首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies indicate that aerobic rice can suffer injury from ammonia toxicity when urea is applied at seeding. Urea application rate and soil properties influence the accumulation of ammonia in the vicinity of recently sown seeds and hence influence the risk of ammonia toxicity. The objectives of this study were to (i) evaluate the effects of urea rate on ammonia volatilization and subsequent seed germination for a range of soils, (ii) establish a critical level for ammonia toxicity in germinating rice seeds and (iii) assess how variation in soil properties influences ammonia accumulation. Volatilized ammonia and seed germination were measured in two micro‐diffusion incubations using 15 soils to which urea was applied at five rates (0, 0.25, 0.5, 0.75 and 1.0 g N kg?1 soil). Progressively larger urea rates increased volatilization, decreased germination and indicated a critical level for ammonia toxicity of approximately 7 mg N kg?1. Stepwise regression of the first three principal components indicated that the initial pH and soil texture components influenced ammonia volatilization when no N was added. At the intermediate N rate all three components (initial pH, soil texture and pH buffering) affected ammonia volatilization. At the largest N rate, ammonia volatilization was driven by soil texture and pH buffering while the role of initial pH was insignificant. For soils with an initial pH > 6.0 the risk of excessive volatilization increased dramatically when clay content was <150 mg kg?1, cation exchange capacity (CEC) was <10 cmolc kg?1 and the buffer capacity (BC) was <2.5 cmolc kg?1 pH?1. These findings suggest that initial pH, CEC, soil texture and BC should all be used to assess the site‐specific risks of urea‐induced ammonia toxicity in aerobic rice.  相似文献   

2.
Cai  Zejiang  Xu  Minggang  Zhang  Lu  Yang  Yadong  Wang  Boren  Wen  Shilin  Misselbrook  Tom H.  Carswell  Alison M.  Duan  Yinghua  Gao  Suduan 《Journal of Soils and Sediments》2020,20(8):3124-3135
Purpose

Decarboxylation of organic anions in crop straw is recognized as one of the mechanisms for increasing pH in acidified soils. However, the effectiveness of specific compounds in alleviating soil acidification from nitrification has not been well determined. This study examined three organic anions commonly found in crop straws and their effect on soil acidity and N transformation processes following urea application to a red soil (Ferralic Cambisol).

Materials and methods

A 35-day incubation experiment was conducted using soil after receiving 26 years of two different nutrient treatments: (1) chemical nitrogen, phosphorus, and potassium fertilization (NPK, pH 4.30) and (2) NPK plus swine manure (NPKM, pH 5.88). Treatments included three rates (0.25, 0.5, and 1.0 g C kg?1) of calcium citrate, 0.5 g C kg?1 calcium oxalate, 0.5 g C kg?1 calcium malate, urea-only (control) soil, and a non-treated soil as a reference. Soil acidity, mineral N species, decarboxylation, and their correlations were determined.

Results and discussion

All three organic anions significantly increased pH in both soils and the effectiveness was positively correlated with application rate. The change in total exchangeable soil acidity was dominated by aluminum concentration in the NPK soil, but by proton concentration in the NPKM soil. At ≥?0.5 g C kg?1, the anions decreased soil exchangeable acidity by 25–68% in NPK soil and by 63–88% in NPKM soil as compared with control. Oxalate was the most effective in increasing soil pH by 0.70 and 1.31 units and reducing exchangeable acidity by 3.79 and 0.33 cmol(+) kg?1 in NPK and NPKM soils, respectively, and also resulted in the highest CO2 production rate. Addition of organic anions led to a lower nitrification rate in NPKM soil relative to the NPK soil.

Conclusions

These results imply that crop straws rich in organic anions, especially oxalate, would have a higher potential to alleviate soil acidification.

  相似文献   

3.
ABSTRACT

We studied (i) the pH buffer capacity (pHBC) of calcareous soils varied widely in calcite and texture, (ii) the contribution of soil properties to pHBC and (iii) the significance of using a model based on calcite dissolution to estimate the pHBC of calcareous soils. The pHBC of soils was measured by adding several rates of HCl to soils (100–6500 mM H+ kg–1), in a 0.01 M CaCl2 background and an equilibration time of 24 h. The pHBC (mM H+ kg–1 pH?1) varied from 55 to 3383, with the mean of 1073. The pHBC of the soils was strongly correlated with soil CaCO3 equivalent (calcite) (r = 0.94), sand (r = ?0.72), silt (r = 0.60), EC (r = 0.63), pH (r = 0.55), and weakly (r = 0.37) but significantly with clay content. The attained pHBC values indicated that calcite was probably the main buffer system in these soils. The chemical equilibrium model successfully predicted pH titration curves based on calcite dissolution, indicating buffering of acid inputs in the calcareous soils is dominated by calcite dissolution. The model can be used to simulate acidification of calcareous soils and to provide information for making environmental management decisions.  相似文献   

4.
胡国松 《土壤学报》1992,29(2):183-190
在假定土壤对酸碱的缓冲作用全由表面基团反应所控制的基础上,建立了一个描述可变电荷土壤酸碱滴定曲线的模型,并在计算机上对实验结果进行了模拟。结果表明,本模型可以较好地描述土壤酸碱滴定曲线,提供土壤的酸强度(Ka)和酸容量(St),并可进一步提供土壤的酸缓冲容量曲线。本模型对了解和认识土壤酸化和吸附等过程具有一定的意义。  相似文献   

5.
Samples of three organic‐rich soils (ombrotrophic peat, podzol H‐horizon, humic ranker) were extensively washed with dilute nitric acid, dialysed against deionised water, and then subjected to acid‐base titrations over the pH range 3–10, in 0.3–300 mm NaNO3, and with soil concentrations in the range 2–150 g l?1. The results for the three soils were quantitatively similar. Comparison of the titration data with previously published results for humic acids isolated from the same soils showed the soil organic matter to have a greater ionic strength dependency of proton binding and to possess relatively greater buffering capacity at high pH, attributable to weak acid groups (c. 2–5 mmol g–1) in the humin fraction of the soils. To describe the soil titration data quantitatively, we modified Humic Ion‐Binding Model VI‐FD, which utilizes a fixed Donnan volume to describe counterion accumulation, by increasing the content of weak acid groups. When artefacts in pH measurement caused by the suspension effect were taken into account, the resulting Model VI‐FD2 provided good or fair simulations of all the titration data. The results suggest that soil structure, specifically aggregation, plays a significant role in cation binding by organic soils in situ. The lack of dependence of the titration results on soil suspension concentration suggests that the findings can be applied to soils in situ.  相似文献   

6.
In northern Spain and elsewhere in the world, many vineyards are located on steep slopes and are susceptible to accelerated soil erosion. Contaminants, notably Cu, originating from repeated application of copper‐based fungicides to the vines to prevent mildew, are transported and stored in the sediments deposited close to valley bottoms. In this study, the contents and distribution of Cu in 17 soil samples and 21 sediment samples collected from vineyard stands were determined. In addition, the effect of pH on Cu release from vineyard soils and sediments was quantified. The total Cu content (CuT) in the soils varied between 96 and 583 mg kg?1, and was between 1.2 and 5.6 times greater in sediment samples. The mean concentration of potentially bioavailable Cu (CuEDTA) in the sediments was 199 mg kg?1 (46% of CuT), and was 80 mg kg?1 (36% of CuT) in the soils. Copper bound to soil organic matter (CuOM) was the dominant fraction in the soils (on average, 53% of the CuT), while in sediment samples CuOM values varied between 37 and 712 mg kg?1 and were significantly greater (P < 0.01) than in the soils. Copper associated with non‐crystalline inorganic components (CuIA) was the second most important fraction in the sediments, in which it was 3.4 times greater than in the soils. Release of Cu due to changes in the pH followed a U‐shaped pattern in soils and sediments. The release of Cu increased when the pH decreased below 5.5 due to the increased solubility of the metal at this pH. When the pH increased above 7.5, Cu and organic matter were released simultaneously.  相似文献   

7.
This study aimed at clarifying whether a notable group of soils of the Jæren region, SW Norway, with deep humus‐rich top soils support a man‐made genesis. Four sites were investigated. The soils are characterized by thick top soils of 45, 70, 80, and 90 cm, which are enriched in soil organic matter and often also in artifacts, like fragments of potter's clay, indicating an anthropogenic origin. Soil pH ranges from 5.4 to 6.2 (H2O) and 4.4 to 5.3 (CaCl2), respectively. Soil organic C (SOC) contents range from 6.4 to 51.6 g kg?1 and N contents vary between 0 and 2.9 g kg?1. Increased P contents of up to 2,924.3 mg kg?1 total P (Pt) and 1,166.4 mg kg?1 citric acid‐soluble phosphorus (Pc) in the humus‐rich top soils support the assumption of an anthropogenic influence. Although many characteristics indicate an anthropogenic genesis, one soil lacks the required depth of 50 cm of a plaggen horizon and cannot be classified as Plaggic Anthrosol (WRB) and Plagganthrept (US Soil Taxonomy). As the requirement is 40 cm in the German system, all soils can be classified as Plaggenesch. The formation of these soils is related to human activity aiming at increasing soil fertility and overcoming the need of bedding material, the basic aims of the plaggen management in Europe. Highest P contents ever found for this kind of soils and references from the literature indicate that the formation of the soils in Norway started at Viking time, hence, being older than most other Plaggic Anthrosols.  相似文献   

8.
Cadmium distribution coefficients, K d were determined at low Cd concentrations (solute: 0.2 to 3.0 μg Cd dm?3, soil: 0.044 to 1.1 mg Cd kg?1) for 63 Danish agricultural soils. The K d values ranged from 15 to 2450 L kg?1. About 40% of the soils had K d values below 200 L kg?1. The observed K d values correlated very well with soil pH (r 2 = 0.72). Introducing soil organic matter content as a second parameter improved the correlation some (r 2 = 0.79). No further improvements were obtained by introducing traditional soil parameters as clay, silt, fine sand, coarse sand and CEC or ‘reactive’ parameters as oxyhydroxides of Mn, Fe and Al. The identified regression equation for predicting K d values indicates that K d approximately doubles for each 0.5 unit increase in pH or 2% increase (weight basis) in organic matter content.  相似文献   

9.
Wood ash is a residual material produced during biomass burning. In the northeastern United States up to 80 % of the ash is spread on agricultural lands as a liming amendment with the remainder being disposed of in landfills. As well as raising soil pH, wood ash also adds plant nutrients to soil. This study is an examination of the plant availability of the P in 8 different soils amended with one wood ash. Plant availability was assessed by measuring the biomass and P concentration of corn (Zea mays) L.) plants grown in the greenhouse for 28 d in soil amended with either CaCO3 (control), wood ash to supply 200 mg kg?1 total P, or monocalcium phosphate (MCP) to supply 200 mg kg?1 total P and CaCO3. Both corn growth and P uptake were highest in the MCP treatments, intermediate in the wood ash treatments, and lowest in the controls for all soil types. The soil property which seemed to have the greatest influence on P availability was pH buffer capacity. The soils with the greatest capacity to buffer OH additions also tended to exhibit the greatest absolute P uptake from wood ash-amended soils and the greatest P uptake relative to that from MCP-amended soils. The ability of soil test extractants to predict uptake of P in the three soil treatments was examined. A buffered ammonium acetate extradant overestimated P availability in the ash-amended soils relative to the MCP-amended soils. An unbuffered, acid, fluoride-containing extract provided a measure of P levels that was consistent with P uptake from all soil treatments. In this study the predictive relationship was as follows: P uptake = 0.017× (Bray P, mg kg?1) + 1.19; r = 0.81.  相似文献   

10.
Laboratory studies were conducted on a mixture of surface soils from the Nile Delta (Egypt). Twenty-two soil columns, initially saturated both with respect to their water-holding capacity and to their base exchange capacity with calcium, contained 0.0, 0.25, 0.5, 1.0 and 2.0 per cent solid gypsum in the total weight of the solid material in the column. Three particle sizes of gypsum (>0.5, 0.5–1 and 1–2 mm) were mixed either with the top layer or with the whole soil column. The result of leaching these columns with saline water (36 meq 1?1 NaCl+4 meq 1?1 CaCl2) at 0.1 cm h?1 was compared with a mathematical model based on thermodynamic equilibria. The three different particle sizes gave the same experimental results. Applying a given amount of gypsum to the surface soil was more effective in reducing the exchangeable sodium percentage (ESP) than mixing the same quantity through the soil. The mathematical model adequately predicted the changes in the soil column.  相似文献   

11.
Purple soils (Eutric Regosols) are widely distributed in humid subtropical Southwest China. They are characterized by high nitrification activities, with risks of severe NO3? leaching. Incorporation of crop residues is considered an effective method to reduce NO3? loss. In the present study, we compared the effects of alfalfa, rice straw, and sugarcane bagasse on gross N transformation turnover in a purple soil (purple soil, pH 7.62) compared with those in an acid soil (acid soil, pH 5.26), at 12 h, 3 months, and 6 months after residue incorporation. The gross N transformation rates were determined by 15N tracing. All tested crop residues stimulated the gross N mineralization rates, but reduced the net mineralization rates in both soils at 12 h after residue incorporation; however, the extent of the effect varied with the crop residue qualities, with rice straw having the strongest effects. Crop residues reduced net nitrification rates by depressing gross autotrophic nitrification rates and stimulating NO3? immobilization rates in the purple soil, particularly after rice straw incorporation (net nitrification rate decreased from 16.72 mg N kg?1 d?1 in the control to ??29.42 mg N kg?1 d?1 at 12 h of residue incorporation); however, crop residues did not affect the gross autotrophic nitrification rates in the acid soil. Crop residue effects subsided almost completely within 6 months, with sugarcane bagasse showing the longest lasting effects. The results indicated that crop residues affected the N transformation rates in a temporal manner, dependent on soil properties and residue qualities.  相似文献   

12.

Purpose

Crop straws and animal manure have the potential to ameliorate acidic soils, but their effectiveness and the mechanisms involved are not fully understood. The aim of this study was to evaluate the effectiveness of two crop (maize and soybean) straws, swine manure, and their application rates on acidity changes in acidic red soils (Ferralic Cambisol) differing in initial pH.

Materials and methods

Two red soils were collected after 21 years of the (1) no fertilization history (CK soil, pH 5.46) and (2) receiving annual chemical nitrogen (N) fertilization (N soil, pH 4.18). The soils were incubated for 105 days at 25 °C after amending the crop straws or manure at 0, 5, 10, 20, and 40 g kg?1 (w/w), and examined for changes in pH, exchangeable acidity, N mineralization, and speciation in 2 M KCl extract as ammonium (NH4+) and nitrate plus nitrite (NO3??+?NO2?).

Results and discussion

All three organic materials significantly decreased soil acidity (dominated by aluminum) as the application rate increased. Soybean straw was as effective (sometimes more effective) as swine manure in raising pH in both soils. Soybean straw and swine manure both significantly reduced exchangeable acidity at amendment rate as low as 10 g kg?1 in the highly acidic N soil, but swine manure was more effective in reducing the total acidity especially exchangeable aluminum (e.g., in the N soil from initial 5.79 to 0.50 cmol(+) kg?1 compared to 2.82 and 4.19 cmol(+) kg?1 by soybean straw and maize straw, respectively). Maize straw was less effective than soybean straw in affecting soil pH and the acidity. The exchangeable aluminum decreased at a rate of 4.48 cmol(+) kg?1 per pH unit increase for both straws compared to 6.25 cmol(+) kg?1 per pH unit from the manure. The NO3??+?NO2? concentration in soil increased significantly for swine manure amendment, but decreased markedly for straw treatments. The high C/N ratio in the straws led to N immobilization and pH increase.

Conclusions

While swine manure continues to be effective for ameliorating soil acidity, crop straw amendment has also shown a good potential to ameliorate the acidity of the red soil. Thus, after harvest, straws should preferably not be removed from the field, but mixed with the soil to decelerate acidification. The long-term effect of straw return on soil acidity management warrants further determination under field conditions.
  相似文献   

13.
A pot experiment was conducted to study the contribution of reactive phosphate rocks (RPRs) on the accumulation of Cd and Zn in 10 acid upland soils in Indonesia and shoots of Zea mays plants grown on these soils. Two types of RPR were used at a rate of 0.5 g (kg soil)–1: RPRL containing 4 mg Cd kg–1 and 224 mg Zn kg–1, and RPRH containing 69 mg Cd kg–1 and 745 mg Zn kg–1. Zea mays was harvested at 6 weeks after planting. The application of RPRH significantly increased the concentrations of Cd in the shoots. The application of this RPR also increased the amount of Cd which could be extracted by 0.5 M NH4‐acetate + 0.02 M EDTA pH 4.65 from the soils. More than 90% of the added Cd remained in the soil. As Zn is an essential element and the studied acid upland soils are Zn‐deficient, increased plant growth upon RPR application might be partly attributed to Zn present in the phosphate rock. However, more experiments are needed to confirm this hypothesis. The Cd and Zn concentrations and CEC of the soils were important soil factors influencing the concentrations of Cd and Zn in the shoots of maize plants grown on these soils.  相似文献   

14.
To date, occurrence and stimulation of different nitrification pathways in acidic soils remains unclear. Laboratory incubation experiments, using the acetylene inhibition and 15N tracing methods, were conducted to study the relative importance of heterotrophic and autotrophic nitrification in two acid soils (arable (AR) and coniferous forest) in subtropical China, and to verify the reliability of the 15N tracing model. The gross rate of autotrophic nitrification was 2.28 mg?kg?1?day?1, while that of the heterotrophic nitrification (0.01 mg?kg?1?day?1) was negligible in the AR soil. On the contrary, the gross rate of autotrophic nitrification was very low (0.05 mg?kg?1?day?1) and the heterotrophic nitrification (0.98 mg?kg?1?day?1) was the predominant NO3 ? production pathway accounting for more than 95 % of the total nitrification in the coniferous forest soil. Our results showed that the 15N tracing model was reliable when used to study soil N transformation in acid subtropical soils.  相似文献   

15.
Abstract

Soil washing is one of the methods used to remediate soil contaminated with heavy metals, and when the contaminated elements have been effectively removed the washed soil can be used for agriculture. Soil washing was conducted using 0.5 mol L?1 CaCl2 solution at pH 4 as an extracting agent to remediate a paddy field soil contaminated with Cd. Dolomite powder was applied to neutralize the soil to the original pH 6.2. After CaCl2 washing, the content of Cd extractable in 0.1 mol L?1 HCl decreased from 2.4 to 0.8 mg kg?1. Subsequently, a pot experiment was carried out to evaluate the effect of soil washing on Cd concentration in polished rice (Cdpr) for three successive years. Using the washed soil, Cdpr was ≤ 0.2 mg kg?1 with and without a treatment that simulates midseason drainage, whereas it was > 0.5 mg kg?1 in the unwashed soil with the midseason drainage treatment. The reasons for low Cdpr growth in the washed soil were the low content of exchangeable Cd in the soil and the resultant high soil pH (> 7). To evaluate the effect of soil pH on Cdpr in the fourth year, we adjusted soil pH to 5 with H2SO4 before transplanting rice seedlings. The Cdpr in the washed soil with the midseason drainage treatment increased to 0.47 mg kg?1, whereas it was less than 0.2 mg kg?1 under continuous flooding. Thus, high pH or whole season flooding are important to keep Cdpr at ≤ 0.2 mg kg?1 even after soil washing. With the application of dolomite and other ordinary fertilizers, soil properties were little affected by the present soil washing procedure because the difference in rice yield between the washed and unwashed plots was not significant within each year.  相似文献   

16.
The effects of zeolite application (0, 4, 8 and16 g kg?1) and saline water (0.5, 1.5, 3.0 and 5.0 dS m?1) on saturated hydraulic conductivity (K s) and sorptivity (S) in different soils were evaluated under laboratory conditions. Results showed that K s was increased at salinity levels of 0.5‐1.5 dS m?1 in clay loam and loam with 8 and 4 g zeolite kg?1 soil, respectively, and at salinity levels of 3.0–5.0 dS m?1 with 16 g zeolite kg?1 soil. K s was decreased by using low and high salinity levels in sandy loam with application of 8 and 16 g zeolite kg?1, respectively. In clay loam, salinity levels of 0.5–3.0 dS m?1 with application of 16 g kg?1 zeolite and 5.0 dS m?1 with application of 8 g zeolite kg?1 soil resulted in the lowest values of S. In loam, all salinity levels with application of 16 g zeolite kg?1 soil increased S compared with other zeolite application rates. In sandy loam, only a salinity level of 0.5 dS m?1 with application of 4 g zeolite kg?1 soil increased S. Other zeolite applications decreased S, whereas increasing the zeolite application to 16 g kg?1 soil resulted in the lowest value of S.  相似文献   

17.
Boron (B) is an essential microelement, which is necessary for reproductive organs including pollen tube formation in wheat (Triticum aestivum L.), and flowering and boll formation in cotton (Gossypium hirsutum L.) The study was associated with wheat-cotton rotation in 80 farm fields, belonging to different soil series, in four districts of cotton belt of Punjab, Pakistan to assess concentrations of extractable B in soils [0.05 M hydrochloric acid (HCl) extractable B], and added fertilizer B and their relationship to some soil physico-chemical properties [pH, organic matter (OM), calcium carbonate (CaCO3) and clay content], yields and total B concentrations in wheat and cotton plants. All soils had alkaline pH (7.45 to 8.55), high CaCO3 content (2.14 to 8.65%), less than 1.0% OM (0.33 to 0.99%), low plant available-P (Olsen P less than 8 mg kg?1 soil) and medium ammonium acetate extractable potassium (K) (< 200 mg K kg?1 soil). Of the 80 soil samples, 65 samples (81%) were low in available B (<0.45 mg B kg?1, ranging from 0.11 to 0.43 mg B kg?1) Of the corresponding 80 plant samples, leaves B concentrations were below critical levels (<10 mg B kg?1 for wheat; <30 mg B kg?1 for cotton) for all the tested samples for wheat and cotton. The regression analysis between plant total B concentrations and soil extractable B concentrations showed strong linear positive relationships for both wheat (R2 = 0.509***, significant at P <0.001) and cotton (R2 = 0.525***, significant at P <0.001). Further regression analysis between extractable soil B and wheat grain yield as well as between wheat leaves total B and wheat grain yield also depicted strong linear relationships (R2 = 0.76 and 0.42, respectively). Boron fertilizer demonstration plots laid out at farmers’ fields low in extractable B, in each district not only enhanced grain yields of wheat crop but also contributed a significant increase towards seed cotton yield of succeeding cotton crop through residual B effect. In conclusion, the findings suggest that many soils in the cotton belt of Punjab may be low in extractable B for wheat and cotton, especially when these crops are grown on low OM soils with high CaCO3 content.  相似文献   

18.
Methodologies that use electromagnetic induction and resistivity in soil profiles to estimate drainage across whole fields and catchments require complex models or measurement systems that are not easily available or difficult to apply at the farm level. The objective of the present study was to define a methodology that could use information easily available to agronomists and commercial cotton consultants to estimate drainage in irrigated Vertisols using a chloride (Cl?) mass balance approach. A secondary objective of this study was to eliminate or minimize the expensive and tedious laboratory analyses for determining Cl? concentration in soils. A model was developed using electromagnetic induction measurements taken with an EM38 instrument in the horizontal mode (EMH) to estimate the chloride concentration in a saturated soil extract in the 0- to 1.2-m depth of irrigated Vertisols. A stepwise linear regression model where the independent variables were soil water storage, exchangeable sodium percentage, and EMH predicted chloride concentration the best. The chloride concentrations thus estimated were similar to measured values only when measured chloride concentrations in the saturated extract were ≤10 meq L?1 (355 mg L?1 = 240 mg kg?1). These values of chloride were then inserted into a chloride mass balance model to estimate deep drainage. In more saline soils, large differences occurred between measured and estimated chloride. Values of drainage based on estimated chloride concentrations in the range of 0–10 meq L?1 were very similar to those based on measured chloride concentrations. There is potential to use an EM38 for quick assessment of deep drainage under irrigated conditions in the field.  相似文献   

19.
To determine the geological distribution of acid buffering capacity and exchangeable Al of forest soils in Japan, surface soils under forest vegetation were collected nationwide from a total of 1,034 sites. Generally, surface soils in Japanese forests are mostly acidic and low in both exchangeable cation content and exchangeable Al. The median of soil pH(H2O), total exchangeable cations, and exchangeable Al are 5.1, 76 mmol(+)Kg?1, and 19.6 mmol(+)kg?1, respectively. Acid buffering capacities of selected soils were determined using a soil column, which was comparable to the capacity that resulted from cation exchanges with protons. Soils with high buffering capacity and low exchangeable Al are widely distributed in Japan, and overlap with the areas of Andisol distribution. Volcanogenic materials seem to mask soil characteristics derived from underlying geology even though they are not Andisols. However, central to western Honshu Island, Shikoku Island, and northern Kyushu Island showed weak acid buffering capacities with high exchangeable Al potential in surface soils.  相似文献   

20.

Purpose

Long-term manure applications can prevent or reverse soil acidification by chemical nitrogen (N) fertilizer. However, the resistance to re-acidification from further chemical fertilization is unknown. The aim of this study was to examine the effect of urea application on nitrification and acidification processes in an acid red soil (Ferralic Cambisol) after long-term different field fertilization treatments.

Materials and methods

Soils were collected from six treatments of a 19-year field trial: (1) non-fertilization control, (2) chemical phosphorus and potassium (PK), (3) chemical N only (N), (4) chemical N, P, and K (NPK), (5) pig manure only (M), and (6) NPK plus M (NPKM; 70 % N from M). In a 35-day laboratory incubation experiment, the soils were incubated and examined for changes in pH, NH4 +, and NO3 ?, and their correlations from urea application at 80 mg N kg?1(?80) compared to 0 rate (?0).

Results and discussion

From urea addition, manure-treated soils exhibited the highest acidification and nitrification rates due to high soil pH (5.75–6.38) and the lowest in the chemical N treated soils due to low soil pH (3.83–3.90) with no N-treated soils (pH 4.98–5.12) fell between. By day 35, soil pH decreased to 5.21 and 5.81 (0.54 and 0.57 unit decrease) in the NPKM-80 and M-80 treatments, respectively, and to 4.69 and 4.53 (0.43 and 0.45 unit decrease) in the control-80 and PK-80 treatments, respectively, with no changes in the N-80 and NPK-80 treatments. The soil pH decrease was highly correlated with nitrification potential, and the estimated net proton released. The maximum nitrification rates (K max) of NPKM and M soils (14.7 and 21.6 mg N kg?1 day?1, respectively) were significantly higher than other treatments (2.86–3.48 mg N kg?1 day?1). The priming effect on mineralization of organic N was high in manure treated soils.

Conclusions

Field data have shown clearly that manure amendment can prevent or reverse the acidification of the red soil. When a chemical fertilizer such as urea is applied to the soil again, however, soil acidification will occur at possibly high rates. Thus, the strategy in soil N management is continuous incorporation of manure to prevent acidification to maintain soil productivity. Further studies under field conditions are needed to provide more accurate assessments on acidification rate from chemical N fertilizer applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号