首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Context

How do young birds achieve spatial knowledge about the environment during the initial stages of their life? They may follow adults, so gaining social information and learning; alternatively, young birds may acquire knowledge of the environment themselves by experiencing habitat and landscape features. If learning is at least partially independent of adults then young birds should respond to landscape composition at finer spatial scale than adults, who possess knowledge over a larger area.

Objectives

We studied the responses of juvenile, immature and adult Caspian Gull Larus cachinnans to the same habitat and landscape variables, but at several spatial scales (ranging from 2.5 to 15 km), during post-breeding period.

Methods

We surveyed 61 fish ponds (foraging patches) in southern Poland and counted Caspian gulls.

Results

Juvenile birds responded at finer spatial scales to the factors than did adults. Immature birds showed complicated, intermediate responses to spatial scale. The abundance of juvenile birds was mostly correlated with the landscape composition (positively with the cover of corridors and negatively with barriers). Adult abundance was positively related to foraging patch quality (fish stock), which clearly required previous spatial experience of the environment. The abundance of all age classes were moderately correlated with each other indicating that social behaviour may also contribute to the learning of the environment.

Conclusions

This study shows that as birds mature, they respond differently to components of their environment at different spatial scales. This has considerable ecological consequences for their distribution across environments.
  相似文献   

2.
To meet the need for research on the requirements for corridors for marshland birds, this study set out to quantify gap crossing decisions made by reed warblers moving through the landscape. In three experiments, reed warblers were released into landscape situations with different gap sizes and their movement towards reed patches fringing a watercourse were monitored. In all experiments, most birds flew over the smallest gap towards the nearest reed patch. In the experiment with two gap sizes, the probability of crossing a gap was a function of the ratio between distances to the reed patches. In the experiment with increasing gap sizes, most birds crossed the smaller gaps frequently. Near the bigger gaps, birds did not cross the gaps; instead, they only crossed the watercourse repeatedly. In the third experiment with more realistic landscape configurations, the birds preferred nearby non-reed landscape elements to more distant reed patches. It is concluded that reed warblers were reluctant to cross gaps wider than 50 m. The results suggest that the presence and size of gaps in reed patches affect reed warblers’ local gap-crossing decisions: when given a choice, the birds prefer to cross the smallest gap. Furthermore, reed warblers may be directed towards suitable marshlands by creating corridors of reed vegetation with gaps no wider than 50 m. The surrounding agricultural landscape and the presence of trees and ditches could decrease the reluctance to cross gaps in corridors.  相似文献   

3.
Ecological corridors are frequently suggested to increase connectivity in fragmented landscapes even though the empirical evidence for this is still limited. Here, we studied whether corridors, in the form of linear grass strips promote the dispersal of three grassland butterflies, using mark-recapture technique in an agricultural landscape in southern Sweden. We found no effects of the presence of corridors or of corridor length on inter-patch dispersal probabilities. Instead, dispersal probabilities appeared to be related to the quality, areas and population densities of the source and recipient patches. For two of the species, the density of captured individuals along corridors was better predicted by the corridor length than by the straight-line distance from a pasture, suggesting that short-distance movements within habitat patches result in a diffusion of individuals along corridors. A literature review revealed that only 16 published studies had explicitly studied the effect of corridors on insect movement. The context in which studies were performed appeared to affect whether corridors facilitated dispersal or not. All seven studies where the corridors consisted of open areas surrounded by forest showed positive effects, while only two out of six studies where corridors consisted of grassland surrounded by other open habitats showed positive effects of corridors. Our results clearly demonstrate that corridors do not always have positive effects on insect dispersal and that the effect seems to depend on the quality of the surrounding matrix, on the spatial scale in which the study is performed and on whether true dispersal or routine movements are considered. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
To assess corridor effects on movement in Peromyscus polionotus (old-field mice), we used a set of three experimental landscapes that contained multiple patches (1.64 ha) of usable, open habitat embedded in a loblolly pine (Pinus taeda) forest matrix. Some patches were connected by corridors and others were isolated (unconnected). We introduced mice to nest boxes in experimental patches and followed them through the landscapes via trapping. We found weak evidence that the presence of corridors decreased the probability that P. polionotus (particularly females) would disperse or disappear from a patch. In the process of live trapping the patches, we also encountered `feral' P. polionotus, Sigmodon hispidus (cotton rats), and Peromyscus gossypinus (cotton mice). The average number of feral animals did not differ between isolated and connected patches. This suggests that corridors do not act as drift fences that `sieve' individuals out of the matrix and into the patches. However, more male than female P. polionotus and S. hispidus were trapped in isolated patches. This intersexual difference did not exist in connected patches.  相似文献   

5.
We surveyed birds in patches of native eucalypt forest and in surrounding exotic matrix (Radiata pine forests) in south-eastern Australia. Our objectives were: (1) to examine the influence of the width of native forest patches and the age of surrounding pine forests on bird occurrence in patches of native forest; and (2) to verify the relationship between the use of the surrounding pine matrix and bird species response to variation in width of patches of native forests. A total of 32 study sites (boundaries between eucalypt and pine forests) were surveyed. Birds were counted by the area search method within 0.5-ha quadrats. Data were analysed using generalised linear models. Wide patches of eucalypt forest supported higher species richness and greater numbers of birds, such as foliage searchers and nectarivores, than narrow patches. Matrix age also influenced the occurrence of some species in native patches. The abundance of species in wide and narrow patches of native forest was related to their use of the matrix. This was true for native forests surrounded by old but not by young pine forests. We suggest that management in wood production landscapes take into account both characteristics of native patches and the surrounding matrix. Negative impacts of fragmentation in managed landscapes might be reduced by promoting matrix types that are suitable for bird species.  相似文献   

6.
The intensively farmed coastal lowland landscape of Germany, adjacent to the North Sea, provides important foraging opportunities for Black-headed, Common, Herring and Lesser Black-backed gull (Larus ridibundus, L. canus, L. argentatus and L. fuscus). We expected that spatial and temporal utilization of the landscape mosaic as well as behavioural traits and utilization of food resources would differ between these closely related species, facilitating niche segregation. We recorded habitat types and their utilization by the four species over a whole year. Furthermore, we related species abundance to several abiotic parameters. Black-headed and Common gulls were the most numerous species in the study area throughout the year. In general, the former species preferred bare fields with recently prepared soils and was often associated with tractors in the fields, whereas the latter species was most often found on pastures. Black-headed gulls seem to have a higher ability to exploit ephemeral, food sources associated with human activities whereas common gulls prefer habitats with low human activity and with naturally distributed prey. The most prominent abiotic parameter influencing gull abundance was presence of tractors. Black-headed gulls have most likely benefited from recent changes in agricultural practice, particularly the increase in cropped land, while Common gulls may have suffered from a decline in pastures. At present, utilization of the farmland habitat mosaic leads to niche segregation and supports coexistence, as two of the four gull species mainly forage in the marine environment, while there is significant habitat partitioning between the other two temporally, spatially and behaviourally.  相似文献   

7.
The factors responsible for widespread declines of grassland birds in the United States are not well understood. This study, conducted in the short-grass prairie of eastern Wyoming, was designed to investigate the relationship between variation in habitat amount, landscape heterogeneity, prey resources, and spatial variation in grassland bird species richness. We estimated bird richness over a 5-year period (1994–1998) from 29 Breeding Bird Survey locations. Estimated bird richness was modeled as a function of landscape structure surrounding survey routes using satellite-based imagery (1996) and grasshopper density and richness, a potentially important prey of grassland birds. Model specification progressed from simple to complex explanations for spatial variation in bird richness. An information-theoretic approach was used to rank and select candidate models. Our best model included measurements of habitat amount, habitat arrangement, landscape matrix, and prey diversity. Grassland bird richness was positively associated with grassland habitat; was negatively associated with habitat dispersion; positively associated with edge habitats; negatively associated with landscape matrix attributes that may restrict movement of grassland bird; and positively related to grasshopper richness. Collectively, 62% of the spatial variation in grassland bird richness was accounted for by the model (adj-R2 = 0.514). These results suggest that the distribution of grassland bird species is influenced by a complex mixture of factors that include habitat area affects, landscape pattern and composition, and the availability of prey.  相似文献   

8.
Birds living in fragmented habitat may occupy territories comprising more than one patch. This paper uses a theoretical model to investigate the costs (in terms of time and energy) of crossing gaps between patches for birds feeding young in the nest, using the great tit (Parus major) as an example. When the proportion of foraging trips involving gap-crossing was small (25%), gaps of about 300–550 m (depending on body mass and flight speed) could be crossed without exceeding likely maximum sustainable daily energy expenditure (DEEmax). However, a penalty of time lost in crossing gaps of about one hour was incurred. For more gap-crossing (due to larger brood size and/or a greater proportion of gap-crossing trips), distances that could be crossed decreased rapidly to about 50–100 m and time lost increased to more than six hours. Crossing gaps at maximum range speed, rather than at the slower minimum power speed, reduced flight times by 42% and slightly reduced overall daily energy expenditure because the higher flight costs per minute were more than off-set by the shorter flight times. Smaller body mass (17 g versus 19 g) was advantageous for gap-crossing, the distances which could be crossed without exceeding DEEmax being almost doubled for the smaller mass. The influence of changes in wing morphology, fat load and prey load size on the energetics of gap-crossing were also considered. Although the model was constructed for a woodland bird, problems of time and energy expenditure associated with gap-crossing will affect many species which exploit patchy resources, especially when the spacing of the patches increases, for example due to habitat loss and modification. In landscapes where semi-natural habitat is highly fragmented and most surviving patches are small (e.g., many farming landscapes) the costs of multiple patch use may represent another mechanism by which habitat fragmentation reduces the reproductive potential of the inhabitants of habitat patches which are of acceptable or even good quality, but are small.  相似文献   

9.
Vegetation corridors, such as street trees in urban areas, which connect patchy woodland and mitigate habitat isolation, are expected to enhance the persistence of birds in urban landscapes. However, the effectiveness of urban corridors on birds remains equivocal because vegetation corridor is often managed for human use with little consideration of wildlife. Here we compared the effects of three major corridors of varying vegetation structures (trees with a dense understory, trees with a sparse understory, and grassy areas with sparse trees) on the species richness and abundance of birds in 21 wooded patches in the center of Tokyo, Japan, during wintering and breeding seasons. Using generalized linear models and Akaike’s information criterion, we found that the effectiveness of corridors depended on the tolerance of birds to urbanization. Urban avoider species, having low tolerance to urbanization, demonstrated lower species richness and abundance in patches close to the corridor with a sparsely vegetated understory as compared with patches close to the understory-richer corridors during winter, although such an effect disappeared during the breeding season. The corridors did not have a significant effect on suburban adapter species with a high tolerance to urbanization. Our results suggest that corridors with scarce understory vegetation may limit the persistence of birds avoiding urban areas.  相似文献   

10.
Studies investigating animal response to habitat in marine systems have mainly focused on habitat preference and complexity. This study is one of the first to investigate the affect of benthic habitat corridors and their characteristics on dispersal and colonization by estuarine macrofuana. In this study, mark-recapture field experiments using artificial seagrass units (ASUs) assessed the effects of seagrass corridors, interpatch distance (5 m vs. 10 m), and the ratio of corridor width to patch width (0.5 m:1 m vs. 0.25 m:1 m) on dispersal of two benthic organisms: the highly mobile grass shrimp, Palaemonetes sp., and the less mobile bay scallop, Argopecten irradians, in two estuarine systems in southeastern North Carolina (NC). The presence of a seagrass corridor, interpatch distance, and corridor width to patch width ratios did not significantly affect shrimp or scallop dispersal to receiver patches. Bay scallop dispersal to receiver patches was significantly higher at one site (Drum Shoals) with relatively high flow, compared to a second site (Middle Marsh) with lower flow. We then examined colonization of estuarine macrofauna to seagrass patches with and without corridors to determine which, if any, taxonomic groups respond positively to corridors at scales of 10 m and over 1 month. Colonization of estuarine macrofauna to seagrass patches was enhanced in the presence of corridors at a relatively large interpatch distance (10 m), which was statistically significant for relatively slow moving polychaete worms. Thus, although benthic habitat corridors may facilitate dispersal of relatively slow moving estuarine animals between otherwise isolated seagrass patches, several common seagrass fauna such as grass shrimp and bay scallops apparently use water currents to rapidly disperse across the seagrass/sand landscape.  相似文献   

11.
Small mammals in heterogeneous environments have been found to disperse along corridors connecting habitat patches. Corridors may have different survivability values depending on their size and the degree of cover they provide. This deterministic model tests the effects of varying corridor quality on the demographics of a metapopulation of Peromyscus leucopus. Two types of corridors are defined based on the probability of survival during a dispersal event. Results indicate that mortality during movement through corridors influences metapopulation demographics. We found that:
  1. Any connection between two isolated patches is better than no connection at all in terms of persistence and population size at equilibrium.
  2. Metapopulations with exclusively high quality corridors between patches have a larger population size at equilibrium than do those with one or more low quality corridors.
  3. Increasing the number of high quality corridors between patches has a positive effect on the size of the metapopulation while increasing the number of low quality corridors has a negative effect.
  4. The addition to a metapopulation of a patch connected by low quality corridors has a negative effect on the metapopulation size. This suggest the need for caution in planning corridors in a managed landscape.
  5. There is no relationship between the number of corridors and the metapopulation size at equilibrium when the number of connected patches is held constant.
  6. Geometrically isolated patches connected by low quality corridors are most vulnerable to local extinctions.
We conclude that corridor quality is an important element of connectivity. It contributes substantially to the effects of fragmentation and should be carefully considered by landscape planners.  相似文献   

12.
Throughout most of the north-west Iberian Peninsula, chestnut (Castanea sativa) woods are the principal deciduous woodland, reflecting historical and ongoing exploitation of indigenous forests. These are traditionally managed woodlands with a patchy distribution. Eurasian nuthatches (Sitta europaea) inhabit mature deciduous woods, show high site fidelity, and are almost exclusively found in chestnut woods in the study area. We studied the presence and abundance of nuthatch breeding pairs over two consecutive years, in relation to the size, degree of isolation and intensity of management of 25 chestnut woods in NW Spain. Degree of isolation was assessed in view of the presence of other woodland within a 1-km band surrounding the study wood. Wood size was the only variable that significantly predicted the presence of breeding pairs (in at least one year, R 2 = 0.69; in both years, R 2 = 0.50). The number of pairs was strongly predicted by wood size, isolation and management (R 2 = 0.70 in 2004; R 2 = 0.84 in 2005); interestingly, more isolated woods had more breeding pairs. Breeding density was likewise significantly or near-significantly (P ≤ 0.1) higher in small isolated woods, which is possibly attributable to lower juvenile dispersal in lightly forested areas and/or to lower predator density in smaller and more isolated patches. Breeding density was higher (though not significantly so) in more heavily managed woods, possibly due to the presence of larger chestnut crops and larger trees (with higher nuthatch prey abundance). Our findings highlight the complexity of the relationships between the patch properties and the three studied levels (presence, number and density of pairs), and also the importance of traditionally managed woodlands for the conservation of forest birds.  相似文献   

13.
We investigated the species richness and composition of bird communities in mallee woodland remnants in a highly fragmented landscape, focusing specifically on honeyeaters and their foraging behaviour. We observed birds around flowering Eremophila glabra ssp. glabra plants in three replicated contexts: (1) the interior of large remnants, (2) linear remnants within ~3 km of a large remnant, and (3) linear remnants 5–7 km from a large remnant. We found species richness differed among elements, with an increase in the number of species that tolerate disturbed, open habitat and a decrease in the number of woodland-dependent species in linear elements. Honeyeater assemblages were similar in species richness and abundance among the elements, but differed in composition due to a higher number of large-sized honeyeater species in distant elements. Honeyeater movement patterns into a site and within a site were similar among the elements. Floral visitation varied among honeyeater species and was positively correlated with their abundance in the far element. Our results demonstrate that bird species respond differently to the spatial context of remnants in a fragmented landscape; however, the degree of isolation of linear remnants was not important. Linear remnants appear to be frequently used by honeyeaters, but the changes in community composition among the elements may influence the quality of pollination, which could have implications for plant reproduction.  相似文献   

14.
We tested the effects of increased landscape corridor width and corridor presence on the population dynamics and home range use of the meadow vole (Microtus pennsylvanicus) within a small-scale fragmented landscape. Our objective was to observe how populations behaved in patchy landscapes where the animals home range exceeded or equaled patch size. We used a small-scale replicated experiment consisting of three sets of two patches each, unconnected or interconnected by 1-m or 5-m wide-corridors, established in an old-field community (S.W. Ohio). Control (0-m) treatments supported significantly lower vole densities than either corridor treatment. Females were the dominant resident sex establishing smaller home ranges (<150m2) than males (>450m2). Significantly more male voles dispersed between patches with corridors than between patches without corridors. However, no difference was observed regarding the number of male voles dispersing between patches connected by corridors when compared to the number dispersing across treatments. Dispersal between connected patches was restricted to corridors based on tracking tube data. Corridor presence was more important than corridor width regarding the movement of male voles within their home range.  相似文献   

15.
Birds can serve as useful model organisms to investigate community level consequences of forestry practices. In this study we investigated the relationships between wintering bird communities and habitat and landscape characteristics of lowland managed forests in Northern Italy. This area is characterized by the spread of the black locust, an alien species that has been favored by forestry practices at the expense of natural oak forests. Birds were censused in winter by point counts in randomly selected plots of 50 m radius. We first addressed bird community–habitat relationships by means of habitat structure measurements, then we investigated bird community–landscape relationships by using GIS techniques. We used generalized linear models (GLM) to test for the effects of habitat and landscape variables on bird community parameters (namely bird species richness, diversity and abundance). Bird community parameters were influenced by oak biomass and tree age, and by oak area and core area, while the other forest habitat types showed less influence. In forest management terms, the main conclusion is that the retention of native oaks is the keyfactor for the conservation of winter bird diversity in local deciduous woods. At the habitat level black locust harvesting may be tolerated, provided that old, large, native oaks are retained in all local woodlots to preserve landscape connectivity and foraging resources. At the landscape meso-scale, large native oak patches, should be preserved or, where necessary, restored. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
An individual-based simulation model was used to study the effect of the relative location of food and nest sites in the landscape on the relationship between the breeding habitat patch size and bird population density. The model predicted that when both food and nest sites are located exclusively in the breeding habitat patches, larger patches tend to harbor higher population densities. But when food starts to be added to the `matrix' habitat and taken out of the breeding habitat the advantageous effect of larger patches diminishes and eventually the trend reverses, with small patches having higher population densities. This pattern arises from the combined effect of the existence of an extended foraging area around patches and an intrinsic advantage of large habitat patches associated with the concentration of food resources and potential colonizers. The effects of interspecific interactions and the management implications of the model are discussed.  相似文献   

17.
Urban green spaces are vital for human quality of life and urban avian ecology. In consequence, these areas attract cutting edge research on human/animal relations and the human roles in avian foraging grounds. However, few studies of bird reactions to human presence have included bird adaptation and attraction to human behaviour. More commonly, studies focus on structured, human approaches to subject birds, and consequent avian reactive distances (alert and flight distances and alert periods). This study of green spaces in Nanaimo, Canada, examines the less studied factors for bird reactive behaviour, including the more complex human behaviours such as hand waving, bird anticipation of feeding, passerine and non-passerine bird behaviour and non-feeding human presence. It also tests the hypothesis that bird species size, greater vegetation height, more open vegetation and road and path distance increase avian reactive distances. Consistent with established theory, longer alert and flight distances resulted from larger species size and proximate tree stands, but inconsistent with published hypotheses, taller vegetation, and less dense shrubbery were not sufficient predictors of avian reactive distances. Inconsistent with other findings, larger species were also more attracted to humans than smaller species, and anticipatory perching for human provided food balanced with the alert periods between the alert and flight distances. Most species had shorter reactive distances in human presence and were either significantly more likely to forage in human presence or showed no correlation with human presence or absence. The results of this study contribute to current knowledge of bird reactions to human presence and behavior in variable urban green spaces.  相似文献   

18.
Spatial relationships between predators and prey have important implications for landscape processes and patterns. Highly mobile oceanic birds and their patchily distributed prey constitute an accessible model system for studying these relationships. High-frequency echosounders can be used together with simultaneous direct visual observations to quantitatively describe the distributions of seabird consumers and their resources over a wide range of spatial scales, yielding information which is rarely available in terrestrial systems.Recent fine-scale investigations which have used acoustics to study the distribution of foraging marine birds have reported weak or ephemeral spatial associations between the birds and their prey. These results are inconsistent with predictions of optimal foraging, but several considerations suggest that traditional foraging models do not adequately describe resource acquisition in marine environments. Relative to their terrestrial counterparts, oceanic landscapes are structurally very simple, but they generally lack visual cues about resource availability.An emerging view assumes that perceptually constrained organisms searching for food in multiscale environments should respond to patterns of resource abundance over a continuum of scales. We explore fractal geometry as a possible tool for quantifying this view and for describing spatial dispersion patterns that result from foraging behavior. Data on an Alaskan seabird (least auklet [Aethia pusilla]) and its zooplanktonic food resources suggest that fractal approaches can yield new ecological insights into complex spatial patterns deriving from animal movements.  相似文献   

19.
Corridors are predicted to benefit populations in patchy habitats bypromoting movement, which should increase population densities, gene flow, andrecolonization of extinct patch populations. However, few investigators haveconsidered use of the total landscape, particularly the possibility ofinterpatch movement through matrix habitat, by small mammals. This studycompares home range sizes of 3 species of small mammals, the cotton mouse(Peromyscus gossypinus), old-field mouse (P.polionotus) and cotton rat (Sigmodon hispidus)between patches with and without corridors. The study site was in S. Carolina,USA. Corridor presence did not have astatistically significant influence on average home range size. Habitatspecialization and sex influenced the probability of an individual movingbetween 2 patches without corridors. The results of this study suggest thatsmall mammals may be more capable of interpatch movement without corridors thanis frequently assumed.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

20.
Disentangling the confounded effects of edge and area in fragmented landscapes is a recurrent challenge for landscape ecologists, requiring the use of appropriate study designs. Here, we examined the effects of forest fragment area and plot location at forest edges versus interiors on native and exotic bird assemblages on Banks Peninsula (South Island, New Zealand). We also experimentally measured with plasticine models how forest fragment area and edge versus interior location influenced the intensity of avian insectivory. Bird assemblages were sampled by conducting 15?min point-counts at paired edge and interior plots in 13 forest fragments of increasing size (0.5?C141?ha). Avian insectivory was measured as the rate of insectivorous bird attacks on plasticine models mimicking larvae of a native polyphagous moth. We found significant effects of edge, but not of forest patch area, on species richness, abundance and composition of bird assemblages. Exotic birds were more abundant at forest edges, while neither edge nor area effects were noticeable for native bird richness and abundance. Model predation rates increased with forest fragmentation, both because of higher insectivory in smaller forest patches and at forest edges. Avian predation significantly increased with insectivorous bird richness and foraging bird abundance. We suggest that the coexistence of native and exotic birds in New Zealand mosaic landscapes enhances functional diversity and trait complementation within predatory bird assemblages. This coexistence results in increased avian insectivory in small forest fragments through additive edge and area effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号