首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaf phenology, growth irradiance (i.e., photosynthetic photon flux (PPF) at the leaf surface) and photosynthetic capacity (A(area); measured at a PPF of 1000 micro mol m(-2) s(-1) and expressed on a leaf area basis) were investigated in early leaves (ELs) and late leaves (LLs) of Betula grossa Siebold & Zucc. trees. Early leaves first appeared on morphologically distinct long shoots and short shoots. The appearance of ELs, which was restricted to the bud break period, was followed by the successive appearance of LLs on long shoots only. Late leaves appeared successively until the middle of the growing season. Late leaves started to abscise around the middle of the growing season, whereas ELs on both long and short shoots did not abscise until near the end of the growing season. Solar irradiance was higher at the surface of LLs of late appearance than at the surface of either LLs of early appearance or ELs. Solar irradiance at the surface of ELs decreased after LLs appeared. In both long and short shoots, A(area) of ELs increased and then remained stable for 65-80 days before starting to decrease. Although A(area) was higher in LLs than in ELs for a short time in August, it started to decrease earlier in LLs than in ELs. Area-based nitrogen concentration (N(area)) was higher in LLs than in ELs after August. Although N(area) decreased slowly in ELs after August, it did not decrease in LLs. In both ELs and LLs, A(area)/N(area) decreased with time. The crown was thus characterized by a rapidly growing surface with young LLs having high A(area) and by shaded inner parts with ELs having stable low A(area).  相似文献   

2.
HARMER  R. 《Forestry》1992,65(1):61-72
Over a 3-year-period the relationships between shoot length,number of buds and branch production were investigated on theleading shoots and major crown branches on 10-year-old Quercuspetraea. The pattern of growth was similar in leading shootsand branches indicating that for some aspects of growth observationof branches can substitute for study of the leader. There weresignificant relationships between shoot length and either numberof buds or branches, and between number of buds and branches;some of the relationships differed between years. There weresignificant between tree differences in the proportion of budsforming branches. Failure of the terminal bud increased lateralbranch production. The overall shape of the crown was relatedto the average annual extension growth. Results are discussedin relation to prediction of crown development and the selectionof superior genotypes in a tree improvement programme.  相似文献   

3.
Takenaka A 《Tree physiology》1997,17(3):205-210
Stem length and leaf area of current-year shoots were measured in saplings of eight broad-leaved evergreen tree species growing under a forest canopy. Stem length varied over a range of one to two orders of magnitude within each species. In all species, both the number of leaves and the mean stem length between successive leaves were greater in longer shoots. Mean leaf size and stem length were not correlated in six of eight species, and only weakly positively correlated in the other two species. Thus, total leaf area per stem increased with stem length, but not in direct proportion: leaf area per stem length was smaller in shoots with long stems and larger in shoots with short stems. I conclude that the within-species variation in the leaf-stem balance of current-year shoots is related to variation in shoot functional roles, as has been observed for long and short shoots in many deciduous tree species: shoots with long stems are extension oriented and contribute to the framework of the crown, whereas shoots with short stems serve mainly for leaf display. Among species, large differences were found in the leaf area per stem length ratio. In the species with larger leaf area per stem length ratios, leaves had narrower blades or longer petioles, or both, resulting in a reduction of mutual shading among the leaves on the shoot.  相似文献   

4.
The impacts of thinning, fertilization and crown position on seasonal growth of current-year shoots and foliage were studied in a 13-year-old loblolly pine (Pinus taeda L.) plantation in the sixth post-treatment year (1994). Length of new flushes, and their needle length, leaf area, and oven-dry weight were measured in the upper and lower crown from March through November. Total shoot length was the cumulative length of all flushes on a given shoot and total leaf area per shoot was the sum of leaf areas of the flushes.

By the end of June, first-flush foliage reached 70% of the November needle length (14.3 cm) and 65% of the final leaf area (15.0 cm2). Cumulative shoot length of first- and second-flush shoots achieved 95% of the annual length (30.3 cm), whereas total leaf area per shoot was 55% of the final value (75.3 dm2). Fertilization consistently stimulated fascicle needle length, dry weight, and leaf area in the upper crown. Mean leaf area of upper-crown shoots was increased by 64% six years after fertilization. A significant thinning effect was found to decrease mean leaf area per shoot in the crown. For most of the growing season, the thinned-fertilized trees produced substantially more leaf area per shoot throughout the crown than the thinned-nonfertilized trees. These thinned-fertilized trees also had greater needle length and dry weight, longer first flush shoots, and more leaf area per flush than trees in the thinned-nonfertilized plots. Needle length and leaf area of first flush shoots between April and July were linearly related to previous-month canopy air temperature (Ta). Total shoot length strongly depended on vertical light gradient (PPFD) within the canopy, whereas shoot leaf area was a function of both PPFD and Ta. Thus, trees produced larger and heavier fascicles, more and longer flush shoots, and more leaf area per shoot in the upper crown than the lower crown. We conclude that thinning, fertilization, and crown position regulate annual leaf area production of current-year shoots largely by affecting the expansion of first flush shoots and their foliage during the first half of the growing season.  相似文献   


5.
Bud-burst on first order lateral branches of Abies bafsamea L. (balsam fir) was delayed when the branches were rotated 180 degrees about their long axis. This was not a consequence of injury caused by the treatment because buds rotated 180 degrees on inverted plants flushed at the same time as the controls, whereas flushing of all other buds was delayed. Buds thus appear to be more vigorous when maintained in the same orientation to gravity in which they are formed and the site of gravitational stimulus perception appears to be the bud itself. Except on the leading shoot, leaves from inverted buds turned so that their adaxial surface faced upward, unless there was intense illumination from below. However, both anisophylly and positioning of leaves on lateral shoots were apparently predetermined because the shorter, more forward pointing leaves appeared below the longer distichous leaves on shoots from inverted buds. Shoots with normally oriented leaves appeared the next season.  相似文献   

6.
Patterns of shoot development and the production of different types of shoots were compared with scion leaf area index (LAI) to identify how eight clonal Actinidia rootstocks influence scion development. Rootstocks selected from seven Actinidia species (A. chrysantha Merri., A. deliciosa (A. Chev.) C. F. Liang et A.R. Ferguson, A. eriantha Benth., A. hemsleyana Dunn, A. kolomikta (Maxim. et Rupr.) Maxim., A. kolomikta C.F. Liang and A. polygama (Sieb. et Zucc.) Maxim.) were grafted with the scion Actinidia chinensis Planch. var. chinensis 'Hort16A' (yellow kiwifruit). Based on an earlier architectural analysis of A. chinensis, axillary shoot types produced by the scion were classified as short, medium or long. Short and medium shoots produced a restricted number of preformed leaves before the shoot apex ceased growth and aborted, resulting in a 'terminated' shoot. The apex of long shoots continued growth and produced more nodes throughout the growing seasons. Mid-season LAI of the scion was related to the proportion of shoots that ceased growth early in the season. Scions on low-vigor rootstocks had 50% or less leaf area than scions on the most vigorous rootstocks and had a higher proportion of short and medium shoots. On low-vigor rootstocks, a higher proportion of short shoots was retained during pruning to form the parent structure of the following year. Short parent shoots produced a higher proportion of short daughter shoots than long parent shoots, thus reinforcing the effect of the low-vigor rootstocks. However, overall effects of rootstock on shoot development were consistent regardless of parent shoot type and nodal position within the parent shoot. Slower-growing shoots were more likely to terminate and scions on low-vigor rootstocks produced a higher proportion of slow-growing shoots. Shoot termination also occurred earlier on low-vigor rootstocks. The slower growth of terminating shoots was detectable from about 20 days after bud burst. Removal of a proportion of shoots at the end of bud burst increased the growth rate and decreased the frequency of termination of the remaining shoots on all rootstocks, indicating that the fate of a shoot was linked to competitive interactions among shoots during initial growth immediately after bud burst. Rootstock influenced the process of shoot termination independently of its effect on final leaf size. Scions on low-vigor rootstocks had a higher proportion of short shoots and short shoots on all rootstocks had smaller final leaf sizes at equivalent nodes than medium or long shoots. Only later in the development of long shoots was final leaf size directly related to rootstock, with smaller leaves on low-vigor rootstocks. Thus, the most important effect of these Actinidia rootstocks on scion development occurred during the initial period of shoot growth immediately after bud burst.  相似文献   

7.
Hemmerlein MT  Smith WK 《Tree physiology》1994,14(10):1139-1148
Sunlight interception efficiency was compared at the leaf, shoot, branch and crown levels for Picea engelmannii (Parry) and Abies lasiocarpa ((Hook.) Nutt.), dominant tree species of the central Rocky Mountains, USA. The ratio of silhouette to total leaf area (STAR) was used to quantify the efficiency of direct-beam sunlight interception at each structural scale. Total mean reductions in STAR from the leaf to the crown level were 0.39 to 0.06 in P. engelmannii and 0.46 to 0.02 in A. lasiocarpa. These reductions in STAR occurred for both species as structural scale increased due to a more upright leaf inclination, increased leaf twisting and curvature, or greater mutual shading among plant structures. A steeper leaf inclination between the leaf and shoot level accounted for 26 +/- 19% (95% C.I.) of the total leaf-to-crown STAR reduction; mutual shading among leaves on shoots caused a 14 +/- 7% reduction, whereas leaf curvature and twisting accounted for 22 +/- 3% for a total reduction of 62 +/- 8%. The STAR varied slightly from the shoot to the branch level (+/- 7%) except for a 26% reduction in shade shoots of A. lasiocarpa as a result of increased mutual shading among leaves at lateral nodes. Another substantial reduction in STAR occurred from the branch to the crown level (35 +/- 3% of total) as a result of shading of one branch layer by another within the crown. Thus, light interception efficiency decreased as structural scale increased in both species, especially from the leaf to the shoot level and from the branch to the crown level.  相似文献   

8.
We examined the effects of elevated CO2 concentration ([CO2]) on leaf demography, late-season photosynthesis and leaf N resorption of overstory sweetgum (Liquidambar styraciflua L.) trees in the Duke Forest Free Air CO2 Enrichment (FACE) experiment. Sun and shade leaves were subdivided into early leaves (formed in the overwintering bud) and late leaves (formed during the growing season). Overall, we found that leaf-level net photosynthetic rates were enhanced by atmospheric CO2 enrichment throughout the season until early November; however, sun leaves showed a greater response to atmospheric CO2 enrichment than shade leaves. Elevated [CO2] did not affect leaf longevity, emergence date or abscission date of sun leaves or shade leaves. Leaf number and leaf area per shoot were unaffected by CO2 treatment. A simple shoot photosynthesis model indicated that elevated [CO2] stimulated photosynthesis by 60% in sun shoots, but by only 3% in shade shoots. Whole-shoot photosynthetic rate was more than 12 times greater in sun shoots than in shade shoots. In senescent leaves, elevated [CO2] did not affect residual leaf nitrogen, and nitrogen resorption was largely unaffected by atmospheric CO2 enrichment, except for a small decrease in shade leaves. Overall, elevated [CO2] had little effect on the number of leaves per shoot at any time during the season and, therefore, did not change seasonal carbon gain by extending or shortening the growing season. Stimulation of carbon gain by atmospheric CO2 enrichment in sweetgum trees growing in the Duke Forest FACE experiment was the result of a strong stimulation of photosynthesis throughout the growing season.  相似文献   

9.
The effect of two training systems (Central Leader with branch pruning versus Centrifugal Training with minimal pruning, i.e., removal of fruiting laterals only) on canopy structure and light interception was analyzed in three architecturally contrasting apple (Malus domestica Borkh.) cultivars: 'Scarletspur Delicious' (Type II); 'Golden Delicious' (Type III); and 'Granny Smith' (Type IV). Trees were 3D-digitized at the shoot scale at the 2004 and 2005 harvests. Shoots were separated according to length (short versus long) and type (fruiting versus vegetative). Leaf area density (LAD) and its relative variance (xi), total leaf area (TLA) and crown volume (V) varied consistently with cultivar. 'Scarletspur Delicious' had higher LAD and xi and lower TLA and V compared with the other cultivars with more open canopies. At the whole-tree scale, training had no effect on structure and light interception parameters (silhouette to total area ratio, STAR; projected leaf area, PLA). At the shoot scale, Centrifugal Training increased STAR values compared with Central Leader. In both training systems, vegetative shoots had higher STAR values than fruiting shoots. However, vegetative and fruiting shoots had similar TLA and PLA in Centrifugal Trained trees, whereas vegetative shoots had higher TLA and PLA than fruiting shoots in Central Leader trees. This unbalanced distribution of leaf area and light interception between shoot types in Central Leader trees partly resulted from the high proportion of long vegetative shoots that developed from latent buds. These shoots developed in the interior shaded zone of the canopy and therefore had low STAR and PLA. In conclusion, training may greatly affect the development and spatial positioning of shoots, which in turn significantly affects light interception by fruiting shoots.  相似文献   

10.
Total foliage dry mass and leaf area at the canopy hierarchical level of needle, shoot, branch and crown were measured in 48 trees harvested from a 14-year-old loblolly pine (Pinus taeda L.) plantation, six growing seasons after thinning and fertilization treatments.

In the unthinned treatment, upper crown needles were heavier and had more leaf area than lower crown needles. Branch- and crown-level leaf area of the thinned trees increased 91 and 109%, respectively, and whole-crown foliage biomass doubled. The increased crown leaf area was a result of more live branches and foliated shoots and larger branch sizes in the thinned treatment. Branch leaf area increased with increasing crown depth from the top to the mid-crown and decreased towards the base of the crown. Thinning stimulated foliage growth chiefly in the lower crown. At the same crown depth in the lower crown, branch leaf area was greater in the thinned treatment than in the unthinned treatment. Maximum leaf area per branch was located nearly 3–4 m below the top of the crown in the unthinned treatment and 4–5 m in the thinned treatment. Leaf area of the thinned-treatment trees increased 70% in the upper crown and 130% in the lower crown. Fertilization enhanced needle size and leaf area in the upper crown, but had no effect on leaf area and other variables at the shoot, branch and crown level. We conclude that the thinning-induced increase in light penetration within the canopy leads to increased branch size and crown leaf area. However, the branch and crown attributes have little response to fertilization and its interaction with thinning.  相似文献   


11.
To gain further insight into crown development, the influences of shoot architectural position (branch order) and light environment on patterns of shoot growth of Cleyera japonica Thunberg (Theaceae) were investigated. Annual shoot length and light environment were positively correlated within same-order branches. Shoot length differed significantly among branch orders: shoot length was greater for the lower-order branches when light environments were comparable. Lower-order branches lengthened to a certain extent even if light availability was relatively low, whereas higher-order branches did not grow vigorously even when light availability was relatively high. Within same-order branches, branching was independent of the light environment of the shoot. Sylleptic shoot production differed significantly among branch orders, with most sylleptic shoots being produced on second-order branches. It is concluded that both light condition and architectural position of shoots must be considered when examining the mechanisms underlying crown development.  相似文献   

12.
Leaf development of shoots exposed to full sunlight and shoots shaded by the canopy was followed in field-grown, mature peach trees (Prunus persica (L.) Batsch, cv. Loring) during the first half of the 1995 growing season. The architecture and size of shaded shoots and sun-exposed shoots differed significantly. Total number of leaves produced on shaded shoots was significantly less than on sun-exposed shoots throughout the season, and differences in leaf number between light conditions increased as the season progressed. The overall patterns of leaf development along sun-exposed and shaded shoots were qualitatively similar. The expression pattern of the type II chlorophyll a/b-binding protein gene, Lhcb2*Pp1, determined by RNA abundance in leaves at different positions along the shoot, was also similar between the two light conditions. The major difference between sun-exposed and shaded leaves was a lower abundance of Lhcb2*Pp1 RNA in mature, shaded leaves compared with sun-exposed leaves. Although the number of fruit per shoot was significantly lower on shaded shoots than on sun-exposed shoots, the rate of fruit drop was not substantially different during the growing season, indicating that quantitative differences in leaf initiation and growth caused by differences in light exposure did not adversely affect fruit retention. However, based on comparison with a previous study of leaf development in non-fruiting trees, reproductive development slowed the rate of vegetative growth without affecting the overall pattern of leaf development along the shoots.  相似文献   

13.
目的 明确油茶成花的部位、成花启动的时间,探明油茶成花启动与春梢生长的关系,为成年油茶年生长周期中成花启动机制研究提供形态学基础,为同类型多年生木本植物成花启动研究提供参考。 方法 以树龄12年生的长林53号油茶为试验材料,应用植物解剖学、扫描电镜等试验方法对油茶成花启动、春梢生长过程中春梢和芽的形态学变化及相关关系进行研究。 结果 油茶春梢的顶芽和腋芽均为混合芽,花芽原基形成于春梢顶芽或腋芽的基部。在春梢生长与展叶的同时,花芽原基在顶芽或腋芽中形成并进入萼片分化阶段,萼片分化阶段的花芽原基形态上与叶芽原基没有明显的差异。春梢完成展叶进入平缓生长期时,花芽分化进入花瓣分化阶段,花瓣是花芽区别于叶芽的特异性器官,花瓣出现的时间为形态学上油茶完成成花启动的时间。春梢基本停止增长和增粗时,花芽完成花瓣分化,进入雌雄蕊分化阶段。油茶春梢生长的快速生长阶段、平缓生长阶段、生长完成阶段分别与萼片分化期、花瓣分化期、雌雄蕊分化期依次对应。 结论 成年油茶花芽原基形成于混合芽基部,春梢萌动即成花启动,春梢生长发育与花芽分化同时进行,花瓣出现的时间为形态学上油茶完成成花启动的时间。  相似文献   

14.
Takenaka A 《Tree physiology》2000,20(14):987-991
To examine the mechanisms underlying crown development, I investigated the dependence of shoot behavior on light microenvironment in saplings of the evergreen broad-leaved tree species, Litsea acuminata (Bl.) Kurata, growing on a forest floor. The local light environment of individual shoots (shoot irradiance) and plants (plant irradiance, defined as the shoot irradiance of the most sunlit shoot of a plant) were analyzed as factors affecting shoot behavior. Daughter shoots that developed under partially sunlit conditions were longer and less leafy than daughter shoots developed under shaded conditions. Shoot production increased with increasing shoot irradiance. Terminal shoots receiving 5% or less of full sunlight produced 0.67 daughter shoots on average, whereas shoots receiving 10% or more of full sunlight produced 1.72 daughter shoots. In terminal shoots receiving 5% or less of full sunlight, the probability of producing no daughter shoots was about 63% when other shoots on the plant received 10% or more of full sunlight, but was < 35% where the rest of the plant was also shaded. Shoot death was observed only in shoots receiving 5% or less of full sunlight. The mortality of shaded shoots was higher in plants growing in high irradiance than in plants growing in low irradiance. The ecological significance of correlative inhibition (the enhanced mortality and reduced production of new shaded shoots in the presence of partially-sunlit shoots) is discussed.  相似文献   

15.
Kull O  Tulva I 《Tree physiology》2002,22(15-16):1167-1175
We investigated shoot growth patterns and their relationship to the canopy radiation environment and the distribution of leaf photosynthetic production in a 27-m-tall stand of light-demanding Populus tremula L. and shade-tolerant Tilia cordata Mill. The species formed two distinct layers in the leaf canopy and showed different responses in branch architecture to the canopy light gradient. In P. tremula, shoot bifurcation decreased rapidly with decreasing light, and leaf display allowed capture of multidirectional light. In contrast, leaf display in T. cordata was limited to efficient interception of unidirectional light, and shoot growth and branching pattern facilitated relatively rapid expansion into potentially unoccupied space even in the low light of the lower canopy. At the canopy level, T. cordata had higher photosynthetic light-use efficiency than P. tremula, whereas P. tremula had higher nitrogen-use efficiency than T. cordata. However, at the individual leaf level, both species had similar efficiencies under comparable light conditions. Production of new leaf area in the canopy followed the pattern of photosynthetic production. However, the species differed substantially in extension growth and space-filling strategy. Light-demanding P. tremula expanded into new space with a few long shoots, with shoot length strongly dependent on photosynthetic photon flux density (PPFD). Production of new leaf area and extension growth were largely uncoupled in this species because short shoots, which do not contribute to extension growth, produced many new leaves. Thus, in P. tremula, the growth pattern was strongly directed toward the top of the canopy. In contrast, in shade-tolerant T. cordata, shoot growth was weakly related to PPFD and more was invested in long shoot growth on a leaf area basis compared with P. tremula. However, this extension growth was not directed and may serve as a passive means of avoiding self-shading. This study supports the hypothesis that, for a particular species, allocation patterns and crown architecture contribute as much to shade tolerance as leaf-level photosynthetic acclimation.  相似文献   

16.
We used long-term in situ (15)N labeling of the soil to investigate the contribution of the two main nitrogen (N) sources (N uptake versus N reserves) to sun shoot growth from bud burst to full leaf expansion in 50-year-old sessile oaks. Recovery of (15)N by growing compartments (leaves, twigs and buds) and presence of (15)N in phloem sap were checked weekly. During the first 2 weeks following bud burst, remobilized N contributed ~90% of total N in growing leaves and twigs. Nitrogen uptake from the soil started concomitantly with N remobilization but contributed only slightly to bud burst. However, the fraction of total N due to N uptake increased markedly once bud burst had occurred, reaching 27% in fully expanded leaves and 18% in developed twigs. In phloem sap, the (15)N label appeared a few days after the beginning of labeling and increased until the end of bud burst, and then decreased at full leaf expansion in June. Of all the shoot compartments, leaves attracted most of the absorbed N, which accounted for 68% of new N in shoots, whereas twigs and new buds accounted for only 28 and 3%, respectively. New N allocated to leaves increased from unfolding to full expansion as total N concentration in the leaves decreased. Our results underline the crucial role played by stored N in rapid leaf growth and in the sustained growth of oak trees. Any factors that reduce N storage in autumn may therefore impair spring shoot growth.  相似文献   

17.
Initial growing space is of critical importance to growth and quality development of individual trees. We investigated how mortality, growth (diameter at breast height, total height), natural pruning (height to first dead and first live branch and branchiness) and stem and crown form of 24-year-old pedunculate oak (Quercus robur [L.]) and European ash (Fraxinus excelsior [L.]) were affected by initial spacing. Data were recorded from two replicate single-species Nelder wheels located in southern Germany with eight initial stocking regimes varying from 1,020 to 30,780 seedlings·ha -1 . Mortality substantially decreased with increasing initial growing space but significantly differed among the two species, averaging 59% and 15% for oak and ash plots, respectively. In contrast to oak, the low self-thinning rate found in the ash plots over the investigated study period resulted in a high number of smaller intermediate or suppressed trees, eventually retarding individual tree as well as overall stand development. As a result, oak gained greater stem dimensions throughout all initial spacing regimes and the average height of ash significantly increased with initial growing space. The survival of lower crown class ashes also appeared to accelerate self-pruning dynamics. In comparison to oak, we observed less dead and live primary branches as well as a smaller number of epicormic shoots along the first 6m of the lower stemof dominant and co-dominant ashes in all spacing regimes. Whereas stem form of both species was hardly affected by initial growing space, the percentage of brushy crowns significantly increased with initial spacing in oak and ash. Our findings suggest that initial stockings of ca. 12,000 seedlings per hectare in oak and 2,500 seedlings per hectare in ash will guarantee a sufficient number of at least 300 potential crop trees per hectare in pure oak and ash plantations at the end of the self-thinning phase, respectively. If the problem of epicormic shoots and inadequate self-pruning can be controlled with trainer species, the initial stocking may be reduced significantly in oak.  相似文献   

18.
After decapitation, lateral shoot growth of mulberry coppice (Morus alba L. cv. Shin-ichinose) from 10-year-old stumps had an extremely acrotonic form compared with that of intact one-year-old stems of trees during the spring. When one dominant shoot from each stump was decapitated, only a few upper lateral buds grew out and elongated. Defoliation of the decapitated shoots resulted in an increase in the number of shoots sprouting and a decrease in the rate of elongation of the laterals. Further enhancement of laterals on decapitated dominant shoots resulted from the removal of competing intact coppice shoots from the stumps. 1-Naphthaleneacetic acid (NAA) applied as a spray reduced the number of lateral buds sprouting from both defoliated, decapitated erect shoots and intact horizontally trained shoots. The results suggest that management of mulberry coppice could increase the supply of leaves for commercial silk production.  相似文献   

19.
A quantitative method was tested to describe crown phenophases in relation to water content and to secondary growth in ring-porous species, based on the hypothesis that new shoots require hydrated tissues to maintain the necessary turgor for extension, leading to a reduction in dry matter content (DMC). We collected a three-year-old branch from 11 Quercus pyrenaica Willd. trees at 10-day intervals to estimate DMC of newly developing buds, leaves, and twigs, and processed two opposite stem microcores for xylogenesis. Branch phenophases and shoot length were recorded in the field. The DMC of all organs decreased during crown development, with a minimum in early June, followed by a gradual increase up to initial values in late September. The shoot extension period concurred with the lowest DMC, but also with the beginning of earlywood maturation in the main stem, suggesting a high tissue hydration only when earlywood vessels become functional to fulfill enough water requirements for shoot and leaf extension. These results confirm the usefulness of DMC to accurately quantify the phenology of primary growth from bud swelling up to full leaf extension, as a complement to qualitative methods. This variation in DMC appears to be linked to secondary growth as a result of earlywood vessel development.  相似文献   

20.
Suzuki A 《Tree physiology》2002,22(12):885-890
The influence of shoot architectural position on shoot growth and branching patterns was examined in saplings of Cleyera japonica Thunb. (Theaceae), an understory, broad-leaf evergreen woody species. Shoot length varied with branching order and the vertical position of the branch in the crown. In the upper crown, shoot length decreased with increasing branching order, whereas in the lower crown, differences in shoot length among branching orders were not significant. These results demonstrate that it is important to consider not only individual shoots, but also the relationships between shoots in terms of their architectural positions when studying the development of crown architecture in trees. Shoot branching patterns also varied with branching order and the vertical position of the branch in the crown. In the upper crown, branching was mainly sylleptic. In the middle of the crown, mainly proleptic branches were produced. In the lower crown, there was little branching. The importance of these trends in shoot growth and shoot branching patterns in terms of carbon production efficiency is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号