首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the anatomical and chemical characteristics of the reaction wood of a gymnpsperm species, Gnetum gnemon, and discussed on contributing factor for the type of reaction wood in this species. Cell morphology, microfibril angle (MFA) of the S2 layer and lignin distribution in secondary walls of tracheary elements, and lignin content were examined on three branches. Observations included no G-layer formation, significant decreases in vessel frequency, and altered MFA, and visible-light absorbance after lignin colour reactions in tracheid and fiber tracheid walls on the upper side in almost all samples. These results suggest that reaction wood in G. gnemon was similar to that in ‘tension-wood-like-reaction wood’ in angiosperms. On the other hand, reaction wood showed decrease in the lignin concentration in the fiber tracheid walls compared to the tracheid walls. In addition, the lignin in the tracheid and fiber tracheid walls was originally rich in syringyl units, suggesting that changes in the anatomical and chemical characteristics of secondary xylem due to reaction wood formation might relate to the ratio of the syringyl to guaiacyl units in lignin in the cell walls which function for mechanical support.  相似文献   

2.
3.
We attempted to measure in situ the tensile elastic moduli of individual component polymers with a three-dimensional (3D) assembly mode in the cell walls of Sugi (Cryptomeria japonica D. Don) without isolating the polymers. To prepare wood tangential slices [50 × 6 × 0.2 mm (L × T × R)] consisting of lignin with a 3D assembly mode in the cell walls, cellulose and hemicellulose were removed using the method of Terashima and Yoshida (2006) to obtain methylated periodate lignin slices. To prepare wood slices consisting of polysaccharide with a 3D assembly mode in the cell walls, lignin was removed using the method of Maekawa and Koshijima (1983) to obtain holocellulose slices. Static tensile test was applied to determine the elastic moduli of 3D lignin and 3D polysaccharide slices. The followings were revealed. The elastic modulus of the 3D lignin slices was 2.8 GPa, regardless of the microfibril angle (MFA) in the slices. The elastic moduli of the 3D polysaccharide slices with MFAs of 14°, 23°, 34°, and 42° were 18, 12, 9, and 4 GPa, respectively. The former shows that the lignin with a 3D assembly mode behaves as an isotropic substance in the cell walls, while the latter suggests that the 3D polysaccharide slice shows marked anisotropic structure in the cell wall. Despite the fact that cellulose content increased after lignin removal, values of substantial elastic modulus of the cell wall slightly decreased regardless of MFA. Following two possible reasons were pointed out for explaining this phenomenon. First, lignin removal caused an artifactual deterioration in the polysaccharide slices at the level of macromolecular aggregate. Second, rigid and fusiform-shaped cellulose crystallites are dispersed in the soft matrix of amorphous polysaccharide, and those are loosely connected to each other by the intermediary of matrix polysaccharide. Those suggest that the rigid cellulose crystallite can optimize its strong mechanical performance in the polysaccharide framework of the wood cell wall in combination with the ligninification.  相似文献   

4.
Chemical components are the main factors affecting the mechanical properties of wood fibers. Lignin is one of the main components of wood cell walls and has a critical effect on the mechanical properties of paper pulp and wood fiber based composites. In this study, we carried out tensile tests on single mature latewood tracheids of Chinese fir (Cunninghamia lanciolata (Lamb.) Hook.), using three different delignified treatment methods to obtain different amounts of lignin. We applied single fiber tests to study the effect of the amount of lignin on mechanical tensile properties of single wood fibers at the cellular level. The results show that in their dry state, the modulus of elasticity of single fibers decreased with the reduction in the amount of lignin; even their absolute values were not high. The amount of lignin affects the tensile strength and elongation of single fibers considerably. Tensile strength and elongation of single fibers increase with a reduction in the amount of lignin.  相似文献   

5.
利用克隆得到的毛白杨c3h1基因构建其RNAi抑制表达载体,通过根癌农杆菌介导的叶盘法转化银腺杨无性系84 K,Realtime PCR检测表明其转基因株系323、325和322中c3h1基因表达量较野生型植株分别下调89.04%、82.22%和68.38%;茎横切片组化染色和显微结构观察表明转基因植株木质部发育和木质素沉积方式发生了改变;木质素、纤维素含量测定及苯酚—硫酸法总糖含量与HPLC法可溶性总糖和单糖含量检测结果表明:转基因植株木质素含量平均降低23.00%,最高可达39.71%;酸前处理效率最高提高了41.39%;未经酸处理直接酶解的糖化效率是对照植株的2.34~2.72倍,322株系和323株系比对照植株经酸前处理后再酶解的糖化效率高出81.18%和375.53%。  相似文献   

6.
To radiolabel xylan in mature cell walls selectively, magnolia (Magnolia kobus DC.) was administered withmyo-inositol-[2-3H] and allowed to metabolize for 1 month. The radiolabeled xylem tissue was then submitted to sulfuric acid hydrolysis and nitrobenzene oxidation. A large amount of radioactivity was found mainly in xylose, although slight activities were detected in glucose and in vanillin and syringaldehyde. The labeled tissue was submitted to a preparation of holocellulose followed by treatment with 24% potassium hydroxide (KOH). Radioactivity was distributed mainly in the KOH-soluble part of the holocellulose. These results indicate that most radioactivity was incorporated into xylan in the cell walls. The distribution of the incorporated radioactivity in the xylem tissue was visualized by microautoradiography. Radioactivities were distributed in the xylem more than 400 m from the cambium; and an inner layer of a secondary wall had formed at the labeled xylem. Consequently, selective radio-labeling of xylan was visualized in mature cell walls.Part of this report was presented at the 47th annual meeting of the Japan Wood Research Society, Kouchi, April 1997  相似文献   

7.
A 3 125 bp cellulose synthase gene, PtoCesA1, which has a 98% identity to PtrCesA1 from Populus tremuloides, was cloned from cDNA prepared from secondary xylem of P tomentosa. Four anti-expression vectors with different fragments of PtoCesAl, named as pBIPF, pBICC1, pBIPR and pBIBR, were constructed. Some traits of transformed tobacco of pBICC1, pBIPR and pBIBR differed from wild types, such as small leaves, "dwarf" phenotype and thinner xylem and fiber cell walls than wild plants consistent with a loss of cellulose. It indicated that the growth of transgenic tobacco was restrained by the expression of anti-PtoCesA1. Transgenic tobacco was obtained and the contents of cellulose and lignin were analyzed as well as the width and length of fiber cells, and xylem thickness for both transgenic and control plants. Transformed tobacco showed a different phenotype from control plants and it implied that PtoCesA1 was essential for the cellulose biosynthesis in poplar stems.  相似文献   

8.
毛白杨纤维素合酶基因家族部分成员的克隆及表达   总被引:1,自引:0,他引:1  
从毛白杨中分离7个纤维素合酶基因,分别为PtoCesA4,PtoCesA5,PtoCesA7,PtoCesA8,PtoCesA13,PtoCesA17和PtoCesA18,通过与已公布的毛果杨全基因序列及拟南芥和水稻基因组中纤维素合酶基因序列的同源性比对分析,结合目前纤维素合成机制的研究进展,预测毛白杨中上述不同纤维素合酶的功能。利用GenomeLabTMGeXP遗传分析系统分析毛白杨中纤维素合酶基因在不同组织中的转录表达水平,结果表明PtoCesA4,PtoCesA7,PtoCesA8,PtoCesA17和PtoCesA18在木质部高丰度表达,推测这些基因可能参与毛白杨次生细胞壁的形成,为毛白杨次生细胞壁中纤维素的合成调控提供参考依据。  相似文献   

9.
To examine the effect of gravity on lignin content and deposition in plant cells, we used ultraviolet (UV) microspectrophotometry and chemical methods to investigate the secondary xylem of Prunus jamasakura grown on a three-dimensional (3D) clinostat, which simulates microgravity. The stem of the 3D-clinostat specimens elongated with bending and the width of their secondary phloem increased. The UV absorbance of the 3D-clinostat specimens at 278 nm was higher than that of the control specimens, which were grown on the ground, in the wood fiber cell corner middle lamella, compound middle lamella, and fiber secondary wall; the UV absorbance in the vessel secondary wall did not differ between the specimens. The lignin content in the stem, including the bark, of the 3D-clinostat specimens, as determined using an acetyl bromide method, was less than that of the control specimens. In the specimens that differentiated on a 3D clinostat, the amount of lignin in the wood fibers increased, while the proportion of the lignified xylem in the stem decreased relative to control values.  相似文献   

10.
Seedlings ofEucalyptus viminalis were grown for 50 days with their stems bent so tension wood would form. Every 10 days the lignin content, monomeric composition, and peroxidase activity in the tension wood were compared with those in the lower side (opposite wood) and in vertically grown controls. The lignin content in the developing tension wood started to decrease after 10 days of bending and kept decreasing for 50 days, whereas those in control plants and opposite wood remained almost unchanged. The yields of syringaldehyde from tension wood by nitrobenzene oxidation increased, and consequently the syringyl/ guaiacyl ratio of the lignin was higher in tension wood than in opposite wood and control plants. The peroxidase ionically bound to the cell walls (IPO) catalyzed oxidation of guaiacol and syringaldazine. The syringaldazineoxidizing activity of IPO from tension wood increased, whereas the activities of IPO from opposite wood and control plants did not show any marked change. In tension wood the increase in syringaldazine-oxidizing activity of IPO was consistent with an increase in the syringaldehyde yield. This suggests that IPO contributes to syringyl lignin deposition as other enzymes involved in the monolignol biosynthesis do in tension wood formation.This study was presented at the 50th Annual Meeting of the Japan Wood Research Society, Kyoto, April 2000  相似文献   

11.
Non-isothermal autohydrolysis treatments of Eucalyptus globulus wood were carried out in batch reactors in order to assess the kinetics of hemicellulose degradation, as well as the effects caused on cellulose and lignin. Experiments were carried out at a liquor to wood ratio of 8 g/g, and two heating profiles were explored. The maximum temperature considered was 224 °C, and the longest reaction time was 0.94 h. The experimental variables considered were solid residue yield, solid residue composition and composition of liquors. Up to 90.4% of the initial xylan was removed in treatments, which also caused some delignification (up to 13.8% of the initial lignin was removed), whereas cellulose was almost quantitatively retained in solid phase. The conversion of xylan into xylooligomers, with further hydrolysis to xylose and decomposition of this sugar into furfural was assessed by means of a kinetic model based on sequential, first order reactions involving kinetic coefficients with Arrhenius-type dependence on temperature. Received 23 November 1999  相似文献   

12.
Summary A review of the chemistry and topochemistry of compression wood with 200 references. Compression wood contains on the average 30% cellulose, 35–40% lignin, 10% galactan, 9% galactoglucomannan, 8% xylan, and 2% of a 1,3-glucan (laricinan). The cellulose is less crystalline, and the xylan has fewer arabinose side chains than in normal wood. The lignin is composed of guaiacylpropane and p-hydroxyphenylpropane units. It is more condensed, has a higher proportion of carbon-carbon bonds, and contains fewer arylglycerol--aryl ether structures than a normal conifer lignin. The ray cells and the primary wall of the tracheids have the same chemical composition in normal and compression woods. The galactan is largely located in the outer region of the secondary wall. Only 5–10% of the lignin in compression wood tracheids is extracellular. The middle lamella is less lignified than in normal wood, while the S1 and inner S2 layers have a lignin concentration of 30–40% which is twice as high as in normal wood. The lignin content of the S2 (L) layer is equal to or higher than that of the intercellular region along the wall. The review is concluded with a brief reference to areas where present information is incomplete or lacking.A portion of an Academy Lecture of the International Academy of Wood Science, presented at the International Symposium on Wood and Pulping Chemistry (Ekmandagarna 1981), held in Stockholm, Sweden, June 9–12, 1981. Reprints of the unabridged review, published under the title Recent Progress in the Chemistry, Ultrastructure, and Formation of Compression Wood in the preprints of the symposium (SPCI Report 38, Vol. 1, p. 99–147) are available from the author. I wish to express my gratitude to my colleague Professor Robert A. Zabel for generous travel assistance  相似文献   

13.
To learn more about lignin formation in response to wounding in trees, we adopted two complementary approaches: (1) microscopic and histochemical studies of the wound response in 3.5‐month‐old Eucalyptus gunnii plantlets and (2) biochemical investigations of hydroxycinnamyl alcohol dehydrogenase activities in wounded 6‐year‐old, field‐grown E. gunnii trees. The first approach revealed that a barrier zone was formed in response to wounding in both ground tissues (cortex barrier and pith reaction zone) and vascular tissues. The barrier zone was barely detectable after 24 h but well‐developed 7 days after wounding. Microscopic analyses indicated that the barrier zone was formed by the reinforcement of cell walls with ‘lignin‐like material’ in both ground tissues and vascular tissue, and that, in addition, the lumen of certain xylem cells (vessels and fibres) were blocked by the deposition of polymeric phenolic material. Histochemical characterization revealed that the lignin‐like material (‘defence lignin’) deposited in ground tissue cell walls and xylem cell blockages was poor in syringyl (S‐type) lignin units and therefore differed from the usual mixed guaiacyl–syringyl (G–S) lignin unit composition of E. gunnii developmental lignin. In contrast, S‐type lignin appeared to be deposited in the cell walls of immature developing secondary xylem cells at a stage when the cell walls of comparable cells from unwounded control stems contained lignin poor in syringyl units. The second approach indicated that two different types of cinnamyl alcohol dehydrogenase activity are induced, and apparently regulated differentially, in response to wounding in E. gunnii trees. Coniferyl alcohol dehydrogenase activity was induced immediately and continued to increase throughout the first 15 days of the 17‐day experimental period, while sinapyl alcohol dehydrogenase activity was first detected at 8 days after wounding and continued to increase throughout the experimental period. The biological roles of the two alcohol dehydrogenase activities are discussed in relation to the formation of defence lignin versus developmental lignin in trees.  相似文献   

14.
Cunninghamia lanceolata wood meal samples with different lignin contents after delignification with an acidic NaClO2 system were carboxymethylated, and the degree of substitution (DS) and the distribution of the carboxymethyl (CM) groups were investigated by proton nuclear magnetic resonance (1H NMR) spectroscopy. Cellulose samples prepared from bleached kraft softwood pulp, food-grade konjac mannan, and commercial oat xylan (containing 10% arabinosyl and 15% glucosyl residues) were also investigated. The chemical shift of methylene protons in 1H NMR spectra of CM groups of carboxymethyl konjac mannan and commercial oat xylan appeared in the same region as those of carboxymethylcellulose. The DS of carboxymethyl lignocellulose (CMLC) increased slightly from 1.36 to 1.48 with decreasing lignin content, but the water solubility of CMLC clearly increased with decreasing lignin content. It was suggested that the covalent linkages between lignin and cell-wall polysaccharides play the role of cross-linker in CMLC. Water absorbents were synthesized by graft-copolymerization of acrylic acid onto CMLC samples with different lignin contents. The highest level of water absorbency was obtained from CMLC containing 14% of lignin, suggesting the importance of lignin as the cross-linker.  相似文献   

15.
Lignin deposition at consecutive secondary wall thickening stages of early and late xylem cells during annual ring wood formation in Scots pine (Pinus sylvestris L.) stems was studied. Lignin patterns, isolated by thioglycolic acid method, consisted of alcohol-soluble (LTGA-I) and alkali-soluble (LTGA-II) fractions. The sum of two fractions, being the total lignin content, gradually increased in the course of lignification. However, the increments of lignin amount at each development stage of early and late tracheids were different. The intensity of lignin deposition increased in the course of earlywood tracheid maturation and decreased toward the end of latewood cell differentiation. The deposition of two lignin fractions in each layer of forming wood also occurred oppositely. The increment of LTGA-I descended, whereas that of LTGA-II increased from the beginning to the end of early xylem lignification. In contrast, LTGA-I increment dropped, whereas LTGA-II rose during late xylem lignification. Gel permeation chromatography showed that the lignins, formed at the beginning of lignification, were more homogeneous and had higher molecular weight compared with the lignins at the end of cell differentiation. Besides, the content of cellulose, estimated as the residue after lignin isolation, and of cell wall substances, presented as cell wall cross-section areas, at consecutive maturation stages of early and late xylem cells have been found to be different. The data show that lignin deposition occurred in different conditions and with opposite dynamics during early and late xylem formation.  相似文献   

16.
The aim of this study was to evaluate the chemical composition and the dynamic water vapour sorption properties of Eucalyptus pellita wood thermally modified in vacuum. For this purpose, wood samples were thermally modified in a vacuum oven at 160–240 °C for 4 h. Chemical composition were investigated by wet chemical analysis, elemental analysis, as well as Fourier transform infrared (FTIR) analysis, and dynamic water vapour sorption properties were evaluated by dynamic vapour sorption apparatus. The results showed that holocellulose and alpha-cellulose contents decreased and lignin and extractives contents relatively increased during the heat process. Elemental analysis showed a reduction in hydrogen content and an increase in carbon content. FTIR analysis indicated that the degradation of hemicellulose and condensation reactions of lignin occurred. In addition, the thermo-vacuum resulted in a reduction in the equilibrium moisture content of wood during the adsorption or desorption process. And the sorption hysteresis had a decreasing trend with increasing treatment temperature. The development of the hygroscopicity was related to the increase in the relative content of lignin, the degradation of the carbonyl groups in xylan and the loss of carbonyl group linked to the aromatic skeleton in lignin after heat treatment.  相似文献   

17.
木质素单体生物合成途径及其修订   总被引:17,自引:1,他引:17  
对上世纪90年代以来木质素单体生物合成途径的发展进行了综述,对木质素的组成、木质素生物合成途径中的步骤及其涉及到的酶类、近年来对合成途径的修订以及我国在木质素方面的研究现状进行了介绍。提出今后我国木质素研究将主要集中在改良木材的材性和改善草类的消化性方面,通过调节木质素合成中关键酶基因的表达,以改变木质素的含量或单体组成,以满足工业不同用材的需要及畜牧用草的需要。  相似文献   

18.
Summary Anatomical features of reaction wood formed in two Magnolia species, M. obovata Thunb. and M. kobus DC. which are considered to be among the primitive angiosperms, were observed. In addition, the distribution of guaiacyl and syringyl units of lignins in the cell walls of normal and reaction wood was examined using ultraviolet (UV)- and visible light (VL)- microspectrophotometry coupled with the Wiesner and M?ule reactions. The two Magnolia species formed a tension-like reaction wood without possessing the typical gelatinous layer (G-layer) on the upper side of the inclined stem or branch, in which a radial growth promotion occurred. Compared with the normal wood, the reaction wood had the following anatomical features: (1) the secondary walls of fiber tracheids lacked the S3 layer, (2) the innermost layer of fiber-tracheid walls showed a small microfibril angle, a fact being similar to the orientation of the microfibril angle of the G-layer in tension wood, and (3) the amounts of lignin decreased in the cell walls of fiber tracheids, especially with great decrease in proportion of guaiacyl units in lignins. In addition, VL-microspectrophotometry coupled with the Wiesner and M?ule reactions adopted in the present study showed potential to estimate the lignin contents in the cell walls and the proportion of guaiacyl and syringyl units in lignins. Received: 15 July 1998  相似文献   

19.
Many products and abundant wastes from tropical plantations, such as latex, palm oil, and coconut production due to replantation, are waiting effective utilization. Nonutilized tropical biomass — oil palm (Elaeis guneensis Jacq.), coconut (Cocos nucifera L.) coir dust and coir fiber, and rubber (Hevea brasiliensis) wood — were analyzed for chemical and structural characteristics of wall polysaccharides and lignin. Coconut coir dust is mostly composed of middle lamella and is separated from coir fiber, which is composed of secondary walls. These were supported by lignin content, and structural characteristics of wall polysaccharides and lignin. The chemical and spectroscopic characteristics of walls of rubber xylem were similar to those of typical temperate angiosperm woods. Oil palm frond was significantly rich in arabinoxylan, and numerous acetyl groups were substituted to the arabinoxylan. Lignin of oil palm frond and wall polysaccharides of coconut coir dust are substituted with hydroxybenzoic acids with ester and ether linkages. Some p-hydroxybenzoic acid substituted to the wall polymers of coconut coir dust would contribute to the formation of associations between polysaccharides and lignin. Based on the above results it is suggested that coconut coir fiber and rubber wood are suitable resources for chemical pulp production for paper-making, but oil palm frond is not.  相似文献   

20.
Brauns’ lignins present in the methanol extracts of fresh birch (Betula pendula) xylem and of sawn birch board subjected to vacuum drying were characterized by 1H and 13C NMR spectroscopy (1D and 2D), IR spectroscopy, gel permeation chromatography (GPC) and colour measurements (CIELab) in order to find out whether Brauns’ lignin could contribute to the colour change of sawn timber that occurred during vacuum drying. The two Brauns’ lignin samples contained about equal amounts of syringylpropane and guaiacylpropane units linked with β-O-4 and β–β side-chain structures. Molecular weight of the Brauns’ lignin of vacuum-dried birch board (acetylated: 5,200 g mol−1) was higher than that of the Brauns’ lignin of fresh birch wood (acetylated: 4,400 g mol−1). The Brauns’ lignin of vacuum-dried wood was also clearly darker and more prominently yellow and red; between the Brauns’ lignin samples was 23.59. The differences in the molecular weights and colours suggest that the Brauns’ lignin underwent a chemical change during vacuum drying of the wood and that this change may have affected the colour of the wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号