首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a serious threat to oilseed production in Australia. Eight isolates of S. sclerotiorum were collected from Mount Barker and Walkway regions of Western Australia in 2004. Comparisons of colony characteristics on potato dextrose agar (PDA) as well as pathogenicity studies of these isolates were conducted on selected genotypes of Brassica napus and B. juncea. Three darkly-pigmented isolates (WW-1, WW-2 and WW-4) were identified and this is the first report of the occurrence of such isolates in Australia. There was, however, no correlation between pigmentation or colony diameter on PDA with the pathogenicity of different isolates of this pathogen as measured by diameter of cotyledon lesion on the host genotypes. Significant differences were observed between different isolates (P ≤ 0.001) in two separate experiments in relation to pathogenicity. Differences were also observed between the different Brassica genotypes (P ≤ 0.001) in their responses to different isolates of S. sclerotiorum and there was also a significant host × pathogen interaction (P ≤ 0.001) in both experiments. Responses between the two experiments were significantly correlated in relation to diameter of cotyledon lesions caused by selected isolates (r = 0.79; P < 0.001, n = 48). Responses of some genotypes (e.g., cv. Charlton) were relatively consistent irrespective of the isolates of the pathogen tested, whereas highly variable responses were observed in some other genotypes (e.g., Zhongyou-ang No. 4, Purler) against the same isolates. Results indicate that, ideally, more than one S. sclerotiorum isolate should be included in any screening programme to identify host resistance. Unique genotypes which show relatively consistent resistant reactions (e.g., cv. Charlton) across different isolates are the best for commercial exploitation of this resistance in oilseed Brassica breeding programmes.  相似文献   

2.
Aphanomyces euteiches Drechsler is an oomycete pathogen of leguminous crops that causes root rot, a severe disease of pea (Pisum sativum L.) worldwide. An improved understanding of the genetic structure of A. euteiches populations would increase knowledge of pathogen evolution and assist in the design of strategies to develop pea cultivars and germplasm with stable disease resistance. Twenty six primers pairs were used to amplify Sequence Related Amplified Polymorphisms (SRAP) among 49 A. euteiches isolates sampled from pea. A total of 190 polymorphic SRAP bands were generated, of which 82 were polymorphic between all the A. euteiches isolates. The percentage of polymorphic bands per primer pair ranged from 22 to 75%. According to the PIC value estimated for each marker, 60% of the SRAP markers were highly to reasonably informative (PIC > 0.25). Genetic structure of A. euteiches populations sampled in different American and French locations showed low to high genetic diversity within populations. The largest variation occurred within countries, with a total estimated genetic diversity of 0.477 and 0.172 for American and French populations, respectively. This was particularly evident from a principal component analysis (PCA) and a Minimum Spanning Networks (MSN) based on genetic profiles of isolates, which generated two different clusters, one corresponding to the French isolates and four American isolates (MV1, MV5, MV7, Ath3), and the other to American isolates. A. euteiches populations from cultivated pea in France appeared as a single unstructured population, whereas American isolates of A. euteiches diverged into three different populations.  相似文献   

3.
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive wheat diseases in China. Yunnan Province, located in south-western China, possesses unique features of geography, climate, wheat growth and stripe rust epidemics, different from main epidemic regions in China. The isolates of this pathogen were collected from nine counties in Yunnan Province during February to May of 2008. Used as a comparison, isolates were also collected from five counties of Gansu Province, the province important in inter-regional stripe rust epidemics in China. Amplified fragment length polymorphism (AFLP) method was applied to study the population genetics of the pathogen among different populations in these two provinces. Forty one AFLP genotypes were obtained from 150 isolates and the genotype qj3 showed the highest frequency in Yunnan Province. While 22 genotypes were detected from 40 isolates, no genotype showing as predominant was identified in Gansu Province. Genotypic diversity in Gansu Province was higher than that in Yunnan Province. A free recombination signature was detected in Gansu Province but not in Yunnan Province. We concluded that the population of P. striiformis in Yunnan Province can be considered as a clonal population.  相似文献   

4.
A weed survey conducted in 2004 and 2005 in Aydin province of Turkey showed that Solanum nigrum, Xanthium strumarium, Amaranthus retroflexus, Portulaca oleracea, Sonchus oleraceus and Datura stramonium were the most prevalent weeds in the cotton fields exhibiting Verticillium wilt. Verticillium dahliae Kleb. was recovered from A. retroflexus and X. strumarium in those cotton fields. This is the first report of V. dahliae occurring naturally in A. retroflexus in Turkey. Pathogenicity tests on cotton and weeds showed that the virulence of V. dahliae isolates from weeds was higher on cotton plants than on weeds, with the disease severity ranging from 31.7% to 98.0%. Disease severity of V. dahliae isolates was 54.7–93.9% on eggplant, 23.7–51.6% on cucumber and 11.0–16.4% on tomato, whereas it did not cause any disease symptoms, or only low levels, on pepper and bell pepper. Two vegetative compatibility groups (VCGs) were identified among seven tested weed isolates: VCG2A (two isolates) and VCG2B (three isolates) using international reference strains.  相似文献   

5.
In the present study, the pathogenicity of 36 isolates of Guignardia species isolated from asymptomatic ‘Tahiti’ acid lime fruit peels and leaves, ‘Pêra-Rio’ sweet orange leaves and fruit peel lesions, and a banana leaf were characterized. For pathogenicity testing, discs of citrus leaves colonized by Phyllosticta citricarpa under controlled laboratory conditions were kept in contact with the peels of fruit that were in susceptible states. In addition, pathogenicity was related to morphological characteristics of colonies on oatmeal (OA) and potato dextrose agar (PDA). This allowed the morphological differentiation between G. citricarpa and G. mangiferae. Polymerase chain reactions (PCRs) were also used to identify non-pathogenic isolates based on primers specific to G. citricarpa. A total of 14 pathogenic isolates were detected during pathogenicity tests. Five of these were obtained from leaf and fruit tissues of the ‘Tahiti’, which until this time had been considered resistant to the pathogen. Given that the G. citricarpa obtained from this host was pathogenic, it would be more appropriate to use the term insensitive rather than resistant to categorize G. citricarpa. A non-pathogenic isolate was obtained from lesions characteristic of citrus black spot (CBS), indicating that isolation of Guignardia spp. under these conditions does not necessarily imply isolation of pathogenic strains. This also applied to Guignardia spp. isolates from asymptomatic citrus tissues. Using fluorescent amplified fragment length polymorphism (fAFLP) markers, typically pathogenic isolates were shown to be more closely related to one another than to the non-pathogenic forms, indicating that the non-pathogenic isolates display higher levels of genetic diversity.  相似文献   

6.
In China, wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat. The Longnan and Linxia regions in Gansu Province and Qinghai Province are the major over-summering regions for the pathogen and key epidemiological zones in Northwest China. Population genetic diversity and interregional long-distance spread of the wheat stripe rust pathogen in Northwest China were studied using SSR markers. The genetic diversity in the Longnan population was much higher than those in the Linxia and Qinghai populations. Therefore, the molecular data confirmed that the Longnan region is a center of genetic diversity for P. striiformis f. sp. tritici in Northwest China. The low genetic differentiation (Gst = 0.15) and the extensive gene flow (Nm = 1.37) were found among the three regions in Northwest China. The most important conclusion of this study is that the stripe rust inoculum in Qinghai can come from both Longnan and Linxia, but mainly from Longnan directly in the spring.  相似文献   

7.
We studied genetic variation in Puccinia psidii, a newly introduced rust fungus in Hawaii, using microsatellite markers. All 36 Hawaiian P. psidii isolates analyzed had the same genotype at 11 microsatellite loci, while three genotypes were identified among four isolates from Florida and 11 genotypes among 18 isolates from Brazil. One of the isolates from Florida had 95% similarity to the Hawaiian isolates. We conclude that the genetically homogeneous P. psidii isolates in Hawaii might have derived from the same strain originally introduced into the Islands and are closely related to one of the strains found in Florida.  相似文献   

8.
Spot blotch, caused by Cochliobolus sativus (Ito & Kuribayashi) Drechs. ex Dastur, is one of the important diseases of wheat worldwide. The main objective of this study was to investigate the phenotypic and genotypic variability among C. sativus isolates from the hills and plains in Nepal. A total of 48 monoconidial isolates of C. sativus from the hills (n = 24 isolates) and plains (n = 24 isolates) in Nepal were analyzed for morphology, aggressiveness and genetic structure. C. sativus isolates were grouped into three categories on the basis of their colony texture and mycelia colour. Thirteen isolates from the hills and plains belonging to three morphological groups were randomly selected and evaluated for aggressiveness on eight wheat cultivars (Chirya 1, Chirya 7, Milan/Shanghai 7, SW 89–5422, PBW 343, BL 1473, BL 3036, and RR 21) at the seedling stage. Nonparametric analysis revealed that the isolates from the plains (median disease rating of 5) were significantly (P = 0.0001) more aggressive than the isolates from the hills (median disease rating of 3). A significant (P = 0.0001) isolate by cultivar interaction was demonstrated and the isolates from the same geographic region and morphological group displayed different degrees of aggressiveness on wheat cultivars tested. Combined IS-PCR and rep-PCR analyses revealed moderate gene diversity (H = 0.24 and 0.25 for the hills and plains, respectively). Low linkage disequilibrium (LD) value and non-significant (P = 0.001) population differentiation (G″ST = 0.05) were detected, indicating that isolates of C. sativus from the hills and plains in Nepal were genetically similar. Analysis of molecular variation (AMOVA) revealed low (7%) levels of genetic variation between the hill and plain populations, whereas >93% of genetic variation was found within populations. Overall, C. sativus isolates from Nepal are pathologically and genetically diverse, and such information will be useful in developing wheat cultivars resistant to C. sativus.  相似文献   

9.
Root-knot nematodes (RKN) are obligate parasite species of the genus Meloidogyne that cause great losses in Arabica coffee (Coffea arabica L.) plantations. Identification of resistant genotypes would facilitate the improvement of coffee varieties aiming at an environmental friendly and costless nematode control. In this work, the C. arabica genotype ‘UFV 408-28’ was found to be resistant to the most destructive RKN species M. incognita. Pathogenicity assays indicated that the highly aggressive populations of M. incognita races 1, 2 and 3 were not able to successfully reproduce on ‘UFV 408-28’ roots and displayed a low gall index (GI = 2). An average reduction of 87% reduction of the M. incognita population was observed on ‘UFV 408-28’ when compared to the susceptible cultivar ‘IAC 15’. By contrast, ‘UFV 408-28’ was susceptible to the related species M. exigua and M. paranaensis (GI = 5 and 4, respectively). Histological observations performed on sections of UFV408-28 roots infected with M. incognita race 1 showed that nematode infection could be blocked right after penetration or during migration and establishment stages, at 6 days, 7 days and 8 days after infection (DAI). Fluorescence and bright field microscopy observations showed that root cells surrounding the nematodes exhibited HR-like features such as accumulation of phenolic compounds and a necrotic cell aspect. In the susceptible ‘IAC 15’ roots, 6 DAI, feeding sites contained giant cells with a dense cytoplasm. Necrotic cells were never observed throughout the entire infection cycle. The HR-like phenotype observed in the ‘UFV 408-28’—M. incognita interaction suggests that the coffee resistance may be mediated by a R-gene based immunity system and may therefore provide new insights for understanding the molecular basis of RKN resistance in perennial crops.  相似文献   

10.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

11.
The greater wax moth Galleria mellonella L. (Lepidoptera: Pyralidae) is occasionally found in beehives and is a major pest of stored wax. Entomopathogenic fungi have recently received attention as possible biocontrol elements for certain insect pests. In this study, 90 isolates of Beauveria bassiana and 15 isolates of Metarhizium anisopliae were screened for proteases and lipases production. The results showed significant variations in the enzymatic action between the isolates. In the bioassay, the selected isolates evinced high virulence against the 4th instar of the G. mellonella larvae. The isolates BbaAUMC3076, BbaAUMC3263 and ManAUMC3085 realized 100% mortality at concentrations of 5.5 × 106 conidia ml−1, 5.86 × 105 conidia ml−1, and 4.8 × 106 conidia ml−1, respectively. Strong enzymatic activities in vitro did not necessarily indicate high virulence against the tested insect pest. The cuticle of the infected larvae became dark and black-spotted, indicating direct attack of fungus on the defense system of the insects. The LC50 values were 1.43 × 103, 1.04 × 105 and 5.06 × 104 for Bba3263AUMC, Bba3076AUMC and Man3085AUMC, respectively, and their slopes were determined by computerized probit analysis program as 0.738 ± 0.008, 0.635 ± 0.007 and 1.120 ± 0.024, respectively.  相似文献   

12.
The distribution of mating types and diversity in virulence of Didymella rabiei populations were studied in Israel from 1997 to 1999. Forty-one monoconidial D. rabiei isolates from 18 commercial fields distributed among all the chickpea production areas of the country were paired with MAT1-1 and MAT1-2 mating type tester isolates of D. rabiei. Both mating types were found in all chickpea production areas of the country. Of the 18 fields sampled, MAT1-1 was observed in 44%, and MAT1-2 in 88% of the sites. In some sites both mating types were present in close proximity, suggesting that sexual reproduction of the pathogen was feasible. The contribution of sexual reproduction of the fungus to virulence diversity was tested on detached leaves of six differential chickpea cultivars. Nine isolates were derived from different well separated foci (derived from ascospores as inoculum) and eight isolates were derived from a single, well defined infection focus (derived from sister conidia). In the analyses of variance the cultivar × isolate interaction showed no significant (P of F>0.09) effect on disease incidence; the chickpea cultivars differed significantly (P of F<0.0001) in their response to D. rabiei; and the isolate effect was highly significant (P of F = 0.0007) for the conidial population, but not significant (P of F>0.1) among isolates of the ascosporic population. Nevertheless, when comparing a cultivar at a time, the ascosporic and conidial populations did not differ significantly (P of F>0.1) in their virulence diversity. Virulence of 41 isolates collected from the different chickpea fields was tested on detached leaves of four Israeli cultivars that differ in their field response to D. rabiei. The cultivar × isolate interaction showed no significant effect (P of F = 0.95) on disease incidence. The main effects of cultivar and isolate on disease incidence were highly significant (P of F<0.0001). Accordingly, our data do not support the hypothesis that there is pathogenic specialization in the D. rabieiC. arietinum pathosystem in Israel.  相似文献   

13.
Phytophthora clandestina is a causal agent of root rot disease of subterranean clover in Western Australia (W.A). As a significant number of isolates of P. clandestina from W.A. could not previously be designated using existing differentials, a comprehensive set of subterranean clover (Trifolium subterraneum) cultivars was used as differentials to delineate a broader range of races of the pathogen. One hundred and one isolates of the pathogen collected from W.A. were screened on nine subterranean clover cultivars, of which seven were found to be useful as host differentials. A total of 10 races (in contrast to the five recognized previously) were defined and differentiated using octal nomenclature, presenting a clearer picture of the racial distribution of P. clandestina among W.A. isolates. Differences were found in the race populations between Australian states and are therefore important to the selection/breeding of cultivars for specific regions of Australia to counter the predominant race populations and for enforcing quarantine measures in relation to seed movements within and outside Australia. The octal nomenclature used provides a sound basis for follow-up studies and future race designations. Races 173 and 177 in this study were widely distributed and were the most common races in W.A., and together constitute 80% of the isolates characterized. While six of the seven host differentials were resistant to isolates belonging to race 001 and all were resistant to 000, it is of concern that only one differential was resistant to 157 and 173 and that none of the host differentials were resistant to 177. Our approach to P. clandestina race delineation is clearly conservative and is different from previous studies. The octal nomenclature we applied in this study is not only scientifically sound but also will facilitate rapid recognition and characterization of the races.  相似文献   

14.
In vitro detached leaf assays involving artificial inoculation of wounded and unwounded oat and wheat leaves were used to investigate the potential pathogenicity and aggressiveness of F. langsethiae, which was linked recently to the production of type A trichothecenes, HT-2 and T-2 in cereals in Europe. In the first two experiments, two assays compared disease development by F. langsethiae with known fusarium head blight pathogen species each used as a composited inoculum (mixture of isolates) at 10°C and 20°C and found all fungal species to be pathogenic to oat and wheat leaves in the wounded leaf assay. In the unwounded leaf assay, F. langsethiae was not pathogenic to wheat leaves. Furthermore, there were highly significant differences in the aggressiveness of pathogens as measured by lesion length (P < 0.001). In the second two experiments, pathogenicity of individual F. langsethiae isolates previously used in the composite inoculum was investigated on three oat and three wheat varieties. The wounded leaf assay showed that all isolates were pathogenic to all oat and wheat varieties but only pathogenic towards oat varieties in the unwounded assay. Highly significant differences (P < 0.001) in lesion length were found between cereal varieties as well as between isolates in the wounded assay. Significant differences in lesion lengths (P = 0.014) were also observed between isolates in the unwounded assay. Results from the detached leaf assays suggest that F. langsethiae is a pathogen of wheat and oats and may have developed some host preference towards oats.  相似文献   

15.
The present study was conducted to determine if there is specificity in the host-pathogen relationship between the isolates of Xanthomonas oryzae pv. oryzae, the causal bacterium for rice blight and Leersia grasses, the alternative weed hosts of the disease. Plants of three species of Leersia, namely, L. sayanuka, L. oryzoides and L. japonica, were collected from various parts of Japan and were inoculated with the X. oryzae pv. oryzae isolates obtained from various locations in Japan and from 11 Asian countries. Four L. sayanuka plants were found susceptible to all Race II isolates and some Race I isolates, but were resistant to all Race III isolates. Race III is known to have a wider range pathogenicity to rice cultivar groups compared with Race I and II. Although the reactions of two L. oryzoides plants to Race I and II isolates were similar to that of L. sayanuka, the L. oryzoides plant collected from Niigata Prefecture showed a susceptible reaction to some Race III isolates. On the other hand, L. japonica plants gave reactions different those of L. sayanuka and L. oryzoides, with two plants of L. japonica found to be resistant to all test isolates collected from Japan. The Asian isolates exhibited a wide host range against the international differential rice cultivars, but almost all of them were avirulent to Leersia plants. These results indicate that the relationship between the pathogenicity of the causal bacterium and the resistance of host plants is very complex, and suggest that pathogenic diversity of X. oryzae pv. oryzae might be related to the resistance of Leersia spp.  相似文献   

16.
Cylindrocladium parasiticum is an important pathogen of peanut (Arachis hypogaea) causing the disease Cylindrocladium black rot. The genetic structure of this haploid pathogen was determined for populations associated with peanut in Georgia, USA. Ten polymorphic microsatellite markers were used to determine genetic and genotypic diversity among three sub-populations representing the geographic distribution of peanut production in Georgia. Among 200 isolates collected, only 10 unique multilocus haplotypes were identified, with one multilocus haplotype occurring 176 times. Although no evidence for random mating was observed, the existence of loops in a constructed haplotype network hint at the possibility of recombination events. The absence of random mating might therefore be attributed to the homothallic nature of C. parasiticum as well as the clonality of the population, without excluding the possible occurrence of recombination. Cylindrocladium parasiticum thus appears to consist of a genetically homogeneous population throughout Georgia with mainly clonal reproduction or inbreeding contributing to the observed population genetic structure.  相似文献   

17.
Differences in the virulence of a pathogen among host species can occur because hosts differ in their resistance or tolerance to infection or because of underlying genetic variation in the pathogen. The xylem-limited bacterium Xylella fastidiosa is pathogenic to dozens of plant species throughout the Americas, and is structured into genetically and biologically distinct strains. In some plants X. fastidiosa causes striking leaf scorch symptoms and in others, such as alfalfa, stunting is the primary symptom. The mechanism by which these symptoms occur has been debated. We tested the hypothesis that symptoms result from X. fastidiosa-induced water stress, and that the magnitude of water stress is strain-dependent. We mechanically inoculated alfalfa plants with one of 14 isolates (5 identified genetically as “almond” and 9 as “grape” isolates), and compared stable carbon isotope ratios among isolates. Infected plants showed significant isotopic shifts (up to 2% on average) relative to healthy plants that were consistent with water stress. Moreover, there were significant differences in water stress among isolates, with a tendency for grape isolates to cause more severe water stress than almond isolates. There was also a positive relationship between plant infection level and isotopic shift (slope ± SE = 0.273 ± 0.068), which supports the hypothesis that X. fastidiosa symptoms result from bacterial multiplication and vessel occlusion. Unexpectedly, however, water stress was not correlated with measures of alfalfa stunting. These results suggest X. fastidiosa induces strain-specific levels of water stress, but factors other than water stress alone are responsible for stunting.  相似文献   

18.
Ninety-six isolates of sunflower Sclerotinia sclerotiorum (Lib.) de Bary from Inner Mongolia (IM) in China, from Canada and the United Kingdom (UK) were sampled to investigate the genetic diversity and structure using Sequence-Related Amplified Polymorphism. A total of 123 polymorphic bands were obtained, ranging in size from 100 to 500 base pairs. The five populations of S. sclerotiorum isolated from the three countries showed various levels of genetic variability. The percentage of polymorphic loci varied from 30.89% in the UK population to 97.56% in the Middle IM population. The values of Shannon index (i) varied from 0.1876 in the UK population to 0.5301 in the West IM population. The heterozygosity of the five geographic populations obtained by estimating allele frequency varied from 12.91% in the UK population to 35.44% in the West IM population. The genetic identity, as indicated by the Nei unbiased identity index, ranged from 0.9744 between populations from Canada and East IM to 0.6477 between populations from West IM and UK. UPGMA cluster analysis using Nei’s genetic distance gave distances ranging from 0.0259 to 0.4343. The rates of gene flow among five geographic populations ranged from 1.5406 between West IM and UK populations to 18.4149 between West IM and Middle IM populations. The four populations from West IM, Middle IM, East IM and Canada were clustered into one subgroup in which the isolates from West and Middle IM belonged to one population, whereas those from East IM and Canada essentially were another population. The isolates from the UK formed a population that was significantly distinct from other populations.  相似文献   

19.
Fusarium head blight (FHB) is one of the most destructive diseases of wheat. Twelve small commercial wheat fields (size 1–3 hectares) were sampled in Germany for Fusarium populations at three spots per field with 10 heads each. PCR assays using generic primers confirmed 338 isolates as F.graminearum sensu stricto (s.s.) (64.9%) out of 521 Fusarium spp. that were further analyzed. Populations of F. graminearum s.s. in Germany contain three types of trichothecenes with a dominancy of 15-acetyldeoxynivalenol chemotype (92%) followed by 3-acetyldeoxynivalenol chemotype (6.8%) and a few isolates of nivalenol chemotype (1.2%). All these isolates were genotyped using 19 microsatellite loci. The 12 populations showed a high genetic diversity within the small scale sampling areas resulting in 300 different haplotypes. Genetic diversity within populations (71.2%) was considerably higher than among populations (28.8%) as shown by analysis of molecular variance. Gene flow (Nm) between populations ranged from 0.76–3.16. Composition of haplotypes of one population followed over 2 years changed considerably. No correlation between genetic and geographical distance was found. In conclusion, populations of F. graminearum s.s. in Germany display a tremendous genetic variation on a local scale with a restricted diversity among populations.  相似文献   

20.
Verticillium longisporum and V. dahliae, causal agents of Verticillium wilt, are spreading through the cabbage fields of Gunma Prefecture. Using the V. longisporum-specific intron within the 18S rDNA and differences between ITS 5.8S rDNA sequences in Japanese isolates of V. longisporum and V. dahliae, we developed three quantitative nested real-time (QNRT) PCR assays. The QNRT-PCR quantification of V. longisporum or V. dahliae in cabbage field soil was consistent with the severity of Verticillium wilt disease in those fields. In field trials of resistant cultivar YR Ranpo grown for three seasons in soil infested with the pathogen, disease severity and pathogen density in the soil were significantly reduced in a field moderately contaminated by V. dahliae, but only slightly reduced in a highly contaminated field. These results suggest that continuous cultivation of a resistant cultivar is an effective way to reduce the pathogen population. QNRT-PCR assays provide a powerful analytical tool to evaluate the soil population dynamics of V. longisporum and V. dahliae for disease management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号