首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium species causing maize kernel rot are major threats to maize production, due to reduction in yield as well as contamination of kernels by mycotoxins that poses a health risk to humans and animals. Two-hundred maize kernel samples, collected from 20 major maize growing areas in Ethiopia were analyzed for the identity, species composition and prevalence of Fusarium species and fumonisin contamination. On average, 38 % (range: 16 to 68 %) of maize kernels were found to be contaminated by different fungal species. Total of eleven Fusarium spp. were identified based on morphological characteristics and by sequencing the partial region of translation elongation factor 1-alpha (EF-) gene. Fusarium verticillioides was the dominant species associated with maize kernels (42 %), followed by F. graminearum species complex (22.5 %) and F. pseudoanthophilium (13.4 %). The species composition and prevalence of Fusarium species differed among the areas investigated. Fusarium species composition was as many as eight and as few as four in some growing area. The majority of the maize samples (77 %) were found positive for fumonisin, with concentrations ranging from 25 μg kg?1 to 4500 μg kg?1 (mean: 348 μg kg?1 and median: 258 μg kg?1). Slight variation in fumonisin concentration was also observed among areas. Overall results indicate widespread occurrence of several Fusarium species and contamination by fumonisin mycotoxins. These findings are useful for intervention measures to reduce the impact of the main fungal species and their associated mycotoxins, by creating awareness and implementation of good agricultural practices.  相似文献   

2.
Internal fruit rot in bell pepper (Capsicum annuum L.) is mainly caused by members of the Fusarium lactis species complex (FLASC) and to a lesser extent by Fusarium oxysporum and Fusarium proliferatum. Despite the importance of the disease, there is hardly no information about growth, sporulation and germination dynamics of FLASC. In order to understand the dominance of FLASC as main pathogen of internal fruit rot, the effects of temperature (5 °C – 35 °C), water activity (aw 0.76–0.96), pH (pH 3 - pH 9) and oxygen concentration (2.5% - 20%) on growth and sporulation of all three Fusarium species were compared. In addition, germination kinetics were also investigated. FLASC showed optimal mycelium growth and sporulation in the narrow range of 25 °C, while both other strains were also tolerant for higher temperatures to 30 °C. FLASC was also characterized by a broad pH optimum from pH 3–7 while F. oxysporum (pH 4–7) and F. proliferatum (pH 5–8) were more demanding concerning pH. In addition, optimal sporulation occurred in the acid region for FLASC (pH 3) whilst neutral and alkaline pH were more favourable for the other species. Germination kinetics revealed that FLASC did not benefit from an earlier and/or faster germination process. A thorough understanding of the growth characteristics and dominance of FLASC as main pathogen for internal fruit rot is inevitable to develop sustainable control measures for the disease.  相似文献   

3.
The ability to control soil-borne pathogens in agriculture is highly conditioned by the restricted use of synthetic pesticides. Allelopathy, the antimicrobial activity of plant extracts, is a promising option against crop pathogens. Extracts from Lycium spp. such as L. barbarum, L. chinense and L. intricatum possess biological and therapeutic properties. Individual methanolic extracts from leaves and stems of the Mediterranean medicinal species L. europaeum collected in two locations of Tunisia were each evaluated in vitro against Verticillium dahliae (Vd), Sclerotinia sclerotiorum (Ss) and Harpophora maydis (Hm). The mycelial growth of the three fungi was significantly reduced by all the extracts at doses of 10 and 30 μl mL?1 (equivalent to 1 and 3 mg plant tissue mL?1). The sporulation of Hm was almost completely inhibited in all the amendments, but that of Vd was stimulated by one of the leaf extracts when 1 and 3 mg dried plant tissue mL?1 were used. Sclerotia of Ss were formed in a smaller number, their total weight increasing at extract doses equivalent to 1 mg plant tissue mL?1 and higher. In greenhouse, the pathogenicity of Hm was confirmed as early as 6 weeks after inoculation, since it caused significant decreases of weights in both roots and aboveground parts of maize. The detrimental effect of Hm on maize root weight in greenhouse was significantly counteracted by one of the leaf extracts added by watering. In total, 11 phenolic compounds were separated in the four extracts. The hydroxycinnamic acid family, including chlorogenic acid as a major compound, represented more than 50% of the total content in all the samples. Rutin was the most abundant flavonoid. The results of this work show the detrimental effect of L. europaeum extracts against the soil-borne pathogens Hm, Ss and Vd, and highlight their potential in crop protection if adequately developed into final products and used in combination with other tools.  相似文献   

4.
Soft rot of Chinese cabbage is a disease of great economic importance to the State of Pernambuco, Brazil. The present study aimed to evaluate the effect of two calcium sources in different concentrations (calcium nitrate [Ca(NO3)2] at 0, 0.15 and 0.3 g l?1 and calcium chloride (CaCl2) at 0, 1 and 5 g l?1) that were applied through two methods (leaf spraying and soil drenching) on the control of soft rot. Further, it aimed to analyze calcium absorption by the plant and to determine calcium’s role in leaf and cell structure using microscopy. Ca(NO3)2 applied by both methods was effective in controlling soft rot caused by Pectobacterium carotovorum subsp. carotovorum, as it reduced the disease by up to 48.5 % when sprayed onto the leaves (0.15 g l?1). A significant increase in the leaf calcium content was observed only in the plants that were sprayed with higher doses of Ca(NO3)2 and CaCl2. In all of the calcium treatments, light microscopy analyses revealed an increased number of chloroplasts and improved structuring of the palisade parenchyma, while transmission electron microscopy analyses revealed an increased cell wall thickness that was especially evident for the 0.15 g l?1 Ca(NO3)2 treatment applied by leaf spraying and soil drenching.  相似文献   

5.
Fusarium proliferatum has been identified as the main causal agent of bulb rot of garlic (Allium sativum L.). This disease occurs after the drying process and can rot almost 30 % of the bulbs. Few studies are available regarding the effectiveness of chemical treatments to reduce F. proliferatum incidence in garlic. The efficacy of three commercial fungicides of different chemical groups to reduce seven strains of F. proliferatum mycelial growth was tested in vitro. These three fungicides were also evaluated by foliar spreading of aqueous suspension in a field crop. Fluopyram 20 % + tebuconazole 20 % and tebuconazole 50 % + trifloxystrobin 50 % were highly effective at reducing mycelial growth in F. proliferatum with EC50 values <2 ppm. In general, the effectiveness of the fungicides was enhanced with increasing dosage. Our results indicate that the fungicides evaluated in this study may lead to a risk of resistance appearing in F. proliferatum at low concentrations and this risk is maintained at higher doses for the fungicide dimethomorph 7.2 % + pyraclostrobin 4 %. Although several of the fungicides affected in vitro mycelial growth of F. proliferatum, as a part of an strategy to measure the efficacy of resistance management it is necessary to monitor the ongoing efficacy of fungicides under commercial conditions. All fungicidal treatments tested in field application failed to control garlic bulb rot during storage.  相似文献   

6.
Severe outbreaks of Alternaria leaf blotch and fruit spot were recently observed in cv. Pink Lady apples in northern Israel, especially on fruit. Such severe outbreaks have not been reported from other countries. Symptoms involved cracks and rot around the calyx and external rot of the fruit body. Up to 80 % of the fruit in some orchards were affected by the disease. Microscopic examinations, fulfillment of Koch’s postulates and molecular (genetic) analyses confirmed the causal agent as Alternaria alternata f. sp. mali. The incidence of Alternaria increased as the degree of calyx cracking increased, or if fruit were both cracked and rotted. Injecting spore suspensions into the fruit produced typical rot symptoms. Injection assays of detached fruit of eight apple cultivars showed that cvs. Pink Lady and Golden Delicious were susceptible whereas cv. Jonathan was resistant. Pink Lady and Golden Delicious produced more fruit rot as the inoculum concentration increased. Rot in all three cultivars was moderate close to the skin but more severe close to the seed locule. Aqueous extracts taken from Jonathan fruit peel inhibited germ tube elongation of A. alternata f. sp. mali in vitro. This is the first report on heavy infection of Pink Lady fruit in Israel caused by A. alternata f. sp. mali.  相似文献   

7.
Fungi within the Colletotrichum acutatum species complex occur asymptomatically on plant parts of many different plant species. Leaves from apple orchards in southern Norway were sampled, frozen for five hours and incubated for six days to reveal presence of asymptomatic infections of C. acutatum. Number of leaves (incidence) and leaf area covered (severity) with conidial masses of C. acutatum were assessed biweekly on cv. Aroma from late May to late September during three growing seasons. The first finding of conidial masses occurred in the second half of July, and there was a higher incidence occurring in August and September. Sampling of leaves from fruit spurs and vegetative shoots of cvs. Aroma and Elstar showed that conidial masses of C. acutatum developed on leaves on both shoot types, and there was no difference in incidence between these two types. The fungus was detected on leaves from six of eight commercial orchards of cv. Aroma over three years, with a mean incidence of 5.5 %. After storage, bitter rot was found on apple fruit from all eight orchards. There was no correlation between incidence of conidial masses of C. acutatum on leaves and on fruit. In all orchards and seasons investigated, incidence and severity on leaves varied from 0 to 67 % and 0 to 85 %, respectively. The discovery of apple leaves containing conidial masses of C. acutatum clearly indicate for leaves as a potential source of inoculum for fruit infections.  相似文献   

8.
Infection of Malus x domestica cv. Royal Gala fruit by Colletotrichum acutatum causing bitter rot was studied in the temperate climate of New Zealand. Temperatures above 15 °C were required for lesions to develop on detached apple wound-inoculated or inoculated without wounding with C. acutatum spores, regardless of maturity. A wetness period of 72 h was required for infection of mature detached apple fruit without wounding. On wound-inoculated detached apple fruits, sporulation was related to temperature and followed a similar pattern. In the field, a mean temperature above 15 °C for 72 h after wound-inoculation was required for lesions to develop. Buds were a more important source of inoculum than twigs, and it was shown that C. acutatum could be isolated more frequently from outer bud scales than from inner scales. Asymptomatic infection of vegetative and reproductive buds was detected. C. acutatum was detected on asymptomic surface-sterilised petals and fruit, more commonly during summer than spring. Symptomless sterilised leaves generally yielded C. acutatum throughout the season, but isolations were more frequent in summer. Recovery of inoculum using a splash meter to detect vertical dispersal showed that in summer inoculum was primarily splashed up from the ground. In spring, inoculum was recovered in similar quantities from all heights up to a metre, suggesting that splash dispersal occurs from the canopy as well as from the ground. A disease cycle for C. acutatum infecting apples and causing bitter rot in New Zealand is suggested.  相似文献   

9.
Botrytis cinerea is a fungal pathogen that limits rose production and commercialization worldwide. Therefore, we evaluated a novel postharvest treatment against Botrytis cinerea in roses (Rosa sp. cv Vendela) using coating bases and antifungal agents of natural origin. Aloe vera pulp, cassava starch and gelatin were used as coating bases. Oregano essential oil (Origanum vulgare), thyme essential oil (Thymus vulgaris) and chitosan were used as natural antifungal agents. The coating bases were evaluated in different concentrations to observe effects of toxicity and opening diameter in rose buds. Gelatin and cassava starch coatings inhibited rose opening and showed petal damage in all concentrations tested. However, Aloe vera pulp at 25% allowed normal buds’ opening and no damage was observed, indicating that Aloe vera could be an ideal coating base for rose postharvest treatments. During in vitro assays, natural antifungal agents efficiently inhibited Botrytis cinerea growth in the concentrations tested. Further, mixture treatments of Aloe vera pulp (25%) with oregano essential oil (1%), thyme essential oil (0.1%) and chitosan (0.1%) showed independently neither damage nor opening inhibition in rose buds. Selected combinations of Aloe vera pulp and natural antifungal agents were applied in roses infected with Botrytis cinerea to evaluate their control of this pathogen. Unfortunately, the selected combinations did not reduce pathogen growth during postharvest treatments since they were similar to untreated controls. Further research has to be performed to find ideal combinations with Aloe vera that could inhibit B. cinerea during postharvest treatments in roses.  相似文献   

10.
White powdery rot in figs caused by Phytophthora palmivora is an important disease resulting in severe fruit rot, but is not currently effectively controlled in Japan due to a lack of understanding of its epidemiology. Therefore, the effects of temperature, zoospore concentration, infection period, and fruit maturity on infection of figs were examined by inoculating the fruit with a suspension of P. palmivora zoospores. The zoospores germinated at temperatures from 5 to 35 °C, with the optimum temperature range being 20–35 °C. Germ tube length in zoospore cysts was greatest at 20–30 °C. The disease developed in green figs at temperatures from 20 to 30 °C. Figs inoculated with as few as 10 zoospores per fruit developed severe symptoms at the optimum temperature (25 °C). The minimum infection period required for infection was 2 h at 20–28 °C. All of the figs developed symptoms within an 8 h infection period at 25 or 28 °C, and with a 6 h infection period at 25 °C. All fruit at different stages of development (immature fruit, yellow fruit, and mature fruit) developed symptoms. These results indicate that P. palmivora is capable of infecting figs over a wide range of temperatures, within a short infection period, at a low concentration of zoospores, and at any stage of development. These data could be used to construct forecasting models and develop effective control systems for white powdery rot.  相似文献   

11.
In previous research, concentrated metabolites produced by bacteria of the genera Xenorhabdus and Photorhabdus (which are symbionts of entomopathogenic nematodes) were reported to be highly suppressive to fungal and oomycete plant pathogens. Conceivably, application of non-concentrated bacterial filtrates would be more economically feasible compared to using concentrated metabolites. We evaluated the potency of 10 % v/v cell-free supernatants of the bacteria X. bovienii, X. nematophila, X. cabanillasii, X. szentirmaii, P. temperata, P. luminescens (VS) and P. luminescens (K22) against Fusicladium carpophilum (peach scab), F. effusum (pecan scab), Monilinia fructicola (brown rot), Glomerella cingulata (anthracnose) and Armillaria tabescens (root rot). A bioactive compound derived from Photorhabdus bacteria, trans-cinnamic acid (TCA), was also compared with the bacterial filtrates. Fungal colony size based on manual measurements was compared for accuracy to measurements taken by image analysis. Supernatants of Xenorhabdus spp. exhibited stronger suppressive effects on spore germination and vegetative growth when compared with Photorhabdus spp. Overall, TCA was the most effective treatment; vegetative growth was completely inhibited by TCA (1.27 mg/ml). TCA treatments also suppressed spore germination of F. carpophylium and F. effussum by approximately 90 %. The efficacy of supernatants varied among Xenorhabdus species depending on the species tested, but X. szentirmaii filtrates tended to cause greater inhibition relative to the other bacteria supernatants. Manual measurement of colony diameter required at least two replicate estimates of the colony to avoid a type II error. Area measurements were slightly overestimated based on ruler measurements, but did not affect the outcome of the analysis. Supernatants of Xenorhabdus spp., Photorhabdus spp., or TCA, did not cause any phytotoxic effects when applied to various plant species in the greenhouse. Our results indicate the potential of using TCA or Xenorhabdus cell free supernatants as bio-fungicides. Such a product, based on bacterial culture supernatants, would be economically viable, marketable and easily applicable by the end-users in many situations.  相似文献   

12.
This investigation examines the effects of pH and titratable acidity on the growth and developments of a strain of Monilinia laxa (Aderhold & Ruhland) at seven different pH levels in Potato Dextrose Agar media and on peach fruit from formation to commercial maturity. The fungi growth was obtained by daily measurement of mycelia on the pH amended Potato Dextrose Agar. The sporulation performance was determined after 30 days of culture incubation. Fruits were inoculated with M. laxa, from fruit set to maturity, on weekly basis for brown rot susceptibility. The pathogen development, in vitro, was affected, by the pH (2.4–11.52) amended nutrient media. M. laxa exhibited variation in its growth and sporulation capacities on the seven pH amended PDA, preferring relatively moderate acidic conditions for optimum performance. In the in vitro analysis, there was mycelia growth at pH 2.40 to 8.84, while pH 11.52 did not support any mycelia growth. There was a continuous and stable increase in weight of fruit as it developed whereas the fruit size increased, then decreased and finally increased as the fruit develops. The acidity dynamics exhibited a non-sinusoidal waveform through the growth and development of the fruit. In all these characteristic variations, M. laxa did not develop infection or shown any brown rot incidence in the fruit until the period of commercial maturity.  相似文献   

13.
Weed suppression in sugar beets (Beta vulgaris.) is commonly achieved with two to three post-emergent herbicide applications across the entire field. Field studies were performed, in order to investigate the weed suppressing ability of Medicago lupulina, Trifolium subterraneum and a mixture of Lolium perenne and Festuca pratensis as living mulches in sugar beet at four locations in South Germany during 2014 and 2015. Living mulches were sown 2 and 30 days after sowing (DAS) of sugar beet. Weed densities ranged from 0 to 143 plants m?2 with Chenopodium album, Polygonum convolvulus and Polygonum aviculare being the most abundant weed species. It has been found that living mulches could reduce herbicide input up to 65?%. Weed suppression of living mulch was highest with Trifolium subterraneum (71?%). The early sown living mulches (2 DAS) revealed a 28 g m?2 higher biomass compared to late sowing (30 DAS). However, no any linear correlation was found between living mulch biomass and weed suppression. White sugar yield (WSY) was highest in the herbicide treatments (12.6 t ha?1). Trifolium subterraneum yielded the highest WSY of the living mulches with 11.1 t ha?1 across all locations. Our work reveals that living mulch can play a major role in integrated plant protection by reducing herbicides in sugar beet production.  相似文献   

14.
A duplex qPCR detection method was developed to detect and quantify Colletotrichum godetiae and C. acutatum sensu stricto (s.s.) in olive tissues. The method proved highly specific and sensitive with a detection limit of 10 pg for each pathogen. The analysis of green and senescent leaves, fertilized fruitlets with floral residues, green fruit and symptomatic and asymptomatic fruit collected in May, June, October and December revealed a high incidence of both C. godetiae and C. acutatum s.s. in Calabria, southern Italy. In comparison with previous reports, these results highlighted an ongoing population shift from C. godetiae to C. acutatum s.s. Interestingly, C. godetiae was slightly more abundant in terms of number of infected samples, yet the quantity of C. acutatum in infected samples was always higher, suggesting greater aggressiveness and/or sporulation ability of the latter pathogen. The populations of both C. godetiae and C. acutatum s.s. increased sharply in December even though both pathogens were detected widely in asymptomatic samples in May, June and October, confirming an important role of latent infections in the disease cycle. A large quantity of both C. godetiae (1.7 × 108 cells/mg of tissue) and C. acutatum s.s. (7.5 × 108 cells/mg of tissue) was estimated in symptomatic fruit, presenting an enormous inoculum potential for secondary infections. Two other important observations were a high incidence and quantity of both pathogens in senescent leaves and in fertilized fruitlets with floral residues as compared to green leaves.  相似文献   

15.
In a survey for postharvest diseases of apples and pears in the Netherlands, an unknown postharvest fruit rot was observed. The disease appeared to originate from infected lenticels. A fungus was consistently isolated from the decayed fruits. The fungal pathogen was isolated on potato dextrose agar, and at low temperatures development of a fast-growing whitish mycelium was observed. Growth of this fungus was observed between 1 and 20 °C with an optimum at 15 °C, while incubation of mycelium at 25 °C resulted in no growth. The isolates did not produce asexual or sexual spores. The isolates were characterized and identified by morphology and molecular phylogenetic analysis. Genomic DNA was isolated and amplified using ITS1-ITS4, EF1 and RPB2 primers, and BLAST searches in GenBank placed the fungus taxonomically in the genus Fibulorhizoctonia, with the highest matches to F. psychrophila. Pathogenicity of representative isolates from apple and pear fruit was confirmed under laboratory conditions. To the best of our knowledge this is the first report of F. psychrophila causing lenticel spot on apple and pear, and also the cause of a whitish mould on storage bins.  相似文献   

16.
Entomopathogenic nematodes in the genus Steinernema are associated with Xenorhabdus spp. bacteria. When steinernematid colonise an insect host the nematode-bacterium association overcomes the insect immune system and kills the host within 48 h. Xenorhabdus spp. produce secondary metabolites that are antifungal to protect nematode-infected cadavers from fungal colonization. The concentrated, or cell-free metabolites of X. szentirmaii exhibit high toxicity against various fungal plant pathogens and show potential as natural bio-fungicides. In the current study, we determined 1) thermo-stability, 2) dose-response, and 3) shelf-life of antifungal metabolites of X. szentirmaii against Monilinia fructicola (cause of brown rot of peach and other stone fruit) and Glomerella cingulata (cause of antharacnose). Thermo-stability was determined by autoclaving bacterial culture broths (121 °C and 15 psi for 15 min) and measuring fungal growth on in potato dextrose agar (PDA) containing 10% of the supernatants. Autoclaving had no impact on the antifungal activity of the secondary metabolites. Over a test period of 9 months, the activity of both extract types did not decline when stored at 4 or 20 °C. A dose-response study (10, 20, 40, 60, 80 and 100% supernatant-containing metabolite) using both phytopathogens demonstrated that a greater dose of supernatant increased antifungal activity. The antifungal-metabolite containing supernatant of X. szentirmaii has potential as a bio-fungicide. These results demonstrate the metabolite(s) are thermo-stable, they have a long shelf-life and require no stabilizing formulation, even at room temperature.  相似文献   

17.
Brinjal shoot and fruit borer Leucinodes orbonalis Guen. is a major pest of brinjal in India. The field collected larvae of L.orbonalis were tested for their susceptibility to three diamide insecticides by fruit dip bioassay technique. Cyantraniliprole and chlorantraniliprole were 5.23 and 2.80 times more toxic to L. orbonalis as compared to flubendiamide. Large variation in the susceptibility of L. orbonalis to cyantraniliprole, chlorantraniliprole, flubendiamide was observed and the LC50 values were 0.084, 0.157 and 0.439 mg a.i. L?1, respectively. In span of two years there was a significant increase in the LC50 values of cyantraniliprole (0.062 to 0.085 mg a.i. L?1), chlorantraniliprole (0.097 to 0.157 mg a.i. L?1), flubendiamide (0.284 to 0.439 mg a.i. L?1) to population of L. orbonalis, which showed 1.35, 1.62 and 1.55 fold resistance, respectively indicating faster development of resistance to diamide insecticides.  相似文献   

18.
With the expansion of passion fruit cultivation in Brazil, phytosanitary problems have increased, among them, the occurrence of root-knot nematodes. This research aimed to study the response of passion fruit genotypes to Meloidogyne incognita, M. javanica and M. enterolobii in addition to evaluating the life cycle of M. enterolobii in the passion fruit genotype ‘FB 200’. The genotype response was carried out in a greenhouse. Each pot’s soil was inoculated with 5000 eggs. Gall index, egg mass index and nematode reproduction factors were evaluated at 120 days after inoculation. All genotypes studied were resistant to M. incognita, M. javanica and M. enterolobii, except ‘Roxinho do Kênia’, which was susceptible to the three nematode species. The life cycle of M. enterolobii in “FB 200” passion fruit was studied in a growth chamber at 26 °C with a photoperiod of 12 h. Seven days after transplantation, each plant was inoculated with approximately 400 second-stage juveniles. Evaluations were done at 7, 14, 21, 28, 35, 42 and 49 days post inoculation. The nematode did not complete its life cycle.  相似文献   

19.
Four Neofabraea species are responsible for bull’s eye rot, which is an important postharvest disease of apples and pears. The species diversity of its causal agents in Europe has not been thoroughly explored using molecular genetic methods. Eighty-one Neofabraea isolates were obtained mostly from apples with bull’s eye rot symptoms in the Czech Republic over a two year period. The isolates were identified using PCR fingerprinting and DNA sequencing of the ITS rDNA region, the mitochondrial SSU rDNA and the β-tubulin and EF1α genes. The most common species was N. alba (89 %), followed by N. perennans (5 %) and N. kienholzii (5 %). This is the third published record of N. kienholzii in Europe. The species identity of the isolate CPPF507, which was placed close to N. kienholzii, remains unclear. EF1α was shown to be a suitable marker for the identification of species of the genus Neofabraea and was comparable to the previously used β-tubulin gene. Furthermore, the aggressiveness of individual species was compared and species distribution across Europe was summarized. N. perennans and isolate CPPF507 proved to be the most aggressive, whereas the least aggressive was N. kienholzii. Two N. alba isolates isolated from symptomless apple fruits and leaves were pathogenic to apples in the infection tests.  相似文献   

20.
Southern corn leaf blight (SCLB) caused by Cochliobolus heterostrophus is a fungal disease that impacts production of corn in China. Fungicides have been the main strategy to manage SCLB. In this study, 276 isolates of C. heterostrophus from seven locations in Fujian Province of China were tested for sensitivity to three demethylation inhibitor (DMI) fungicides. The results indicated that most of the isolates of C. heterostrophus tested were exceptionally sensitive to the three DMI fungicides. Correlation analysis revealed positive association between propiconazole and diniconazole (r?=?0.8145, P?<?0.0001), propiconazole and prochloraz (r?=?0.6190, P?<?0.0001), and diniconazole and prochloraz (r?=?0.5784, P?<?0.0001). However, there was no cross-resistance between these three DMI fungicides and the other six fungicides tested, which included carbendazol, chlorothalonil, mancozeb, iprodione, fluazinam, and pyraclostrobin. In a preventive pot experiment, one spray of 25% propiconazole emulsifiable concentrate (EC) with 250 μg active ingredient (a.i.) mL?1 applied 12 and 24 h before inoculation at the seedling (V6) stage reduced severity of SCLB by 85.60–89.21%. Nevertheless, the curative activity of propiconazole was much weaker (P?<?0.05) than its preventive efficacy. In greenhouse pot assays, one dose of propiconazole at 250 μg a.i. mL?1 was the most efficacious for controlling SCLB at the seedling and tasseling (VT) stages of corn, decreasing severity by 80.31%–84.85%, which was higher (P?<?0.05) compared to diniconazole, prochloraz, and other reference fungicides. Therefore, propiconazole appears to be very effective in reducing SCLB and should be applied as a preventive rather than therapeutic fungicide. Our findings provide essential information on the evolution of DMI resistance in C. heterostrophus in Fujian Province of China and may serve as a guide for early resistance monitoring in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号