P less than .05) for the hysterectomy group (10.4 +/- 1.6 d) than the control group (6.2 +/- .5 d). In the control group, the first estrous cycle (8.8 +/- .3 d) was shorter (P less than .01) than the second estrous cycle (20.2 +/- .5 d). Following first estrus in the hysterectomy group, cows were not detected in estrus until after injection of PGF2 alpha and did not return to estrus. From d 0 to 5, mean concentrations of plasma progesterone were similar (P greater than .05) between groups for both estrous cycles; after d 5 of estrous cycle 1, concentrations of plasma progesterone decreased in the control group. Within the hysterectomy group, the pattern of secretion of progesterone from d 0 to 16 was similar after the first and second estrus. Furthermore, there was no difference in the pattern of secretion of progesterone from d 0 to 16 between hysterectomy (first or second estrous cycles) and control (second estrous cycle) groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Estrous cycles of heifers (n = 137) were synchronized with prostaglandin (PGF) and follicular development stimulated with follicle stimulating hormone. Twenty-eight animals were administered Norgestomet implants 12 hr prior to the initial PGF2α injection to suppress the LH surge that initiates ovulation. Animals were ovariectomized every 12 hr after the initial PGF2α (7–9/time, 12–108 hr and at 192 and 240 hr post PGF2α) and divided into three treatment groups to consist of: 1) animals exhibiting a normal luteinizing hormone (LH) surge (n = 86), 2) animals in which no LH surge was detected (n = 23), and 3) suppression of the LH surge via Norgestomet implants (72–108 hr, n = 28). Follicular diameter was measured and follicular fluid was collected for analysis of prolactin, estradiol, progesterone and glycosaminoglycan concentrations. Progesterone concentrations were increased in animals exhibiting an LH surge as compared to animals in which no LH surge was detected; primarily in large follicles (> 8 mm diameter) after the LH surge. Animals not exhibiting an LH surge also had increased follicular progesterone concentrations compared to Norgestomet-implanted animals (242.3 ± 36.3 vs 86.7 ± 6.4 ng/ml, respectively, P < .01), indicating some LH stimulation. Follicular estradiol in animals exhibiting an LH surge increased up to the time of LH surge detection and then declined whereas animals with no LH surge detected had follicular estradiol concentrations that declined after the PGF injection. No differences were noted between those that did not exhibit an LH surge or in which the LH surge was suppressed with Norgestomet in relation to follicular estradiol concentrations. Follicular estradiol concentrations increased with follicular size in all treatment groups (P < .01). Follicular concentrations of prolactin were increased in small follicles (P < .05; ≤ 4 mm diameter) and follicular prolactin increased from 12 to 36 hr post PGF2α injection, then declined after the LH surge. Follicular glycosaminoglycan concentrations decreased with increases in follicular size (P < .01) and were higher in animals that did not exhibit an LH surge (P < .01). No differences in follicular glycosaminoglycans were noted between Norgestomet-implanted animals and those not exhibiting an LH surge. In the animals representing days 4 and 6 of the subsequent estrous cycle (192 and 240 hr post PGF2α), numbers of small-sized follicles were increased. Follicular progesterone and estradiol concentrations were related to atretic large follicles unovulated from the prior estrus and a wave of growth in small and medium follicles. Follicular prolactin and glycosaminoglycans increased with time of the new estrous cycle and were increased in smaller follicles (P < .01). Suppression of LH with progestin implants (Norgestomet) may relate to early effects of progesterone, which may not be totally eliminated at target tissues and subsequently alters the LH surge, steroidogenesis of the follicle, and ovulation. Oocytes were predominantly found in the follicular fluid from animals in which an LH surge was detected and in the buffer wash of follicles in which no LH surge was detected. Oocyte viability was higher in animals exhibiting an LH surge (75% viable) whereas the oocytes of Norgestomet-implanted animals were 75% degenerate.  相似文献   

10.
The objective of the present study was to determine the temporal relationships among luteal adenylate cyclase activity, luteal phosphodiesterase activity, luteal progesterone concentration and plasma progesterone concentration during prostaglandin F2 alpha (PGF2 alpha)-induced luteolysis in ewes. Corpora lutea (CL) were removed from cycling ewes on d 9 (d 0 = first day of estrus) at 0, 2, 4, 6, 12 and 24 h (seven to eight ewes/group) after PGF2 alpha administration (im). Jugular blood samples were collected at the time of enucleation of CL and analyzed for progesterone. Plasma and luteal progesterone concentrations were decreased (P less than .05) by 4 and 12 h after PGF2 alpha injection, respectively. Basal adenylate cyclase, luteinizing hormone (LH)-activated adenylate cyclase, guanylylimidodiphosphate [Gpp(NH)p]-activated adenylate cyclase and LH plus Gpp(NH)p-activated adenylate cyclase activities were decreased (P less than .05) by 2 h after PGF2 alpha injection. The decrease in adenylate cyclase activity paralleled the decrease in plasma progesterone concentration over time. Luteinizing hormone stimulated (P less than .05) adenylate cyclase activity relative to basal activity at 0, 2, 12 and 24 h post-PGF2 alpha; whereas, Gpp(NH)p stimulated (P less than .01) adenylate cyclase activity relative to basal activity at each time point. In contrast to the decrease in adenylate cyclase activity, phosphodiesterase activity was increased (P less than .05) at 2 and 4 h post-PGF2 alpha. These results suggest that a decrease in adenylate cyclase activity coupled with an increase in phosphodiesterase activity may decrease the intracellular adenosine 3',5' cyclic monophosphate (cAMP) concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Effects of domperidone, a peripheral dopamine receptor antagonist, on secretion of LH and prolactin were studied during the luteal phase and following administration of PGF2 alpha. Since hyperprolactinemia has been reported to inhibit secretion of LH in ewes, effects of thyrotropin-releasing hormone (TRH) also were examined. Ewes 8-10 days post-estrus were assigned to be treated with: 1) vehicle (n = 5); 2) 0.3 mg domperidone (n = 6); 3) 1.0 mg domperidone (n = 6); 4) 3 micrograms TRH (n = 6); or 5) 10 micrograms TRH (n = 6) every 4 hours for 60 hr. Luteal regression was induced with PGF2 alpha at 12 hr after initiation of treatments. During the luteal phase, pulses of LH were more frequent (P less than .05) and the amplitudes of these were higher (P less than .05) in ewes treated with domperidone or TRH than in control ewes. These changes in LH occurred even though each treatment elevated markedly concentrations of prolactin in plasma. After induction of luteal regression, mean of LH and frequency of LH discharges were similar in all groups. However, in ewes treated with the 1.0 mg/4 hr dose of domperidone the pulse amplitude was greater than in the other groups (2.3 vs 1.1 ng/ml). Dose-response relationships and the magnitude of the prolactin release following domperidone or TRH varied with time. Treatments did not affect the timing of the LH surge or the increase in progesterone associated with the subsequent cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Fertility in cattle is related positively to concentrations of progesterone in blood during the estrous cycle preceding insemination. This study determined whether treatment of heifers with prostaglandin F2 alpha (PGF2 alpha) or human chorionic gonadotropin (hCG) during d 2 to 4 of an estrous cycle affected progesterone during that cycle and whether hormone secretion during the cycle and onset of subsequent estrus were related to progesterone secretion. Nine Holstein heifers were assigned to an experiment designed as a triplicate Latin square, and each heifer received each of three treatments during three consecutive estrous cycles. Treatments were: saline (control, 1 ml) on d 2, 3 and 4 after estrus; hCG, 1000 IU on d 2, 3 and 4; and PGF2 alpha, 25 mg on d 3 with repeated doses 12 and 24 h later. Progesterone throughout the estrous cycle was higher in heifers given hCG than in those given saline. Progesterone during the first week of the cycle was lower in heifers given PGF2 alpha than those given saline, but means for these two groups were similar thereafter. Number of peaks of 15-keto,13,14-dihydro-PGF2 alpha (PGFM) during 24 h after onset of luteolysis was lower in heifers given hCG than in those given saline or PGF2 alpha. Patterns of secretion of luteinizing hormone and estradiol at subsequent estrus were not affected by treatment. Temporal relationships among hormone secretion and onset of estrus were unaffected by treatment.  相似文献   

13.
Cystic ovarian disease is an important cause of reproductive failure. The objective of this study was to evaluate transrectal ultrasonography as a diagnostic tool and gonadotropin-releasing hormone (GnRH) as a therapeutic approach for ovarian follicular cysts in goats. Goats were considered to have a follicular cyst(s) if a non-echoic structure >10 mm in diameter was detected in the absence of corpora lutea (CL) in three ultrasonic examinations performed at 5-day intervals. After diagnosis (Day 0), goats with ovarian follicular cysts (n = 5) were treated with a single bolus injection of 10.5 microg synthetic GnRH followed by administration of 125 microg prostaglandin F2alpha (PGF2alpha) 10 days later. Five blood samples were collected at 5-day intervals for determination of progesterone and estradiol-17beta. For detection of LH surge, blood samples were collected every 2 h. Ovulation rate was determined and pregnancy was confirmed by transrectal ultrasonography. The results showed that transrectal ultrasonography is reliable for diagnosis of ovarian follicular cysts and the mean diameter of the follicular cysts was 12.6 +/- 0.4 mm. Plasma concentrations of progesterone and estradiol-17beta at the time of diagnosis of follicular cysts (Day 0) were 0.7 +/- 0.2 ng/ml and 12.7 +/- 0.9 pg/ml, respectively. The concentration of progesterone increased to 4.0 +/- 0.5 ng/ml 10 days after administration of GnRH indicating luteinization of the ovarian follicular cysts concomitant with a decrease in the concentration of estradiol-17beta (3.5 +/- 0.4 pg/ml). Administration of GnRH to cystic goats resulted in a surge of LH within 2 h of treatment. The interval from PGF2alpha injection to the preovulatory LH surge was 62.8 +/- 1.4 h. All goats exhibited estrus 55.2 +/- 2.3 h after PGF2alpha injection and four goats out of the five ovulated. The ovulation rate was 1.5 +/- 0.3. In conclusion, results of this study suggest that transrectal ultrasonography is a reliable tool for diagnosis of ovarian follicular cysts. In addition, GnRH can be used to effectively treat ovarian follicular cysts in goats with 80% success rate.  相似文献   

14.
Production of estradiol by each ovary during the estrous cycle of cows   总被引:1,自引:0,他引:1  
The objective of our experiment was to examine changes in serum concentrations of estradiol in each utero-ovarian vein before, during and after gonadotropin surges. Four cows were given prostaglandin F2 alpha (PGF2 alpha) during diestrus and three cows were allowed to cycle spontaneously. All cows had a cannula in each utero-ovarian vein and in one jugular vein. Most cows had two transient rises in estradiol, primarily coming from a single ovary, preceding and after luteinizing hormone (LH) surges. The first rise in estradiol began after luteal regression and was sustained from 48 h before a pre-ovulatory LH surge to the end of the LH surge. The second rise in estradiol was sustained from 72 to 168 h after the end of an LH surge. To determine how rapidly asymmetrical production of estradiol began during luteolysis, several cows were injected with PGF2 alpha during the luteal phase. Blood samples were taken from a jugular and both utero-ovarian veins at hourly intervals before and after PGF2 alpha. Asymmetrical production of estradiol began within 3 h after an injection of PGF2 alpha. We concluded: (1) that a single ovary was responsible for the sustained increases in concentration of estradiol that occur during proestrus to estrus and early diestrus in cows and (2) that cows may have at least one follicle capable of producing estradiol during most days of an estrous cycle, thus little delay in selection of which follicle eventually ovulates occurs after luteal regression.  相似文献   

15.
This study was designed to evaluate the effects of exogenous prostaglandin F2 alpha (PGF2 alpha) on hormone secretion in cows without a corpus luteum. Blood samples were taken from 10 Friesian dairy cows at frequent intervals from a jugular vein and the caudal vena cava starting between nine and 20 days after parturition. PGF2 alpha (25 mg dinoprost) was injected intramuscularly into five cows after the first eight hours of sampling. Plasma concentrations of 13,14-dihydro 15-keto PGF2 alpha (PGFM) increased rapidly but had returned to baseline by 14 hours after injection. There was no significant effect of the treatment on the time taken by the cows to resume ovarian cycles, and it had no consistent effect on plasma luteinising hormone (LH) patterns; however the amplitude of pulses of LH was temporarily suppressed in two cows and the frequency of pulses of LH was immediately increased in one cow. Treatment with PGF2 alpha had no significant effect on the concentration of oestradiol in blood from the vena cava. It is concluded that any enhancement of the reproductive performance of cows treated with PGF2 alpha after parturition is not due to a direct effect on pituitary-ovarian function.  相似文献   

16.
The effect of glucocorticoids on gonadal steroid and gonadotropic hormone concentrations and subsequent follicular activity in cows undergoing normal estrous cycles was evaluated by administration of dexamethasone (DXM) during the middle of the luteal phase. Seven cows were given physiologic saline solution twice daily from day 13 to day 17 of the estrous cycle (control experiment). During the next estrous cycle, cows were administered DXM (2 mg, IM) twice daily on days 13 through 17. Plasma specimens obtained twice daily throughout the control and DXM-treatment cycles were assayed for progesterone and estradiol concentrations. The appearance of estrus after DXM treatment was delayed until days 23 to 25 in 3 cows and was not seen by day 35 in the other 4 cows, compared with mean (+/- SD) cycle length of 22.4 +/- 3.2 in cows during the control experiment. Progesterone concentration remained significantly (P less than 0.01) high on days 19 to 23, whereas estradiol values failed to increase (P less than 0.05) on days 19 and 20 after treatment with DXM. Blood samples were obtained at 15-minute intervals for 12 hours to compare (by analysis of covariance) the effect of DXM treatment on plasma hormone concentrations on day 15 of each cycle with those of day 10. Compared with values during the control experiment, a significant (P less than 0.05) decrease was observed in the size of the pulses of luteinizing hormone (LH) and estradiol, although the number of pulses of each hormone per 12 hours was not affected when cows were given DXM. Baseline concentrations of LH and estradiol were not altered by type of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Indomethacin (INDO, n = 5) or vehicle (CONTROL, n = 4) was injected into superovulated heifers at 48 and 60 h following a luteolytic cloprostenol injection (0 h). One heifer from each group was ovariectomized (OVX) at 48, 56, 64 and 72 h. The fifth heifer of the INDO group was OVX at 80 h. Blood samples were collected at 0 h, every 2 h between 37 and 47 h, and at the time of each OVX to monitor plasma progesterone (P4) and luteinizing hormone (LH) concentrations. Following each OVX, the number and size of follicles were recorded and the incidence of ovulation determined. Follicular fluid (FF) was aspirated from follicles greater than or equal to 8 mm to determine the concentration of prostaglandins E2 (PGE2) and F2 alpha (PGF2 alpha). The highest PG concentrations were measured in both groups at 24-25 h following the preovulatory LH surge and the PGF2 alpha concentration at this time was significantly greater (p less than 0.01) in the CONTROL group compared to the INDO group. By 35-36 h after the LH surge, 75% (25/34) of the CONTROL follicles had ovulated, whereas there were no ovulations (0/50) on either ovary of the INDO treated heifer. These preliminary results suggest that the preovulatory rise of PGs in FF, particularly PGF2 alpha, is essential for ovulation and that suppression of this rise with indomethacin will inhibit ovulation in heifers.  相似文献   

18.
Two experiments were conducted to investigate the response of the bovine corpus luteum to surges of luteinizing hormone (LH) induced by natural gonadotropin-releasing hormone (GnRH) administered twice during the same estrous cycle. In experiment 1, eight mature beef cows, each cow serving as her own control, were injected intravenously (iv) with saline on days 2 and 8 of the cycle (day of estrus = day 0 of the cycle), then with 100 micrograms GnRH on days 2 and 8 of the subsequent cycle. Jugular blood samples were taken immediately prior to an injection and at 15, 30, 45, 60, 120 and 240 min postinjection, to quantitate changes in serum luteinizing hormone. Blood was also collected on alternate days after an injection until day 16 of the cycle, to characterize changes in serum progesterone concentrations. Although exogenous GnRH caused release of LH on days 2 and 8 of the cycle, the quantity of LH released was greater on day 8 (P less than .025). Serum levels of progesterone after treatment with GnRH on day 8 of the cycle did not differ significantly from those observed during the control cycles of the heifers. Because exposure of the bovine corpus luteum to excess LH, induced by GnRH early during the estrous cycle, causes attenuated progesterone secretion during the same cycle, these data suggest that a second surge of endogenous LH may ameliorate the suppressive effect of the initial release of LH on luteal function. Duration of the estrous cycle was not altered by treatment (control, 20.4 +/- .5 vs. treated, 20.4 +/- .4 days).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Two experiments were conducted to determine whether constant infusion of oxytocin would prolong the luteal phase and inhibit uterine prostaglandin F2 alpha (PGF2 alpha) secretion in heifers. In Experiment 1, twelve heifers, treated with saline (SAL) or oxytocin (OXY) via jugular cannulae infusions (INF) or osmotic minipumps (OMP), were allotted at estrus into four treatment groups (n = 3). Treatments were: SAL-INF, SAL-OMP, OXY-INF and OXY-OMP. Physiological saline or oxytocin was given from Days 10 to 23 (Day 0 = estrus) of the estrous cycle. Method of treatment (jugular cannula infusion or osmotic minipump) had no effect (P greater than 0.05) on estrous cycle length or pattern of secretion of progesterone; therefore, data were pooled. Estrous cycle lengths were extended (P less than 0.01) for heifers which received oxytocin (25.3 +/- 0.4 d) compared to saline (20.5 +/- 0.4 d). Luteolysis did not occur in oxytocin-treated heifers until after treatment ceased. Experiment 2 was designed and conducted identically to Experiment 1 with the addition of a "challenge" injection of oxytocin (100 IU oxytocin, i.v.) given on Day 16 of the estrous cycle. Treatment of heifers with oxytocin extended (P less than 0.05) estrous cycle length by an average of 3 d compared to heifers treated with saline. The "challenge" injection induced (P less than 0.05) secretion of PGF2 alpha (as measured by the stable PGF2 alpha metabolite, 15-keto-13,14-dihydro-PGF2 alpha) in saline-treated but not oxytocin-treated heifers. In both Experiment 1 and 2, serum concentrations of FSH were elevated (P less than 0.05) in oxytocin-treated heifers. No increase was observed for LH or prolactin. The rise in estradiol-17 beta at luteolysis was not affected (P greater than 0.10) by treatment. In summary, constant infusion of oxytocin extended luteal lifespan, prolonged secretion of progesterone, and inhibited oxytocin-induced secretion of PGF2 alpha. Constant infusion of oxytocin did not affect serum concentrations of estradiol-17 beta, LH or prolactin; however, serum concentrations of FSH were elevated during the oxytocin treatment period.  相似文献   

20.
A study was conducted to determine the effect of charcoal-extracted, bovine follicular fluid (CFF) on plasma follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations, the interval from luteolysis to estrus, and subsequent luteal function in heifers. Fifteen Angus, Simmental and Hereford heifers were allotted by age, weight and breed to a control (C, n = 8) or a CFF (n = 7) group. Heifers received injections of saline or CFF (iv, 8 ml/injection) every 12 h from d 1 (d 0 estrus) through d 5 of the estrous cycle. On d 6, each heifer was injected (im) with 25 mg of prostaglandin F2 alpha (PGF2 alpha). Blood samples were collected every 12 h by venipuncture starting just before the first saline or CFF injection and continuing until estrus. Thereafter, blood samples were collected every other day during the subsequent estrous cycle and assayed for FSH, LH, estradiol-17 beta and progesterone by radioimmunoassay. Injections of CFF had no effect (P greater than .05) on circulating FSH or LH concentrations from d 1 to 5 relative to the C group; however, there was a transient rise (P less than .05) in FSH concentrations 24 h following cessation of CFF injections. This transient rise in FSH was not immediately followed by an increase in plasma estradiol-17 beta concentrations. Although CFF injections did not interfere with PGF2 alpha-induced luteolysis, the interval from PGF2 alpha injection to estrus was delayed (P less than .05) by 5 d in the CFF group compared with the C group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号