首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
赵微  汪鑫 《农业机械》2011,(26):73-76
分别采用NO3-+PO43-、Pd作为石墨炉原子化器测定玉米样品中铅的基体改进剂。结果表明,测定玉米样品中的铅时,以Pd作为基体改进剂改进效果显著,能有效地提高的灰化温度和原子化温度,在最佳用量25mg/kg的条件下,最佳灰化温度为500℃,最佳原子化温度为2200℃,回收率达80%,改进效果理想;而NO3-+PO43-不适宜基体改进剂。  相似文献   

2.
玉米作为黑龙江农业生产过程中最主要的组成部分,种植面积仅次于大豆和水稻。每年的四、五月份天气温度逐渐回升,是玉米播种的主要时期。文章针对黑龙江省的玉米栽培技术进行具体分析,以确保种植的质量,促进玉米增产。  相似文献   

3.
玉米抽丝期是玉米由营养生长进入生殖生长的转折点,是决定玉米产量的关键时期。为此,基于激光诱导荧光光谱(LIF)技术,以抽丝期玉米叶片为研究对象,快速无损地获取植物生理信息的日变化,重点分析玉米叶片蒸腾效应与叶绿素荧光光谱的相关性,并选择706~748nm波段作为敏感光谱波段,建立了基于光谱特征参数的植物叶片蒸腾速率的预测模型。结果表明:采用荧光强度F730研究玉米叶片蒸腾效应最合适;由于气孔导度反映蒸腾效应,且影响CO_2的同化过程,故以气孔导度的信号之一的叶片温度作为模型输入修正;通过对蒸腾速率与叶片温度、叶绿素荧光强度进行回归诊断与全回归分析,建立了基于荧光强度F730和叶片温度的蒸腾速率预测模型,分析了蒸腾速率与二者的相关性,模型复相关系数为R=0.833 4,模型校验结果的相关系数R~2=0.879 8,认为模型的预测能力较好。通过激光诱导叶绿素荧光光谱技术实现了对植物生理信息的无损检测与分析,建立的玉米抽丝期蒸腾速率预测模型可为玉米优质高产的水肥精准化、智能化控制技术提供数据支持。  相似文献   

4.
红外玉米穗干燥试验研究   总被引:1,自引:0,他引:1  
为研究红外辐射干燥条件下收获期玉米穗干燥的水分迁移规律,利用自制红外玉米穗干燥试验台对玉米穗进行了恒温和变温干燥试验,探讨了多种温度条件下玉米穗的红外辐射干燥特性及对干燥后玉米穗外观品质的影响规律。结果表明:初始含水率、干燥温度、干燥用时和辐射距离是影响玉米穗干燥效率和外观品质的主要因素;当恒温干燥玉米穗的干燥温度为58℃、辐射距离为150mm时,干燥速率达2.25%/h,且玉米籽粒的外观品质最好;变温干燥玉米穗时,较佳的干燥温度范围为55~65℃,且采用逐渐升温干燥时的干燥品质较好。本研究为研制红外辐射玉米穗干燥机研发奠定了坚实基础。  相似文献   

5.
试验研究了温度不断变化条件下牲畜粪便与秸秆按不同干物质比例(质量比为1:1,2:1,3:1)混合发酵的产气速率、产气量情况.结果表明,其最佳配比分别为:猪粪:玉米秸秆为2:1、牛粪:玉米秸秆为1:1、猪粪:小麦秸秆为3:1、牛粪:小麦秸秆为1:1.温度较低时,适合用牛粪与秸秆混合作为发酵原料;温度较高时,适合用猪粪和秸秆作为发酵原料.温度变化对沼气产气量的影响显著,特别是温度日均降幅达3~5℃以上时,往往对产气量造成严重的影响,甚至于停止产气.  相似文献   

6.
为寻找玉米秸秆酶解的最佳工艺条件,在单因素实验基础上,选出酶添加量、料液比、温度、时间作为自变量,通过实验并对玉米降解率的分析得出最佳组合条件。通过正交试验、响应面实验,对各因素间的相互作用进行分析,确定酶法降解玉米秸秆的最佳工艺参数。影响纤维素降解效果的因素次序为:酶添加量料液比时间温度,最后确定最佳降解工艺条件为纤维素酶添加量为最佳的提取条件组合为:酶添加量3.08%、料液比1∶20.48、温度45.45℃、时间2.09h,在此条件下玉米秸秆的降解率为27.755 3%。  相似文献   

7.
为了解不同品种特种玉米的品质差异性,以糯玉米、爆裂玉米和普通玉米为原料,对其玉米籽粒物理特性和糊化特性进行分析。结果表明:与普通玉米相比,糯玉米具有较低的硬度、糊化温度及回生值,较高的籽粒密度和容重,冷糊稳定性较好,不宜老化;而爆裂玉米的籽粒密度、硬度以及容重高于糯玉米和普通玉米,糊化温度较高,峰值黏度、最低黏度、破损值较低,热糊稳定性好。  相似文献   

8.
无人机热红外遥感反演玉米根域土壤含水率方法研究   总被引:1,自引:0,他引:1  
为了减少土壤背景带来的干扰,更加准确、高效的获取无人机热红外图像中的玉米冠层温度,进而快速反演玉米地土壤含水率,以4种水分梯度处理的拔节期玉米为研究对象,借助无人机可见光和热红外图像,采用RGRI指数法、Otsu阈值法和不剔除土壤背景3种处理方法提取热红外图像中玉米冠层温度信息,计算作物水分胁迫指数(Crop water stress index,CWSI)并用于反演不同水分梯度处理下玉米地不同深度的土壤含水率,基于3种方法获得的CWSI分别记为CWSIRGRI、CWSIOtsu、CWSIsc.结果表明:①基于RGRI指数法获取的玉米冠层温度与实测冠层温度的相关性最高(R2均大于0.8;RMSE均小于1℃),Otsu方法次之,不剔除土壤背景方法效果最差.②在整个拔节期,CWSIRGRI反演土壤含水率效果最好(R2均大于0.5,P<0.01;效果显著),CWSIOtsu次之、CWSIsc反演效果最差.③选取CWSIRGRI为最优CWSI指标,其在玉米拔节期5个土壤深度内的R2呈现先上升后下降的趋势且都在0~30 cm深度内达到最大值.因此,基于RGRI指数法建立的CWSIRGRI可以作为反演玉米地土壤含水率的有效指标.  相似文献   

9.
挤压膨化对玉米淀粉糊化程度影响的研究   总被引:12,自引:1,他引:12  
用单螺杆挤压膨化机对脱胚玉米进行挤压膨化,以模孔直径、物料出口温度、喂人物料水分含量和螺杆转速作为因素;以挤压膨化脱胚玉米淀粉糊化程度为考察指标;采用“四因素五水平”进行二次正交旋转组合试验设计,研究了脱胚玉米挤压膨化系统参数对淀粉糊化程度的影响规律。  相似文献   

10.
为了研究环境温度、环境湿度、烟气温度(风温)对玉米热风干燥过程中能火用效率、可持续性和可提高势变化规律的影响,选取影响换热器换热性能的关键因素包括环境温度、湿度及烟气温度作为输入因素,换热器的火用效率、比火用损、可持续性指标及可提高势作为输出目标,构建了3-9-4的BP神经网络模型,并利用MatLab软件进行神经网络模型的建立及验证。基于经典的热力学第一、二定律分析了新型工业化玉米干燥机换热器的热力学特性,结果表明:所构建的BP神经网络模型经过31次迭代之后达到最佳逼近误差(0.001 300 1),R值为0.999 98,表明模型训练精度较高。增加一组验证试验,结果表明:试验各指标预测值与实测值MSE值均低于10%,表明模型精度较高;玉米干燥机换热器的火用效率变化范围为8.32%~13.96%,SI值变化区间为1.08~1.16,可提高势随比火用损的增加而增大,其变化区间分别为643.35~1114.24kW和17.59~29.04kW。  相似文献   

11.
【目的】明确石羊河流域典型畦灌玉米蒸散发量变化规律及其驱动因素。【方法】基于涡度相关系统,在2015—2018年于中国农业大学石羊河试验站对西北典型畦灌玉米蒸散发量进行了连续观测。基于偏相关分析及结构方程模型分析了玉米蒸散发量与环境因子之间的关系。【结果】畦灌玉米生育期平均蒸散发量为524.3 mm,日平均蒸散发量为3.5 mm/d,生育期内日蒸散发量呈先上升后下降的单峰变化趋势,在7月达到峰值。净辐射量与蒸散发量之间的相关性最高,对蒸散发量影响程度较大的环境因子为净辐射量、温度、饱和水汽压差。结构方程结果表明,叶面积指数作为中间变量与蒸散发量之间存在正相关性。【结论】畦灌玉米生育期内日蒸散发量呈先上升后下降的变化趋势,净辐射量、温度、饱和水汽压差是对蒸散发量影响较大的环境因子。  相似文献   

12.
基于热红外遥感影像的作物冠层温度提取   总被引:1,自引:0,他引:1  
热红外影像较难直接提取作物冠层区域,因而无法获得较精准的作物冠层温度。本文以拔节期的玉米为研究对象,利用六旋翼无人机搭载热红外成像仪和大疆精灵四Pro无人机,获得热红外影像及正射影像。基于高分辨率正射影像,采用改进的Canny边缘检测算子、支持向量机(Support vector machine,SVM)和小波变换3种方法提取玉米冠层区域,将提取结果进行二值化处理后,在热红外影像中以此生成掩膜并提取玉米冠层温度。应用提取的矢量面分析提取效果并对3种提取算法的精度进行评价。实验结果表明,改进的Canny边缘检测算子提取效果最优、SVM算法次之、小波变换最差,提取精度分别为87. 3%、74. 5%、68. 2%。同时,将手持测温仪测得的玉米冠层温度与提取的冠层温度进行误差分析,结果表明,基于改进的Canny边缘检测算子提取的玉米冠层温度与地面实测值相关性最高,决定系数R~2=0. 929 5,SVM算法决定系数R~2=0. 895 7,小波变换决定系数R2=0. 876 0。改进的Canny边缘检测算子能够更好地提取玉米冠层区域,获取更加精确的玉米冠层温度,从而能够更有效地监测玉米生理状况,进行旱情预测,制定合理的灌溉、施肥措施以提高玉米产量。  相似文献   

13.
东北黄金带玉米核心区域是全国主要玉米产区,尽管目前玉米产能过剩,库存量大,但是该地区温度、光照、土壤等因素最适合播种玉米。调整种植结构需要调整的是玉米品质,需要调整的是种植技术,保护性耕作技术是最成熟的玉米种植技术。  相似文献   

14.
任健  徐慧 《农业机械》2012,(3):64-67
本文利用反胶束法萃取玉米胚芽蛋白,考察了AOT浓度、缓冲溶液的pH值、提取温度和脱脂玉米胚芽粉加入量对玉米胚芽蛋白前萃率的影响,并且在单因素试验的基础上,通过响应面分析法确定反胶束法前萃取玉米胚芽蛋白的最佳工艺条件:脱脂玉米胚芽粉加入量0.75g、AOT浓度2.19g/50mL异辛烷、缓冲溶液pH值7.17和温度38℃,此时脱脂玉米胚芽蛋白前萃率可以达到58.36%,与模型的预测值(59.77%)基本相符。  相似文献   

15.
一、玉米基本特性玉米喜温,种子发芽的最适温度为25℃~30℃。拔节期日均温18℃以上。从抽穗到开花日均温260C~27℃。灌浆和成熟需温度保持在20℃~24℃;低于16℃或高于25℃,淀粉酶活动受影响,导致籽粒灌浆不良。玉米为短日照作物,  相似文献   

16.
为了提高玉米果穗干燥均匀性和干燥效率,降低干燥品质损失,通过研制玉米果穗深床层干燥试验台,并进行不同风速(0.5、1m/s)、热风温度(常温(即室温),50、60、70℃)以及料层厚度(180、360、540、720mm)下玉米果穗干燥特性以及品质试验研究,确定最佳的玉米果穗深床层干燥工艺与参数。试验结果表明,提高热风温度和风速均会提高干燥速率,风速0.5m/s时,热风温度50、60、70℃条件下第1层的干燥时间分别为28、20、14h,而常温通风干燥下192h后含水率仅下降到20%,随着热风温度的降低,干燥时间显著延长;提高热风风速有利于提高干燥速率,第3、4层玉米果穗干燥速率受风速的影响大于第1、2层;随着料层的增加,各干燥条件下干燥速率显著降低,干燥时间延长;常温条件下果穗各料层长时间处于高湿环境,从而在玉米果穗高含水率阶段采用常温通风干燥方式容易造成内部高湿和发热现象;干燥过程中玉米籽粒含水率先下降,果穗芯轴的含水率高于籽粒。与对照组相比,各组干燥物料的亮度均下降,提高热风风速和温度会降低亮度;常温通风干燥玉米籽粒电导率最低,随着温度和风速的提高,电导率升高,表明籽粒内部结构破坏较大;干燥后玉米籽粒淀粉含量和可溶性糖含量均有所减小,其中70℃、0.5m/s条件下玉米淀粉含量最低,60℃和70℃、0.5m/s条件下玉米可溶性糖含量较低。根据研究结果,确定玉米果穗深床层干燥工艺为先热风干燥后常温通风干燥的方式,热风温度50℃或60℃、风速0.5m/s、通风管路单侧料层厚度为360mm为较优的果穗热风干燥工艺参数。  相似文献   

17.
玉米秸秆常压快速液化最佳工艺参数研究   总被引:1,自引:0,他引:1  
研究了影响玉米秸秆常压快速液化的4个关键性工艺参数:液化时间、液化温度、玉米秸秆质量和催化剂质量之间的交互作用。借助于SAS软件,采用二次回归正交旋转组合设计及响应面法开展系统试验。建立了回归方程,定量描述了各参数对玉米秸秆液化效率的影响及不同参数之间存在的交互作用,并推算出当液化剂质量为100 g、液化温度为158℃、液化时间为63 min、玉米秸秆质量17 g和催化剂质量为2.7 g时,玉米秸秆常压快速液化的残渣率可以达到最小值0.2%,实现玉米秸秆基本完全液化。  相似文献   

18.
文章研究温度、C/N对鸡粪原料厌氧发酵产气特性的影响,为提高厌氧发酵产气效率提供依据。将鸡粪与玉米秸秆混合(C/N为20∶1)作为厌氧发酵原料,采用自行设计的可控性恒温厌氧发酵装置,分别在35℃,42℃,50℃这3个温度梯度下进行厌氧发酵,并和纯鸡粪进行对比试验,研究中高温条件下不同C/N原料发酵效果。结果表明,在35℃,42℃和50℃这3个不同温度下,无论是纯鸡粪原料还是鸡粪和玉米秸秆混合原料,温度越高,产气越多,产气潜力也越大,而且混合原料整体都比单鸡粪发酵产气潜力高。综合分析,鸡粪的最佳发酵条件:发酵温度为42℃,原料最佳C/N为20∶1。  相似文献   

19.
玉米作为我国主要粮食作物,种植区域广,种植面积大。随着我国农业机械化的不断发展,玉米收获机械在农业生产中应用越来越广泛。玉米收获机作业环境恶劣,对发动机作业工况有着很高的要求。发动机工作环境相对封闭,在机收过程中常伴有作物碎屑和尘土附着,导致发动机水温升高,影响发动机散热。发动机温度过高容易造成机油黏度降低,影响各运动零部件工作能力,容易发生拉缸和烧瓦问题,最终影响整车动力性和经济性。为保证发动机在恶劣工况下正常工作,整车散热系统匹配及热平衡试验至关重要。  相似文献   

20.
为了降低玉米压片加工的成本,利用对辊式压片机对新收获的玉米进行了以影响玉米热风加热压片的加热温度、加热时间、压辊间距及压辊转速等为试验因素,以玉米片糊化度为评价指标的单因素试验.结果表明:新收获玉米经热风直接加热压片对提高玉米的糊化度有利.较佳工艺技术参数为:加热的热风温度高于125℃,加热时间为60min,压辊的间距为0.5~0.7mm,压辊的转速在170r/min以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号