首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic in situ hybridization (GISH) was used to investigate the genomic relationships among some newly collected species of genus Setaria. Previous work identified that S. viridis and S. adhaerens carry genomes A and B, respectively. GISH patterns obtained in this report clearly distinguished the genome of S. grisebachii from the known genomes A and B, and indicated its new genomic constitution which we suggest to name genome C of the Setaria genus. The two sets of chromosomes of tetraploid S. queenslandica hybridized well with the A genome of S. viridis indicating its autotetraploid nature. This is the first autotetraploid identified in the Setaria genus, which should be classified into the primary A genome gene pool rather than the tertiary gene pool as previously classified. GISH patterns did not distinguish the genome of S. leucopila from the A genome of S. viridis and S. italica, suggesting its close relation with foxtail millet. Strong hybridization signals were observed when S. adhaerens genomic DNA was used as probe to hybridize the chromosomes of diploid S. verticillata, inferring its B genome nature. Combined with morphological observation and previous work, we deduce that diploid S. verticillata and S. adhaerens are probably taxonomically the same species with different names. Y. Wang and H. Zhi contributed equally to this article.  相似文献   

2.
In a Robinia-pseudoacacia-dominated coastal forest in Tottori prefecture Japan, the growth and survival of Pinus thunbergii seedlings and the natural regeneration of P. thunbergii was disturbed by R. pseudoacacia. In order to improve the growth of P. thunbergii seedling in the Tottori sand dune, we tried to find a mycorrhiza helper bacteria (MHB) from P. thunbergii mycorrhizosphere in a Tottori sand dune. Two MHB, Ralstonia sp. and Bacillus subtilis, were selected from the nine bacterial species isolated from the mycorrhizosphere of P. thunbergii. The bacterial effect on the ectomycorrhizal fungus Suillus granulatus was investigated by confrontation assay and a microcosm experiment. The confrontation assay showed that Ralstonia sp. promoted the hyphal growth of S. granulatus. Moreover, the S. granulatusP. thunbergii symbiosis was significantly stimulated by Ralstonia sp. and B. subtilis. Ralstonia sp. and B. subtilis were regarded as MHB associated with P. thunbergii. This is the first report of Ralstonia sp. as an MHB.  相似文献   

3.
The present study was conducted to isolate and characterize rhizobial strains from root nodules of cultivated legumes, i.e. chickpea, mungbean, pea and siratro. Preliminary characterization of these isolates was done on the basis of plant infectivity test, acetylene reduction assay, C-source utilization, phosphate solubilization, phytohormones and polysaccharide production. The plant infectivity test and acetylene reduction assay showed effective root nodule formation by all the isolates on their respective hosts, except for chickpea isolate Ca-18 that failed to infect its original host. All strains showed homology to a typical Rhizobium strain on the basis of growth pattern, C-source utilization and polysaccharide production. The strain Ca-18 was characterized by its phosphate solubilization and indole acetic acid (IAA) production. The genetic relationship of the six rhizobial strains was carried out by random amplified polymorphic DNA (RAPD) including a reference strain of Bradyrhizobium japonicum TAL-102. Analysis conducted with 60 primers discriminated between the strains of Rhizobium and Bradyrhizobium in two different clusters. One of the primers, OPB-5, yielded a unique RAPD pattern for the six strains and well discriminated the non-nodulating chickpea isolate Ca-18 from all the other nodulating rhizobial strains. Isolate Ca-18 showed the least homology of 15% and 18% with Rhizobium and Bradyrhizobium, respectively, and was probably not a (Brady)rhizobium strain. Partial 16S rRNA gene sequence analysis for MN-S, TAL-102 and Ca-18 strains showed 97% homology between MN-S and TAL-102 strains, supporting the view that they were strains of B. japonicum species. The non-infective isolate Ca-18 was 67% different from the other two strains and probably was an Agrobacterium strain.  相似文献   

4.
This study aimed to investigate the effect of inoculation with plant growth-promoting Rhizobium and Pseudomonas species on NaCl-affected maize. Two cultivars of maize (cv. Agaiti 2002 and cv. Av 4001) selected on the basis of their yield potential were grown in pots outdoors under natural conditions during July. Microorganisms were applied at seedling stage and salt stress was induced 21 days after sowing and maintained up to 50% flowering after 120 days of stress. The salt treatment caused a detrimental effect on growth and development of plants. Co-inoculation resulted in some positive adaptative responses of maize plants under salinity. The salt tolerance from inoculation was generally mediated by decreases in electrolyte leakage and in osmotic potential, an increase in osmoregulant (proline) production, maintenance of relative water content of leaves, and selective uptake of K ions. Generally, the microbial strain acted synergistically. However, under unstressed conditions, Rhizobium was more effective than Pseudomonas but under salt stress the favorable effect was observed even if some exceptions were also observed. The maize cv. Agaiti 2002 appeared to be more responsive to inoculation and was relatively less tolerant to salt compared to that of cv. Av 4001.  相似文献   

5.
Root colonization and mitigation of NaCl stress on wheat seedlings were studied by inoculating seeds with Azospirillum lipoferum JA4ngfp15 tagged with the green fluorescent protein gene (gfp). Colonization of wheat roots under 80 and 160 mM NaCl stress was similar to root colonization with this bacterial species under non-saline conditions, that is, single cells and small aggregates were mainly located in the root hair zone. These salt concentrations had significant inhibitory effects on development of seedlings, but not on growth in culture of gfp-A. lipoferum JA4ngfp15. Reduced plant growth (height and dry weight of leaves and roots) under continuous irrigation with 160 mM NaCl was ameliorated by bacterial inoculation with gfp-A. lipoferum JA4ngfp15. Inoculation of plants subjected to continuous irrigation with 80 mM NaCl or to a single application of either NaCl concentration (80 or 160 mM NaCl) did not mitigate salt stress. This study indicates that, under high NaCl concentration, inoculation with modified A. lipoferum reduced the deleterious effects of NaCl; colonization patterns on roots were unaffected and the genetic marker did not induce undesirable effects on the interaction between the bacterium and the plants.  相似文献   

6.
The genus Arachis is divided into nine taxonomic sections. Section Arachis is composed of annual and perennial species, while section Heteranthae has only annual species. The objective of this study was to investigate the genetic relationships among 15 Brazilian annual accessions from Arachis and Heteranthae using RAPD markers. Twenty-seven primers were tested, of which nine produced unique fingerprintings for all the accessions studied. A total of 88 polymorphic fragments were scored and the number of fragments per primer varied from 6 to 17 with a mean of 9.8. Two specific markers were identified for species with 2n = 18 chromosomes. The phenogram derived from the RAPD data corroborated the morphological classification. The bootstrap analysis divided the genotypes into two significant clusters. The first cluster contained all the section Arachis species, and the accessions within it were grouped based upon the presence or absence of the ‘A’ pair and the number of chromosomes. The second cluster grouped all accessions belonging to section Heteranthae.  相似文献   

7.
A fertile amphidiploid × Brassicoraphanus (RRCC, 2n = 36) between Raphanus sativus cv. HQ-04 (2n = 18, RR) and Brassica alboglabra Bailey (2n = 18, CC) was synthesized and successive selections for seed fertility were made from F4 to F10. F10 plants exhibited good fertility with 14.9 seeds per siliqua and 32.3 g seeds per plant. Cytological observation revealed that frequent secondary pairing occurred among 3 chromosome pairs in pollen mother cells of plants (F4) with lower fertility, but not of plants with high fertility (F10). GISH analysis indicated that these F10 plants included the expected 18 chromosomes from R. sativus and B. alboglabra, respectively, but they lost approximately 27.6% R. sativus and 35.6% B. alboglabra AFLP (amplified fragment length polymorphism) bands. The crossability of the Raphanobrassica with R. sativus and 5 Brassica species (13 cultivars) were investigated. Seeds or F1 seedlings were easy to be produced from crosses × Brassicoraphanus × R. sativus, and B. napus, B. juncea and B. carinata × Brassicoraphanus. Fewer seeds or seedlings were obtained from crosses × Brassicoraphanus × B. napus, B. juncea and B. carinata. However, few seeds were harvested in the reciprocals of × Brassicoraphanus with B. rapa and B. oleracea. The possible cause of fertility improvements and the potential of the present × Brassicoraphanus for breeding were discussed.  相似文献   

8.
Simple sequence repeats (SSRs), highly dispersed nucleotide sequences in genomes, were used for germplasm analysis and estimation of the genetic relationship of the D-genome among 52 accessions of T. aestivum (AABBDD), Ae. tauschii (DtDt), Ae. cylindrica (CCDcDc) and Ae. crassa (MMDcr1Dcr1), collected from 13 different sites in Iran. A set of 21 microsatellite primers, from various locations on the seven D-genome chromosomes, revealed a high level of polymorphism. A total of 273 alleles were detected across all four species and the number of alleles per each microsatellite marker varied from 3 to 27. The highest genetic diversity occurred in Ae. tauschii followed by Ae. crassa, and the genetic distance was the smallest between Ae. tauschii and Ae. cylindrica. Data obtained in this study supports the view that genetic variability in the D-genome of hexaploid wheat is less than in Ae. tauschii. The highest number of unique alleles was observed within Ae. crassa accessions, indicating this species as a great potential source of novel genes for bread wheat improvement. Knowledge of genetic diversity in Aegilops species provides different levels of information which is important in the management of germplasm resources.  相似文献   

9.
Neglected and underutilized species often play a vital role in securing food and livestock feed, income generation and energy needs of rural populations. In spite of their great potential little attention has been given to these species. This increases the possibility of genetic erosion which would further restrict the survival strategies of people in rural areas. Ziziphus spina-christi is a plant species that has edible fruits and a number of other beneficial applications that include the use of leaves as fodder, branches for fencing, wood as fuel, for construction and furniture making, and the utilization of different parts e.g. Fruits, leaves, roots and bark in folk medicine. Moreover, the plant is adapted to dry and hot climates which make it suitable for cultivation in an environment characterized by increasing degradation of land and water resources. Lack of research in Z. spina-christi hinders its successful improvement and promotion. Therefore, studies are needed to fully exploit this species. This article aims at summarizing information on different aspects of Z. spina-christi to stimulate interest in this crop which is of importance in Sudan and other countries of the semi-arid tropics.
Amina Sirag SaiedEmail:
  相似文献   

10.
Aegilops umbellulata acc. 3732, an excellent source of resistance to major wheat diseases, was used for transferring leaf rust and stripe rust resistance to cultivated wheat. An amphiploid between Ae. umbellulata acc. 3732 and Triticum durum cv. WH890 was crossed with cv. Chinese Spring Ph I to induce homoeologous pairing between Ae. umbellulata and wheat chromosomes. The F1 was crossed to the susceptible Triticum aestivum cv. ‘WL711’ and leaf rust and stripe rust resistant plants were selected among the backcross progenies. Homozygous lines were selected and screened against six Puccinia triticina and four Puccinia striiformis f. sp. tritici pathotypes at the seedling stage and a mixture of prevalent pathotypes of both rust pathogens at the adult plant stage. Genomic in situ hybridization in some of the selected introgression lines detected two lines with complete Ae. umbellulata chromosomes. Depending on the rust reactions and allelism tests, the introgression lines could be classified into two groups, comprising of lines with seedling leaf rust resistance gene Lr9 and with new seedling leaf rust and stripe rust resistance genes. Inheritance studies detected an additional adult plant leaf rust resistance gene in one of the introgression lines. A minimum of three putatively new genes—two for leaf rust resistance (LrU1 and LrU2) and one for stripe rust resistance (YrU1) have been introgressed into wheat from Ae. umbellulata. Two lines with no apparent linkage drag have been identified. These lines could serve as sources of resistance to leaf rust and stripe rust in breeding programs.  相似文献   

11.
The classification and phylogeny of the species belonging to Solanum section Lycopersicon is a complex issue that has not yet reached a widely accepted consensus. These species diverged recently, are still closely related and, in some cases, are still even capable of interspecific hybridization, thereby blurring the difference between intra- and interspecific variation. To help resolve these issues, in the present study, several accessions covering the natural range for each species were used. In addition, to avoid biases due to the molecular method employed, both AFLP markers and two nuclear-gene sequences, CT179 and CT66, were used to characterize the plant materials. The data obtained suggest a classification similar to those previously proposed by other authors, although with some significant changes. Twelve species were recognized as distinct based on this dataset. According to the data presented, the recently proposed species, S. corneliomulleri, is indistinguishable from S. peruvianum s.str. In addition, both the sequence and the AFLP trees suggest that S. arcanum could represent a complex of populations composed of two cryptic species. With regard to phylogenetic relationships among these species, some clear groups were found: the Lycopersicon group formed by S. pimpinellifolium, S. lycopersicum, S. cheesmaniae and S. galapagense; the Arcanum group constituted by S. chmielewskii, S. neorickii, S. arcanum and S. huaylasense; and the Eriopersicon group made up of S. peruvianum and S. chilense. Solanum pennellii and S. habrochaites are not included in any group, but are the closest to the S. lycopersicoides outgroup. Jose Blanca and Fernando Nuez have contributed equally to this work and should be regarded as co-second authors.  相似文献   

12.
Calamintha nepeta and Micromeria thymifolia have been traditionally used in the Mediterranean area as condiments and medicinal plants for a long time. Whereas in parts of Italy C. nepeta (special recipes have been developed in Lazio and Tuscany) is also an established garden plant showing different evolutionary products and their interaction among each other and the wild progenitor, M. thymifolia is being developed into a new crop plant. Both plants and their uses are described with regard to Italy. There is a marked tendency to broaden the use of condiments and spices which results in new crop plants which have to be documented and elaborated in further studies. Many species of Labiatae are predisposed to use by man and new items can be found even in areas which have to be considered as well studied.  相似文献   

13.
Various biotic and abiotic components of soil ecology differed significantly across an area where Halogeton glomeratus is invading a native winterfat, [ Krascheninnikovia (= Ceratoides) lanata] community. Nutrient levels were significantly different among the native, ecotone, and exotic-derived soils. NO3, P, K, and Na all increased as the cover of halogeton increased. Only Ca was highest in the winterfat area. A principal components analysis, conducted separately for water-soluble and exchangeable cations, revealed clear separation between halogeton- and winterfat-derived soils. The diversity of soil bacteria was highest in the exotic, intermediate in the ecotone, and lowest in the native community. Although further studies are necessary, our results offer evidence that invasion by halogeton alters soil chemistry and soil ecology, possibly creating conditions that favor halogeton over native plants.  相似文献   

14.
This study reports for the first time the presence of diazotrophic bacteria belonging to the genera Achromobacter and Zoogloea associated with wheat plants. These bacterial strains were identified by the analysis of 16S rDNA sequences. The bacterium IAC-AT-8 was identified as Azospirillum brasiliense, whereas isolates IAC-HT-11 and IAC-HT-12 were identified as Achromobacter insolitus and Zoogloea ramigera, respectively. A greenhouse experiment involving a non-sterilized soil was carried out with the aim to study the endophytic feature of these strains. After 40 days from inoculation, all the strains were in the inner of roots, but they were not detected in soil. In order to assess the location inside wheat plants, an experiment was conducted under axenic conditions. Fifteen days after inoculation, preparations of inoculated plants were observed by the scanning electron microscope, using the cryofracture technique, and by the transmission electron microscope. It was observed that all isolates were present on the external part of the roots and in the inner part at the elongation region, in cortex cells, but not in the endodermis or in the vascular bundle region. No colonizing bacterial cells were observed in wheat leaves.  相似文献   

15.
16.
Reliable characterization of the variation among wild and cultivated yams in Nigeria is essential for improved management and efficient utilization of yam genetic resources. RAPD and double stringency PCR (DS-PCR) analyses were used to investigate genetic relationships and the extent of redundancy among 30 accessions of two cultivated, and 35 accessions of four wild yam species collected from Nigeria. Twenty-five selected random decamer and two microsatellite primers were used individually and in combination to generate DNA profiles for each accession of the six Dioscorea species. The number of amplified fragments varied from 7 to 18 fragments per primer/primer combination. Different levels of intraspecific genetic diversity were found, with Dioscorea rotundata Poir. being the most variable. Based on identical profiles for the RAPD and DS-PCR primers, 12 duplication groups consisting of a total number of 37 accessions were observed in the present study. An UPGMA analysis grouped the majority of plants according to the species. Cultivated yams belonging to the D. cayenensis–rotundata species complex, which were classified into seven morphotypes/varietal groups, could be clearly separated into two major groups corresponding to D. rotundata Poir. and D. cayenensis Lam. D. cayenensis cultivars exhibited a low level of intraspecific variation and were genetically close to the wild species Dioscorea burkilliana J. Miège. D. rotundata cultivars classified into six varietal groups showed a high degree of DNA polymorphism and were separated into two major groups that appeared most closely related to Dioscorea praehensilis Benth. and Dioscorea liebrechtsiana de Wild. We propose, based on these results, that cultivars classified into D. cayenensis should be considered as a taxon separate from D. rotundata. The implications of intraspecific variability for the ex situ conservation of wild and cultivated yam germplasm in Nigeria are discussed.  相似文献   

17.
The genus Aegilops L. is a very important genetic resource for the breeding of bread wheat Triticum aestivum. Therefore, an accurate and easy identification of Aegilops species is required. Traditionally, identification of Aegilops species has relied heavily on morphological characters. These characters, however, are either not variable enough among Aegilops species or too plastic to be used for identification at the species level. Molecular markers that are more stable within species, therefore, could be the alternative strategy towards an accurate identification. Since the chloroplast DNA has a lower level of evolution compared to the nuclear genome, an attempt was made in this study to investigate polymorphism in the chloroplast DNA among 21 Aegilops species (including Ae. mutica that is now known as Amblyopyrum muticum) and between the latter and T. aestivum to generate markers for the diagnosis of all targeted species. Cleaved amplified polymorphic sequence (CAPS) applied on 22 coding and non-coding chloroplast regions using 80 endonucleases and sequencing of two of those regions revealed little polymorphism between T. aestivum and the various Aegilops species examined and to a less extent was the variation among Aegilops species. Polymorphism observed among species analysed allowed the discrimination of T. aestivum and 12 Aegilops species.  相似文献   

18.
To assess the influence of phenolic acids from plant root exudates on soil pathogens, we studied the effect of sinapic acid added to chemically defined media on the growth and virulence factors of Fusarium oxysporum f. sp. niveum. Sinapic acid inhibited the growth and conidial formation and germination of F. oxysporum f. sp. niveum by 6.7–8.8% and 11.2–37.3%, respectively. Mycotoxin production by F. oxysporum f. sp. niveum was stimulated by 81.6–230.7%. Pectinase, proteinase, cellulase, and amylase activities were stimulated at a lower concentration of sinapic acid, while they were inhibited at a higher concentration. It is concluded that sinapic acid inhibited the growth and conidial germination of F. oxysporum f. sp. niveum and decreased the pathogenic enzymes’ activity at higher doses.  相似文献   

19.
Coix is a genus in the grass family placed in the tribe Maydeae. It is closely related to maize and is also used as a crop plant. Since many valuable traits have been identified recently in Coix, it is considered to be a valuable genetic resource, particularly for maize improvement. In this study, a Coix genetic linkage map was constructed using an F2 population of 131 individuals. Eighty AFLP and 10 RFLP markers were mapped, covering a total length of 1339.5 cM with an average interval of 14.88 cM. The map consisted of 10 linkage groups, were consistent with the chromosome numbers observed cytogenetically. Both AFLP and RFLP markers were used first for genetic analysis in Coix. AFLP markers were generated by two restriction enzyme combinations, EcoRI/MseI and PstI/MseI. A total of 1349 bands were amplified, of which 140 were polymorphic. The polymorphism detection efficiency of the two enzyme combinations was compared, and utility of AFLP markers to construct the linkage map was discussed. Ten RFLP markers detected by three different probes were distributed on eight different linkage groups. The results provide a foundation to map and isolate important genes in Coix, and to investigate its genomic architecture, possible origins, and relationship with maize at the DNA level.  相似文献   

20.
Grains of 80 accessions of nine species of wild Triticum and Aegilops along with 15 semi-dwarf cultivars of bread and durum wheat grown over 2 years at Indian Institute of Technology, Roorkee, were analyzed for grain iron and zinc content. The bread and durum cultivars had very low content and little variability for both of these micronutrients. The related non-progenitor wild species with S, U and M genomes showed up to 3–4 folds higher iron and zinc content in their grains as compared to bread and durum wheat. For confirmation, two Ae. kotschyi Boiss. accessions were analyzed after ashing and were found to have more than 30% higher grain ash content than the wheat cultivars containing more than 75% higher iron and 60% higher zinc than that of wheat. There were highly significant differences for iron and zinc contents among various cultivars and wild relatives over both the years with very high broad sense heritability. There was a significantly high positive correlation between flag leaf iron and grain iron (r = 0.82) and flag leaf zinc and grain zinc (r = 0.92) content of the selected donors suggesting that the leaf analysis could be used for early selection for high iron and zinc content. ‘Chinese Spring’ (Ph I ) was used for inducing homoeologous chromosome pairing between Aegilops and wheat genomes and transferring these useful traits from the wild species to the elite wheat cultivars. A majority of the interspecific hybrids had higher leaf iron and zinc content than their wheat parents and equivalent or higher content than their Aegilops parents suggesting that the parental Aegilops donors possess a more efficient system for uptake and translocation of the micronutrients which could ultimately be utilized for wheat grain biofortification. Partially fertile to sterile BC1 derivatives with variable chromosomes of Aegilops species had also higher leaf iron and zinc content confirming the possibility of transfer of required variability. Some of the fertile BC1F3 and BC2F2 derivatives had as high grain ash and grain ash iron and zinc content as that of the donor Aegilops parent. Further work on backcrossing, selfing, selection of fertile derivatives, leaf and grain analyses for iron and zinc for developing biofortified bread and durum wheat cultivars is in progress. Nidhi Rawat, Vijay K. Tiwari, and Neelam Singh have contributed equally to the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号