首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Placing a sterile glass ball or marble into the uterine lumen is a popular method to suppress unwanted oestrous behaviour in mares. This is in spite of the original report of Nie et al. (2003), which detailed the lack of efficacy of the technique. Recent reports in the literature have described a number of untoward problems associated with the technique. This paper describes two further cases, one involving fragmentation of marbles in the uterine lumen and a second describing the laparoscopic removal of a marble after it had tracked through the endometrium and became pedunculated between the myometrium and serosa. The inefficiency of suppressing oestrus with glass balls, combined with the potential problems their placement may cause, argue strongly that this practice should be considered unethical.  相似文献   

2.
A 25- or 35-mm diameter glass ball was placed in the uterus of mares to observe the effect on interovulatory interval, luteal function, estrous behavior, the endometrium, and subsequent fertility. The 25-mm glass ball was spontaneously expelled from the uterus of 6 of 12 mares (50%), whereas none of the 35-mm glass balls was expelled. Teasing results were consistent with the concentration of circulating progesterone. Luteal function was extended in 7 of 18 mares (39%) maintaining a glass ball, whereas an extended luteal period occurred in 4 of 32 mares (13%) observed as controls. Extended luteal function occurred in 7 of 62 diestrus periods (11%) among mares following ball placement, whereas 4 of 50 diestrus periods (8%) were extended in control cycles. The mean luteal life span in mares with a glass ball and extended luteal function was 87 days (range, 76 to 109 days); there were no significant differences in length of luteal function in both groups of mares that received the 2 different ball sizes. Endometrial changes observed between preplacement and postremoval samples were minimal. When mares were bred in the season subsequent to glass ball removal, 17 of 23 (74%) conceived. Placing an intrauterine glass ball in a mare may be an alternative to exogenous hormone therapy to prevent cycling in some mares. Luteal function was extended to nearly 90 days in approximately 40% of mares. The 35-mm diameter glass ball appeared to have an advantage for retention over the 25-mm size. Results of our study could not completely rule out idiopathic persistence of the corpus luteum as an explanation for the extended luteal function observed in mares with a glass ball. Readers are cautioned that many questions still exist about the use of intra-uterine glass balls in mares. Further work is required to confirm the efficacy of the use of an intra-uterine glass ball for prolonged luteal function in mares and to identify its mechanism of action.

Introduction

In recent years, there has been a debate among veterinary practitioners concerning the efficacy of various extra-label uses of progestin products (eg, cattle growth implants and human depo-progestin injectables) to modify behavior in mares. Clients who own horses are more frequently seeking means to suppress behavioral signs of estrus, expecting that with such suppression the mare will train or perform better. Requests for these progestin products by mare owners puts veterinary practitioners in the precarious situation of using pharmaceuticals, extra-label, without scientific evidence of efficacy, in mares.In reality, the only truly effective means of suppressing behavioral signs of estrus in most intact mares is to maintain sufficient concentrations of circulating progesterone or its equivalent. Today the only efficacious way to maintain a sufficient level of progesterone or its equivalent is for the mare to have a functional corpus luteum (CL), administer exogenous progesterone (eg, ≥50 mg in oil, intramuscularly, daily), or administer daily synthetic progestins (eg, altrenogest [Regumate], Hoechst Roussel Vet, Warren, NJ).1, 2 and 3Recently, placement of a glass ball of 30-mm diameter in the uterus has been suggested as a reversible means of preventing mares from cycling and displaying behavioral signs of estrus (message to Equine Clinicians Network, Dr Randy J. T. de Greef, March 19, 2000). If this technique is effective, it would be of value to mare owners because it would eliminate the need for daily treatments over extended periods.We have been unable to find literature that would support or refute this idea in horses. However, the effects on ovarian function, body weight gain, and pregnancy rate in nulliparous heifers of a copper-bearing intrauterine device were studied.4 The researchers reported that the heifers receiving the intrauterine device had lower progesterone concentrations than did control subjects. Nevertheless, nearly all of the treated heifers had better weight gain, were anestrus, and did not become pregnant during the study; however, multiple ovarian follicular cysts developed in many of them. The idea of using an intrauterine device to suppress estrus is said to have originated centuries ago in the Middle East as a common means of keeping camels from cycling and becoming pregnant (personal communication, Dr Ahmed Tibary, College of Veterinary Medicine, Washington State University, Pullman, Wash, May 2000).To our knowledge, the efficacy and long-term effects of glass ball treatment have not been critically evaluated. Our objectives in this study were to observe the effect of placement of an intra-uterine glass ball on interovulatory interval, luteal function, estrous behavior, the endometrium, and subsequent fertility of mares.

Materials and methods

Animals

A total of 38 light-horse breed mares ranging in age from 3 to 20 years were used for this study. Mares were maintained in accordance with the Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching (1st revised edition, January 1999). All experimental procedures involving animals were approved by the Institutional Animal Care and Use Committee at Auburn University (IACUC Protocol No. 0308-R-2307).

Intra-uterine device

Two glass ball (www.glassmarbles.com) sizes, 25- and 35-mm diameters, were evaluated in this study (Fig 1).
Full-size image (49K)
Fig. 1. Glass ball diameters evaluated during the study were 25 mm (left) and 35 mm (right).
In preparation for placement, the glass balls were sterilized by autoclaving. Initial attempts at autoclaving resulted in several broken balls. However, use of a liquid cycle with a temperature of 250°F (121°C) and pressure of 16 psi, with no prevacuum or dry cycle and a slow cool-down phase, did not result in further breakage.Upon entering the study, mares were monitored daily via transrectal palpation and ultrasonography for their progression through the estrous cycle. A glass ball was placed in the body of the uterus at the first examination following ovulation. The perineum was cleaned with cotton, tap water, and antiseptic dish detergent. A sterilized sleeve was donned and a small amount of sterile lubricant was applied to the back of the hand. Grasping the glass ball, it was manually carried into the vagina. The ball was placed in the cervical lumen and moved forward with the index finger to the caudal uterine body. After removing the hand from the vagina, the ball was located on transrectal palpation and pushed forward to the horn-body junction if it had not already moved to that position. Once the ball was positioned in the uterus, the vulva was again cleaned as previously described. The uterus was infused with 1 g of ticarcillin disodium (Ticar, SmithKline Beecham Pharmaceuticals, Philadelphia, Pa) in a 35-mL volume and each mare received 250 μg cloprostenol (Estrumate, Bayer Corporation, Shawnee Mission, Kan) intramuscularly to prevent a persistent endometritis if contaminants were introduced with the glass ball.At the end of the glass ball phase of the experiment for a mare, the ball was removed from the uterus during the following estrus when the cervix was softest. Occasionally a mare would require sedation to allow better manipulation of the ball per rectum. Mares with pendulous horns presented the most difficulty. Removal was accomplished by manipulating the glass ball, per rectum, caudally toward the cervix, through the cervix, and then to the vulva for retrieval. If the cervix was not fully dilated, a gloved hand was taken per vagina to the caudal cervical os and the glass ball was retrieved from the lumen.

Experimental protocol

This study was conducted at Auburn University in southeastern Alabama between May and October 2000. All mares used in this study had ovulated at least once in the season before being assigned to a treatment group. Twelve mares were randomly assigned to each treatment group (25-mm and 35-mm glass balls), representing 24 of 38 study mares. Control data were collected from 32 of 38 study mares during cycles in which no glass ball was in the uterus. Eighteen of the 32 mares used to collect control data were also treated with a glass ball during the study, whereas 14 mares were not treated. Control data were not available from 6 of 24 mares treated with a glass ball for management reasons beyond our control.An endometrial biopsy was taken from each mare during estrus in the cycle before being assigned to a treatment group, for comparison with a sample following removal of the glass ball. The follow-up samples were taken immediately after removal of the glass ball to ensure detection of inflammation, if present. An attempt was made to take the preplacement and postremoval samples from the same area near the uterine horn-body junction. Endometrial biopsies were evaluated as previously described.5 The evaluator was blinded to the group assignment and preplacement results of each mare.Throughout the study, mares treated with a glass ball were individually teased with a breeding stallion at a rail. Behavior was scored by response of a mare to the stallion using a categorical scale (0 = rejection, 1 = indifference, 2 = receptive) adapted from behavioral signs previously described.6Beginning on the day of glass ball placement, mares were examined daily by ultrasonography and palpation per rectum to monitor changes in the reproductive tract and ball location. The ultrasonic appearance of a glass ball in the uterus is shown in Fig 2.
Full-size image (38K)
Fig. 2. The ultrasonic appearance of a 35-mm glass ball is seen at the left uterine horn-body junction.
Mares were also teased to a stallion, and blood was taken for determination of progesterone concentrations. Daily evaluation was continued until 2 ovulations had been detected; after this, daily blood sampling and teasing was continued until 2 more ovulations were detected. However, if at any time mares were found to maintain luteal tissue (continued ultrasonic evidence of a CL, palpable tone in the uterus and cervix, absence of estrus signs on ultrasonography, and absence of estrus behavior) for 35 days, daily evaluation was discontinued and the mares were moved to pasture and blood samples were taken weekly to monitor progesterone concentrations.In mares that did not experience prolonged luteal function (>35 days), the glass ball was removed from the uterus after 4 ovulations had been detected. In mares that experienced prolonged luteal function, the glass ball was removed after progesterone concentrations had fallen to <1 ng/mL followed by a subsequent rise to >4 ng/mL, indicating a subsequent ovulation. Mares that spontaneously expelled the glass ball were removed from the study upon discovery without further sampling.Immediately following removal of a glass ball, an endometrial biopsy was taken for comparison with the preplacement sample. Following removal of the glass balls, mares were bred during the next season under the protocol of another study. Standard breeding management for artificial insemination and several stallions were used. The results reported are for the season and reflect pregnancy outcome at 15 days after ovulation.Estrous cycles (n = 50) were observed in 32 of 38 study mares to establish an interovulatory interval and incidence of spontaneous persistence of the CL as a control for the effect of the treatment protocol. Observations were made during separate control cycles when a glass ball was not in the uterus of any mares that were also used in a treatment group during the study. At least one cycle was evaluated for each of the 32 mares, with some contributing a second cycle. The reproductive tract and circulating progesterone concentrations were evaluated in the same fashion and on the same daily schedule as the treatment groups. During the control cycles, the mares were simultaneously being observed to establish estrous cycle control data for another study. Therefore, when spontaneous persistence of a CL occurred and a luteal phase lasted 30 days, the mare was given prostaglandin to lyse the CL.

Progesterone assay

Circulating progesterone concentrations were used to reflect luteal function. Concentrations higher than 1 ng/mL were considered indicative of functional luteal tissue. Plasma was harvested from blood collected from each mare. Plasma samples were frozen and held at −50°C until assayed in batches of approximately 200. Circulating concentrations of progesterone were quantified using a commercial radioimmunoassay kit (COAT-A-COUNT progesterone radioimmunoassay kit, Diagnostic Products Corporation, Los Angeles, Calif).

Statistical analysis

Two measures were derived from each interovulatory period: the interovulatory interval in days and the number of days during which progesterone was >1 ng/mL. The effects of glass ball size, monitoring method, mare and their interactions were tested using the GLM procedure of Statistical Analysis System (SAS Institute, Cary, NC). Ages of mare among groups were compared with use of an unpaired t test (GraphPad InStat version 3.00 for Windows 95, GraphPad Software, San Diego, Calif). The proportion of mares experiencing extended luteal function or spontaneous persistence of a CL during the treatment and control cycles was determined. In addition, the proportion of diestrus periods that resulted in extended luteal function or spontaneous persistence of a CL was determined. The proportion of mares and diestrus periods in which extended luteal function occurred during treatment and control cycles were compared using a Fisher Exact Test (GraphPad InStat version 3.00 for Windows 95, GraphPad Software, San Diego, Calif).

Results

A very small amount of uterine fluid (<1 cm depth) was observed via ultrasonography in 3 mares for 2 days following placement of the glass ball. By day 3, however, the fluid was no longer visible in any of the mares, one of which did go on to maintain luteal function for an extended period. None of the mares that developed uterine fluid experienced spontaneous loss of the glass ball.A total of 24 mares had a glass ball of either 25 mm (n = 12) or 35 mm (n = 12) diameter placed in the uterus. The 25-mm glass ball was spontaneously expelled in 6 of 12 mares (50%). Five were expelled within 24 hours of placement and a sixth during a subsequent estrus period, 11 days following placement. None of the 35-mm glass balls was spontaneously expelled.The glass ball was observed to randomly alternate between the left and right uterine horn-body junctions. Movement was observed in every mare except two. In those 2 mares, the 35-mm glass ball was consistently observed at the same site during each examination. One of the mares experienced extended luteal function and the other did not.Overall, 7 of 18 mares (39%) that maintained the glass ball experienced extended (>35 day) luteal function. Extended luteal function was detected during the first diestrus after ball placement in 4 mares, during the second diestrus in one mare, and during the third diestrus in 2 mares. Mean (±SEM) progesterone concentrations during the extended luteal periods are reported in Figs 3, 4, and 5.
Full-size image (13K)
Fig. 3. Mean (± SEM) progesterone (P4) concentration in 4 mares experiencing extended luteal function during the first diestrus period following placement of a 35-mm (n = 3 mares) or 25-mm (n = 1 mare) diameter glass ball in the uterus.
Full-size image (12K)
Fig. 4. Mean progesterone (P4) concentration in the one mare that experienced extended luteal function during the second diestrus period following placement of a 25-mm diameter glass ball in the uterus.
Full-size image (16K)
Fig. 5. Mean (± SEM) progesterone (P4) concentration in mares experiencing extended luteal function during the third diestrus period following placement of a 35-mm (n = 2 mares) diameter glass ball in the uterus.
There was no difference between the 25- and 35-mm balls in terms of proportion of mares having extended luteal function (2 of 6, 33%, and 5 of 12, 42%; P > .05). Extended luteal function occurred in 7 of 62 diestrus periods (11%) among mares following ball placement. Again, there was no difference between 25- and 35-mm balls in terms of proportion of diestrus periods resulting in extended luteal function (2 of 20, 10%, and 5 of 42, 12%, P > .05).An extended luteal period occurred in 4 of 32 mares (13%) observed for control data. Progesterone concentrations remained above 1 ng/mL for 30 days after ovulation in 4 of 50 control diestrus periods (8.0%) observed. Of the 4 mares that experienced extended luteal function during the control cycle, a glass ball was placed in the uterus of 3 of the mares during the treatment cycles. However, none of the 3 mares experienced extended luteal function while the glass ball was in the uterus. The proportion of mares that experienced extended luteal function (7 of 18, 39%) while a glass ball was in the uterus was greater than the proportion of mares that experienced an extended luteal period (4 of 32, 13%) during the control cycle (P = .04). The proportion of diestrus periods in which extended luteal function occurred was the same whether a glass ball was present in the uterus (7 of 62, 11%) or not (4 of 50, 8%; P = .75).The interovulatory interval was 23.0 (±0.43) days for the control cycles (n = 46) in which an extended luteal period did not occur. This was longer than the interovulatory interval (20.2 ± 0.41 days) for the cycles (n = 55) that occurred subsequent to glass ball placement without apparent extension of luteal function (P < .001). A functional CL was maintained (15.5 ± 0.35 days, range 11 to 23 days) longer in control cycles than in cycles with glass balls (13.2 ± 0.42 days, range 7 to 18 days) in which extended luteal function was not apparent (P < .001). Mean (± SEM) progesterone concentrations for the control cycles (n = 46) and treatment cycles in which an extended luteal period did not occur are presented in Fig 6.
Full-size image (12K)
Fig. 6. Mean (± SEM) progesterone (P4) concentration in mares during control cycles (-♦- n = 46) without a glass ball and treatment cycles (-□- n = 55) with a glass ball in which an extended luteal period did not occur.
The mean age of all mares in the study was 9.6 years (range, 3 to 20 years). Mares that experienced extended luteal function were younger, at 8.3 years (±0.87), than mares that did not experience extended luteal function, at 12.6 years (±1.05, P = .012). Mares that spontaneously expelled the glass ball were younger, at 6.3 years (±2.0), than mares that did not expel the glass ball, at 10.9 years (±0.87, P = .024).The interassay and intra-assay coefficient of variation for the progesterone assay was 7% and 3%, respectively. The sensitivity of the assay was 0.02 ng/mL. Estrous behavior observed during the study accurately reflected circulating progesterone concentrations. All mares with a glass ball invariably displayed behavioral estrus scores of 1 or 2 when progesterone concentrations were <1 ng/mL, while scores of 0 were observed when concentrations were >1 ng/mL. Those that experienced extended luteal function also displayed scores of 0 throughout the period while progesterone concentrations were >1 ng/mL and estrus behavior was monitored. A single CL was observed at the primary ovulation site throughout the observation period. No additional CLs were observed in any mare with a glass ball following the primary ovulation.No change in endometrial category was observed between the preplacement and postremoval endometrial samples in any of the mares in the 25-mm glass ball group. In the 35-mm group, the score declined by a category in one mare, improved by a category in 2 mares, and was unchanged in the other 9 mares. The difference in category assigned in those 3 mares was attributed to mild changes, up or down, in the amount of lymphocytic inflammation observed. The mare that declined by one category did not experience extended luteal function, whereas 1 of 2 mares with improvement in endometrial category experienced an extended luteal period.During the season following glass ball removal, 23 of 24 mares were bred, including all of the mares that had experienced extended luteal function. During the season, 17 of 23 (74%) of the mares bred subsequently conceived, including 5 of 7 (71%) of those that had experienced extended luteal function.

Discussion

Placement of the glass ball through the cervix was relatively easy in most of the mares. Occasionally the cervix of a mare would require some degree of manual dilation to push a 35-mm diameter ball through its lumen; however, the 25-mm balls generally passed with ease. During preliminary work, we had found that the glass ball was more likely to be expelled from the uterus if it was placed a day or two before ovulation. Based on the anecdotal information from the Netherlands (message to Equine Clinicians Network, Dr Randy J. T. de Greef, March 19, 2000) and our preliminary experience, we decided to place the glass ball in the uterus at the examination following ovulation. Our assumption when placing the glass ball following ovulation was that the cervix would have started to close under the influence of rising progesterone, which might help prevent it from being expelled. We found that younger mares were more likely to expel the glass ball, perhaps because younger mares have more effective uterine clearance (in estrus and the periovulatory period) and a less dependent uterine position than do older mares. The smaller diameter and lighter weight of the 25-mm glass ball also may have contributed to the spontaneous expulsion from 6 mares, although it is also possible the cloprostenol contributed to the loss in some mares. However, losses observed during preliminary work were not associated with cloprostenol administration, and neither was the loss in this study from the mare that expelled the ball during the subsequent estrus at 11 days following placement.Idiopathic persistence of the primary CL, also known as spontaneous persistence of the CL,7 cannot be completely ruled out as an explanation for the extended luteal function observed in this study. The incidence of idiopathic persistence is reported to vary widely.8 and 9 Ginther and Pierson8 did not observe idiopathic persistence in any of 69 interovulatory intervals, while Stabenfeldt and Hughes9 suggest it can occur in as many as 25% of estrous cycles. However, acceptance of inadequate evidence for the condition may have led to an overestimation of the incidence in some reports.7The proportions of diestrus periods that resulted in an extended luteal period were not different between the control (4 of 50) and glass ball (7 of 62) cycles. However, the proportion of cycles in mares with glass balls inserted is heavily biased by the 4 cycles from each mare that did not experience extended luteal function. A greater proportion of mares (7 of 18) experienced extended luteal function when a glass ball was in the uterus than without a ball (4 of 32) during the control cycles. Four of the mares that experienced extended luteal function with a glass ball in the uterus did so during the first diestrus following placement and did not experience subsequent ovulations. These mares are consequently underrepresented in the proportion of diestrus periods among the mares that had a glass ball inserted, especially if all or some of the mares had experienced additional periods of extended luteal function following subsequent ovulations. This would seem to make the proportion of mares a more valuable indicator of glass ball efficacy. However, in all fairness, we should point out that 2 of 7 mares that experienced extended luteal function did so after the third ovulation following glass ball placement (Fig 5). The control data were collected from 32 mares in 50 estrous cycles; only 18 of the mares were observed in more than one cycle. This may have biased our results for fewer occurrences of idiopathic persistence of the CL, although we believe it is unlikely.Five of the 7 mares in this study that experienced extended luteal function when a glass ball was in the uterus had never previously been observed to have prolonged interovulatory intervals over multiple seasons. Historic data were not available for the other 2 mares. The average length of the luteal period reported to be associated with idiopathic persistence of the CL is approximately 2 months.7 The average length of luteal function observed in this study was 3 months. These several points would seem to support the idea that the extended luteal function observed in this study was indeed affected by the glass ball protocol rather than idiopathic persistence. Therefore, although it is not possible to positively distinguish idiopathic persistence of the primary CL from extended luteal function influenced by the glass ball protocol, we believe that our observations in this study suggest a genuine effect. An explanation is not readily apparent for our observation that mares experiencing extended luteal function were younger than those that did not experience extended luteal function.Two possible explanations for an effect of the glass ball have been discussed (Equine Clinicians Network archives). First, the glass ball simulates a conceptus and through movement and physical contact prevents prostaglandin release from the endometrium, in turn maintaining the CL (an endogenous progesterone source) indefinitely. A second theory suggested that the glass ball would stimulate mild inflammation, in turn causing release of small amounts of prostaglandin that would be inadequate to achieve luteolysis. As long as the glass ball was present, the endometrium would remain in a prostaglandin-depleted state and the CL would be maintained.In the event that the first theory discussed was correct, two glass ball sizes were evaluated in this study to account for a range in vesicle diameter that would be expected to occur naturally during the early stages of pregnancy. However, this theory seems to assume that the physical presence of a spherical structure, in this case a glass ball, in the uterine lumen will prevent prostaglandin release. This is contrary to conventional logic that would assume, as has been demonstrated in other species, that a chemical messenger is produced by the equine conceptus to allow maternal recognition of pregnancy and avoid prostaglandin release.10The second theory is as equally confusing, considering that there are countless reasons why a mare may have low-grade endometrial inflammation, yet clinically we do not recognize scores of mares that maintain their luteal tissue indefinitely. Both theories suggest that the glass ball is mobile enough to contact the majority of the endometrium or cause low-grade endometrial inflammation throughout the uterus. Our findings did not support the idea that the glass ball was particularly mobile in the uterus. Although the ball did move between the uterine horn-body junctions in most mares, the distance moved was only a few centimeters. In 2 mares, the glass ball did not move at all. One of the mares experienced extended luteal function in spite of the lack of ball movement. It probably also would be more logical to assume that an irritant to the endometrium would cause low-grade inflammation, which in turn would likely trigger sufficient release of endogenous prostaglandin F to cause luteolysis.11 and 12 Uterine biopsy results did not reflect an increase in endometrial inflammation. Further, the interovulatory interval and functional life of the CL was >2 days longer during control cycles than in cycles when a glass ball was in the uterus. This would suggest that the ball was more likely to cause early regression of the CL.Placing the glass ball following ovulation could predispose a mare to endometritis, considering the procedure involved passing a foreign object, although sterilized, through the cervical lumen after a mare has entered diestrus. A mare susceptible to endometritis may not have time to clear her uterus of contaminants before closing the cervical lumen completely. Based on this rationale and experience during our preliminary work, we decided to provide treatments simultaneous to glass ball placement that were intended to help prevent a persistent postplacement endometritis. Hence, each mare in this study was infused with ticarcillin disodium (Ticar) and treated with cloprostenol (Estrumate) following glass ball placement. Uterine fluid was only observed in a few mares in the first few days following glass ball placement, and it resolved quickly. Nevertheless, it is advisable to re-examine a mare with ultrasonography following placement of a glass ball to ensure a detectable endometritis has not developed.Discussions on the Equine Clinicians Network suggested that the glass ball had no long-term detrimental effects on the uterus. The relatively minor ultrasonic changes detected in the uterus following glass ball placement, the endometrial biopsy results, and a conception in 74% of the mares following glass ball removal would seem to support this claim.It is interesting that the mares experiencing extended luteal function were able to maintain progesterone concentrations above 1 ng/mL for an average of nearly 3 months. This is the period in which we would expect the fetoplacental unit to begin assuming maintenance of pregnancy through the production of pregnanes in an ever-increasing number of pregnant mares. The progesterone profiles in these mares were very similar to those reported for mares hysterectomized 3 days following ovulation.13 The primary CL was present 70 days following ovulation in hysterectomized mares, but disappeared by 140 days.13 We found this was also true of mares that experienced extended luteal function with a glass ball in the uterus.The efficacy of an intrauterine glass ball for maintaining luteal function and thus preventing cycling and behavioral estrus in mares appears to be moderate. Our results were not quite as good as those reported from the Netherlands (Dr Randy J. T. de Greef, message to Equine Clinicians Network, March 19, 2000). The Dutch veterinarian indicated that the technique works in at least 75% of cases; in contrast, we found the technique to be effective in only approximately 40% of mares. Perhaps a placebo effect for mare owners, as is suspected with the use of progestin implants, would explain the additional success reported from the Netherlands.The glass ball protocol takes advantage of endogenous progesterone production to suppress behavioral estrus. Some variation in estrus behavior will be observed in any group of mares teased to a stallion throughout the cycle. However, mares are typically expected to reject a stallion when a functional CL is present and to change from indifferent to receptive as estrogens rise in the absence of a functional CL. Teasing results in this study were consistent with the behavior expected for the concentration of circulating progesterone detected. We did not monitor the mares that experienced extended luteal function beyond their subsequent ovulation, although we speculate that if the glass ball had been left in the uterus, some of the mares may have experienced another extended luteal period. Another researcher related information to us about 2 mares in which he had placed a glass ball (personal communication, Dr Peter Daels, National Institute of Agricultural Research, Nousilly, France, April 2000). The mares experienced extended luteal function, then, following administration of prostaglandin, both mares returned to estrus, retained the glass ball, ovulated, and again experienced extended luteal function.This technique offers the advantage of suppressing behavioral estrus because of endogenous progesterone production over an extended period following a single administration of a glass ball. The disadvantage is that it does not work in every mare nor does it appear to have an immediate effect in every mare following intra-uterine placement of the glass ball. However, when it is effective it may serve as an alternative method for suppressing estrous cycle and/or behavior and thus avoiding the need for administration of exogenous progestin products. Readers are cautioned that many questions still exist about the use of intra-uterine glass balls in mares. Further work is required to confirm the efficacy of the use of an intra-uterine glass ball for prolonged luteal function in mares and to identify its mechanism of action.  相似文献   

3.
To assess the influence of volume and mass of ruminal contents on voluntary intake and related variables, five ruminally cannulated steers (550 kg) were fed a low-quality forage diet (43.1% ADF, 8.1% CP) in a 5 x 5 Latin square experiment. Mass and volume of ruminal contents were altered by adding varying numbers and weights of filled tennis balls (6.7-cm diameter) to the rumen immediately before the initiation of each experimental period. Treatments consisted of 0 balls (control), 50 balls with a 1.1 specific gravity (SG), 100 balls with a 1.1 SG, 50 balls with a 1.3 SG, and 100 balls with a SG of 1.3. The total volume of balls was 7.25 and 14.5 L for 50 and 100 balls, respectively. The total weight of balls was 8.5 and 17 kg for 50 and 100 balls with a 1.1 SG and 10.75 and 21.5 kg for 50 and 100 balls with a 1.3 SG, respectively. Daily DMI was 8.3, 7.3, 7.0, 6.5, and 6.0 kg for control; 50, 1.1 SG; 50, 1.3 SG; 100, 1.1 SG; and 100, 1.3 SG, respectively. Addition of balls to the rumen reduced (P < .01) DMI. Increasing the number (P < .01) and SG (P <. 01) of the balls decreased DMI further. However, digestibilities of DM, NDF, ADF, and CP were not influenced by treatment. Increasing the number of balls in the rumen increased (P < .05) rate of passage of digesta from the rumen, but increasing SG of the balls did not alter rate of passage. There was a treatment x hour interaction (P < .05) in the proportion of ruminal digesta with a functional specific gravity (FSG) less than 1.1, which decreased with time after feeding for the control but increased with time after feeding for other treatments. Ruminal passage rate of inert particles added in the rumen of different SG (1.1 and 1.3) and length (1 and 3 mm) decreased (P < .05) as SG of the balls increased. Mean fecal particle size was greater for those treatments with the heavier balls. Both the number and SG of balls (P < .10) influenced total VFA, and total concentrations were greater for the control and for the 1.1 SG than for the 1.3 SG treatments.  相似文献   

4.
Challenge with an equal mix of drug-resistant and drug-susceptible larvae of Teladorsagia circumcincta resulted in infections in groups of lambs (n = 6) either untreated or given controlled-release capsules, containing either albendazole or ivermectin. Lambs treated with albendazole capsules contained similar numbers of adult worms at necropsy to the other groups but had no detectable faecal egg count. Animals treated with ivermectin capsules had similar worm burdens and faecal egg counts to the control group but the worms had significantly higher numbers of eggs in utero. These results provide evidence for suppression of egg production by both anthelmintic treatments. The observation that albendazole caused a significant reduction in the developmental success of parasite eggs also has implications for the use of faecal egg count as an indicator for pasture contamination with resistant parasites. In two further groups of lambs, either untreated or given albendazole capsules, treatment caused a significant reduction in egg count and adult worm burden of Trichostrongylus colubriformis. No significant effects were observed on in utero egg counts or egg viability and the apparent effect on the number of eggs produced in faeces per adult female was not significant (p = 0.077). There was, therefore, no evidence that albendazole controlled-release capsules caused suppression of egg output in this species.  相似文献   

5.
This report describes the clinical progression of a Quarter Horse filly with common variable immunodeficiency (CVID). Equine CVID is a primary immunodeficiency in which affected animals are unable to mount an appropriate antibody response and suffer recurrent bacterial infections. The filly in this report had a history of chronic respiratory tract infections but presented for assessment of poor weight gain and was diagnosed with Actinobacillus equuli peritonitis.  相似文献   

6.
Nutritional disorders in domestic or pet animals depend not seldom on special situations, for example when different influences coincide concerning keeping, housing and offering of feed or water. These lead suddenly to high-risk situations, that can cause sometimes the death of the animal. The following case report deals with two ponies, that were kept on a so-called "petting zoo" and showed repeatedly colic symptoms (always after a weekend). During surgery in the stomach light yellow balls were found, that can be explained by ingestion of 1.0 to 1.5 kg wheat. This cereals consist--depending on variety--gluten, that can cause the observed conglobates. Due to the forming of such balls that can lead to health disorders in form of colics, gastritis or ruptures of the stomach the feeding of high amounts of wheat should be avoided. Snacks rich in fiber or high amounts of roughage (straw, hay) that are fed before opening of the zoo could be a practical alternative.  相似文献   

7.
To evaluate the influence of mass of ruminal contents on voluntary intake and ruminal function, five ruminally cannulated steers (550 kg) were fed an orchard grass hay diet ad libitum in a 5 x 5 Latin square experiment. The mass of ruminal contents was altered by adding varying weights of modified tennis balls to the rumen before the initiation of each 15-d experimental period. Treatments consisted of 50 balls with a specific gravity of 1.0, 1.1, 1.2, 1.3, or 1.4; the total weight of the balls was 7.45, 8.50, 9.25, 10.55, and 11.55 kg, respectively. Increasing the specific gravity of the balls added to the rumen decreased DMI and particle passage rate (P < 0.05) in a linear manner. A second experiment was conducted to evaluate the influence of mass of ruminal contents on voluntary intake and ruminal function of both forage and concentrate diets. Five ruminally cannulated steers (580 kg) were fed a 70% concentrate (DM basis) or an orchardgrass hay diet ad libitum in a 5 x 5 Latin square experiment. The mass of ruminal contents was altered as in the first experiment. Treatments consisted of 0 balls added to the rumen of steers fed concentrate diet (control), 75 balls with a specific gravity of 1.1 given to steers fed a concentrate diet, 75 balls with a specific gravity of 1.4 given to steers fed a concentrate diet, 75 balls with a specific gravity of 1.1 given to steers fed a hay diet, and 75 balls with a specific gravity of 1.4 given to steers fed hay diet. The addition of balls to the rumen of steers fed the concentrate diet decreased DMI (P < 0.05) compared with the 0-ball treatment, and increasing specific gravity of balls also decreased DMI (P < 0.01) for both concentrate and hay diets. Adding balls to the rumen of steers fed the concentrate diet decreased particle passage rate (P < 0.05), whereas increasing specific gravity of balls decreased particle passage rate for both concentrate and hay diet. The results of this study suggest that the density of ruminal digesta can have an influence on voluntary intake of both forage and concentrate diets.  相似文献   

8.
The clinical signs of infection in dogs with Neospora caninum are usually associated with neurological disorders and are seen in young dogs. In this brief case report we observed multifocal ulcerative and exudative skin nodules on the neck and pelvic limbs of a 10‐year‐old cocker spaniel dog. Infection with N. caninum was diagnosed on the basis of cytology and examination of skin tissues by PCR. The dog initially responded to treatment with clindamycin and then relapsed; the dog died. Infection with N. caninum may have been due in part to immune suppression due to hyperadrenocorticism; which either allowed for the development of a primary infection or reactivation of a latent infection by N. caninum with the occurrence of skin lesions.  相似文献   

9.
The inner ear contains endolymph and perilymph. The second is comparable and in continuity with the cerebrospinal fluid (CSF) so it is expected to suppress in fluid‐attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) if normal. Even though inner ear FLAIR abnormalities have been extensively described in humans with inner ear disease, its diagnostic value in dogs is yet to be proven. The goal of this retrospective cohort study was to investigate the diagnostic utility of FLAIR MRI in dogs with vestibular disease. A review of medical records identified 101 dogs that had brain MRI performed because of vestibular signs. Based on the final diagnosis, patients were allocated to three groups: otitis media/interna, idiopathic vestibular disease, and central vestibular disease. Additionally, a control group (n = 73) included dogs with normal MRI and without vestibular signs. Inner ears were delineated using a region of interest, and signal intensity was measured in FLAIR and T2‐weighted images. The percentages of suppression in FLAIR were calculated and compared between affected and unaffected sides of each individual and between groups using a general linear mixed model. Correlation between suppression and CSF cell count and protein concentration was assessed. Affected inner ears in dogs with otitis media/interna had decreased suppression in FLAIR compared to the unaffected side (P < .001), and all other groups (P < .01). No significant correlation was detected between CSF results and suppression. These results show the diagnostic value of FLAIR in otitis media/interna due to lack of suppression in the affected inner ear.  相似文献   

10.
Magnetic resonance imaging fat suppression techniques are commonly used for diagnosis of canine spinal disease, however, studies comparing different techniques are currently lacking. This retrospective, methods comparison study aimed to evaluate water excitation and STIR MRI pulse sequences for visualization of canine lumbar spinal nerve roots. For inclusion, all dogs had to have dorsal planar MRI studies of the lumbar spine using both sequences. Visual grading analysis was used for scoring the following five criteria: degree of fat suppression; nerve root visualization; subjective tissue contrast; presence of noise; and overall better image quality. Scores were independently recorded by three board‐certified veterinary radiologists on two separate occasions, 3‐6 weeks apart. A total of 90 dogs were sampled. A two‐tailed t‐test showed that there were significant differences in all scored parameters (P < 0.00001), with the exception of noise (P = 0.47343), and that the water excitation sequence scored higher in all cases excluding noise. A Gwets AC kappa for intraobserver and interobserver reliability showed “almost perfect” agreement for the nerve roots in both tests (intra: k = 0.88; inter: k = 0.90). Intraobserver agreement was “substantial” for the degree of fat suppression (k = 0.68), subjective tissue contrast (k = 0.75), and overall better image quality (k = 0.76) and it was “fair” for the noise (k = 0.46). Interobserver agreement was “moderate” for the degree of fat suppression (k = 0.53), subjective tissue contrast (k = 0.63), and overall better image quality (k = 0.66) and “slight” for noise (k = 0.25). These findings supported using the water excitation pulse sequence for fat‐suppressed MRI of canine lumbar spinal nerve roots.  相似文献   

11.
Hydrogen sulfide causes offensive odors. We attempted to isolate sulfur oxidizing bacteria (SOB) from cattle manure compost. A most probable number assay could not detect SOB by using a Cha medium which had been applied in order to isolate the SOB from active sewage. Cultivation using a Cha plate medium revealed 5.75 × 107 colony forming unit/g of bacteria. A single strain of SOB was isolated from a colony formed on the plates and identified as Halothiobacillus neapolitanus. This is the first report that H. neapolitanus has been found in cattle manure compost.  相似文献   

12.
This report describes a method for culturing turkey lymphocytes in disposable, unwashed glass test tubes with Morton closures and for recovering lymphocytes on fiber glass filters with a cell harvester made of common laboratory equipment for assay of mitogenic stimulation. Optimal conditions for culture were established.  相似文献   

13.
The health of captive Tasmanian devils (Sarcophilus harrisii) is currently of increased interest because wild populations are being decimated by the spread of devil facial tumour disease. This report describes the pathology of an aged captive Tasmanian devil that had a pulmonary mycobacterial infection caused by Mycobacterium intracellulare in addition to multiple neoplastic processes.  相似文献   

14.
We used plastic balls to investigate how their specific gravity and diameter affect excretion rate and rumination in dairy cattle, to develop a capsule that can be used for reaching the lower gastrointestinal tract without physical breakdown and/or degradation in the rumen. Twelve types of indigestible plastic balls composed of a combination of four specific gravities (0.95, 1.19, 1.41, or 2.20) and three diameters (3.97, 6.35, or 7.94 mm) were orally administered to lactating dairy cows, and the balls were collected from feces, after 120 h post‐administration, to evaluate the recovery rate. Recovery rate of the balls with specific gravity 1.19 or 1.41 and diameter 6.35 or 7.94 mm was higher than those with specific gravity 0.95 or 2.20 and diameter 3.97 mm. The cumulative recovery rate at 24 and 48 h post‐administration was higher for balls with specific gravity 1.19 than that for balls with other specific gravities. These results suggest that specific gravity 1.19 or 1.41 and diameters 6.35?7.94 mm are optimal for use in bypass capsules for administration to cattle. In addition, the passage time of capsules differed between specific gravities 1.19 and 1.41.  相似文献   

15.
The multiple congenital ocular anomalies (MCOA) syndrome has been associated with the Silver phenotype only in a few equine breeds. This report describes the phenotypic and genotypic characteristics of MCOA in a family of Silver‐coated Shetland ponies including a 20‐year‐old stallion, 17‐year‐old mare and their 1.5‐year‐old female offspring. Another 7‐year‐old Silver female Deutsches Classic Pony descending from the same dam but from a different sire, was also examined. Each pony underwent a complete ophthalmic examination, tonometry, ocular ultrasonography and genotyping for the silver coat colour. The stallion had a thickened iris, temporal retinal atrophy and bilateral iridociliary and peripheral retinal cysts. All females presented more severe anomalies: cornea globosa, iridocorneal adhesions, miosis, hypoplastic granula iridica and poorly responsive pupils to light and to pharmacological mydriasis. Iris hypoplasia, anterior cortical cataracts and temporal retinal atrophy were detected in 2 mares. One female presented bilateral lens subluxation. Supero‐temporal cystic structures were confirmed ultrasonographically in all ponies. The stallion was heterozygous for the Silver mutation, whereas all females were homozygous. This is the first report of the MCOA syndrome in a family of Shetland ponies and a Deutsches Classic Pony in association with the Silver phenotype, in Europe.  相似文献   

16.
We report the results of investigations that were conducted in a sheep flock in Uttaranchal, India where repeated failure of anthelmintic medication was noted. The study revealed that Haemonchus contortus in sheep had developed resistance to benzimidazoles (fenbendazole, mebendazole and albendazole), imidazothiazole (levamisole) and salicylanide (rafoxanide), while it was fully susceptible to avermectins (ivermectin). Further, the suppression of nematode egg output in faeces of sheep naturally infected with multiple anthelmintic-resistant H. contortus following treatment with ivermectin tablet (0.4 mg/kg body weight (bw), orally), ivermectin injection (1% w/v, 0.2 mg/kg bw, subcutaneously) and ivermectin pour-on (0.5 w/v, 0.5 mg/kg bw) was also studied over a period of 10 weeks post treatment. It was noted that ivermectin tablet after initial clearance of infection (faecal egg count reduction 100%), could not prevent establishment of new patent natural infection for even a single day, while ivermectin pour-on and injection prevented the establishment of new infection for 7 and 14 days post treatment, respectively. Maximum protection period (duration for which mean faecal egg count of sheep reaches 500 eggs per gram of faeces or more) of 68 days was recorded in sheep treated with injectable ivermectin, followed by pour-on (60 days) and oral (53 days) preparations.  相似文献   

17.
In the 3 years since the first report of canine alveolar echinococcosis (AE) in Ontario, three additional cases have been diagnosed in the province. Of the four cases reported to date, three have had no known history of travel outside the province. It is possible that this development is an indication of previously unrecognized environmental contamination with Echinococcus multilocularis eggs in some areas of the province. If so, there is the potential for an emerging threat to human health. This article describes a local public health department's investigation of the possible exposure to E. multilocularis of a number of individuals who had had contact with the latest of the four cases of canine AE, and summarizes a comprehensive decision process that can be used by public health departments to assist in the follow‐up of such exposures.  相似文献   

18.
High glycaemic feeds are associated with the development of insulin resistance in horses. However, studies that evaluated the effect of high glycaemic feeds used horses that either ranged in body condition from lean to obese or were fed to increase body condition over a period of months; thus, the ability of high glycaemic feeds to induce insulin resistance in lean horses has not been determined. This study evaluated the insulin sensitivity of 18 lean horses fed a 10% (LO; n = 6), 20% (MED; n = 6) or 60% (HI; n = 6) non‐structural carbohydrate complementary feed for 90 days. Although both the MED and HI diets increased insulinaemic responses to concentrate feeding in relation to the LO diet (p > 0.05), neither induced insulin resistance, as assessed by glucose tolerance test, following the 90‐day feeding trial. Interestingly, the post‐feeding suppression of plasma non‐esterified fatty acids was less pronounced in HI‐fed horses (p = 0.054) on days 30 and 90 of the study, potentially indicating that insulin‐induced suppression of adipose tissue lipolysis was reduced. As insulin‐resistant animals often have elevated plasma lipid concentrations, it is possible that altered lipid metabolism is an early event in the development of insulin resistance. The effects of high glycaemic feeds that are fed for a longer duration of time, on glucose and lipid metabolism, should be investigated further.  相似文献   

19.
ISOLATION OF CHLAMYDIA PSITTACI FROM CATS WITH CONJUNCTIVITIS   总被引:1,自引:0,他引:1  
SUMMARY Chlamydia psittaci was repeatedly demonstrated in stained smears of conjunctival scrapings from a group of cats in a single household and in 5 instances the organism was isolated by yolk sac inoculation of 6-day-old specific pathogen free, embryonated hen eggs. Thirteen of 15 cats in the cattery developed conjunctivitis at various times over a 9-month period. The outstanding features of the disease were its severity, chronicity and refractoriness to treatment. Prolonged (2 week) treatment with tetracycline was required to effect clinical recovery. Nine of 14 cats in the household developed significant complement-fixing (CF) antibody titres (>128) to the chlamydia group antigen. A single serum from the owner had a titre of 32 although no associated illness was recognised. Of 134 serums collected from random source cats aged 1 month to 16 years, 17 (12.7%) also contained CF antibody to chlamydia group antigen. This is the first report of the isolation of chlamydia from cats with conjunctivitis outside North America and the first report to indicate general incidence figures for chlamydia infection of cats where vaccination is not used.  相似文献   

20.
Abstract: A 4‐year‐old female spayed Bichon Frise dog that had been receiving cyclosporine A per os 3 times per week for 2 months to control allergic dermatitis developed lethargy, anorexia, fever, and multiple firm subcutaneous masses. Pyogranulomatous inflammation with branching nonseptate filamentous organisms approximately 2 μm in diameter, presumptively fungal organisms, was diagnosed by cytologic evaluation of fine‐needle aspirates from several masses. A partially acid‐fast actinomycete was cultured from 2 of the masses. The organism was identified as Nocardia abscessus (formerly Nocardia asteroides type 1) based on 16S ribosomal DNA sequencing of samples extracted from cultures and unstained cytologic smears. Immunosuppression caused by long‐term administration of cyclosporine A likely predisposed the dog to disseminated infection. To our knowledge, this is the first report of N. abscessus infection in a dog. This case demonstrates that N. abscessus may be mistaken for a fungal organism based on its cytologic appearance and underscores the importance of using molecular techniques for the diagnosis of suspected fungal diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号