首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A feild survey was conducted to determine the relationship of herd, season (winter vs. summer), postpartum interval, milk production, age, and gestation length with serum concentrations of total thyroxine (T4) and triiodothyronine (T3) in Holstein cows. Thirteen Michigan dairy herds were visited once in February and August. Single blood samples were drawn from 4 cows per visit in each of early, middle, and late lactation, and dry cow stages. Hormones were quantified by radioimmunoassay.Analysis of variance was performed separately for cases within each stage, with T4 and T3 as dependent variables, herd and season as main effects, and the other appropriate variables recorded as covariates. T4 values tended to be higher in the winter, but differences were not consistently significant. T3 was higher (p<.01) in winter in all groups except early lactation cows, in which the herd-by-season interaction was significant (p<.05). T4 and T3 were positively related to days postpartum and negatively related to daily milk production in early-lactation cows only p<.05). There was a tendency across all groups for an inverse relationship of T4 and T3 with age. T4 and T3 were inversely related to gestation length in dry cows only (p<.05). These data suggest that metabolic events such as impending parturition, initiation of lactation, and negative energy balance with high milk production in early lactation may result in a reduction of T4 and T3 that is independent of seasonal effects in Holstein cows.  相似文献   

2.
Fifty Holstein cattle, either second to fourth generation daughters of cows randomly bred to non-commercial sires originating in the Virginia Tech dairy herd (estimated mean PDM84 = -455 kg, control animals), or daughters of cows bred to commercially available sires (mean PDM84 = +368 kg, selection animals), were randomly assigned to be milked twice or thrice daily starting at parturition. Serial blood samples were collected via jugular cannulae at 30, 90 and 200 d post-partum (DPP) during both the first and second lactations. Blood samples were collected for 3 h prior to and 4 h following thyrotropin releasing hormone (TRH) administration, and were analyzed for growth hormone (GH) and prolactin (PRL) concentrations. Dry matter intake, body weight and milk yield and fat content were used to calculate net energy balance (NEB) of animals at each DPP sampling period. Mean plasma GH concentrations were greater (P less than .01) in selection vs control animals both before and after TRH administration, and decreased (P less than .01) with advancing lactation (30 greater than 90 greater than 200 DPP). However, NEB was not influenced by genetic merit, implying that observed differences in GH concentrations were not due to that trait. Plasma PRL concentrations were not affected by genetic merit or DPP, but were greater (P less than .01) in the second vs first lactation. Neither PRL or GH concentrations were affected by frequency of milking. The results support the contention that increased plasma GH concentrations are associated with selection for increased milk yield.  相似文献   

3.
The response of thyroid stimulating hormone (TSH) and prolactin (PRL) concentrations to administration of thyrotropin releasing hormone (TRH) was determined in light-horse mares during the anestrous season (winter) and during estrus (standing heat) in the summer. Within each season, mares (4/group) were treated with either saline (controls) or one of four doses of TRH (80, 400, 2,000 or 10,000 ug) intravenously. Samples of blood were drawn at −15, −.5, 15, 30, 45, 60, 90, 120, 180 and 240 min relative to TRH injection. Concentrations of TSH and PRL in pre-TRH samples were greater (P<.05) in anestrous mares during winter than in estrous mares during summer. Concentrations of TSH increased (P<.05) within 30 min after administration of TRH and remained elevated during the 4-hr sampling period. The maximal net change in TSH concentrations and the area under the response curve were greatest for 2,000 ug of TRH; 80 ug did not produce a significant TSH response. There was no interaction (P >.10) between reproductive state and TRH dose for TSH concentrations. Concentrations of PRL were not significantly affected by any TRH dose during either season. It appears that mares differ from many mammalian species in that they do not respond to an injection of TRH with increases in both TSH and PRL.  相似文献   

4.
[目的]为了研究不同产犊季节对荷斯坦奶牛第一胎泌乳性能的影响,以便为长江中下游地区荷斯坦奶牛合理安排配种时间提供科学依据。[方法]利用海丰奶牛场有限公司2009年引进2480头澳系进口荷斯坦牛产犊季节及其第一胎泌乳性能的数据,分析不同产犊季节对第一胎泌乳天数、全泌乳期实际产奶量、305d校正奶量、305d脂肪产量和305d蛋白产量的影响。[结果]表明:不同产犊季节对第一胎泌乳天数和全泌乳期产奶量影响极显著(P0.01),显著影响305天脂肪产量(0.01P0.05),春季产犊的奶牛泌乳天数最长(358±10d),而冬季产犊的奶牛泌乳天数最短(299±18d),春季与夏季产犊奶牛的全泌乳期产奶量显著高于秋季、冬季产犊奶牛(P0.05),夏季产犊奶牛305d脂肪产量最高。[结论]综合各产犊季节样本量及相应泌乳性能,认为该场澳系进口荷斯坦牛最适宜产犊季节为夏末秋初,此时泌乳性能最好。该结果对同类地区引进澳系进口荷斯坦牛繁殖与生产管理有借鉴作用。  相似文献   

5.
本试验旨在研究呼和浩特近郊两个奶牛场荷斯坦奶牛体细胞数(somatic cell count,SCC)变化规律及体细胞分(somatic cell score,SCS)与乳成分的相关性。试验按常规方法采集奶样,并借助Bentley FTS/FCM 400 Combi奶牛生产性能测定仪测定奶样,然后对所得数据用SPSS 17.0软件进行统计分析。结果显示,奶牛各胎次中SCC在第1胎时最低(P<0.01),在第7胎时最高(P<0.01);随着泌乳天数的增加奶样SCC亦明显增加;奶样SCC<100×103/mL到SCC>1000×103/mL的过度中,奶牛日产奶量和奶样乳糖含量明显降低(P<0.01),分别降低了6.07 kg(22.97%)和0.40%(8.06%),而奶样乳脂率和乳蛋白率显著升高(P<0.01),分别增加了0.32%(8.31%)和0.26%(8.05%)。秋、冬季奶样乳脂率要明显高于春、夏季奶样乳脂率(P<0.01),秋季奶样乳蛋白率最高,春季奶样乳蛋白率最低;春季奶样乳糖含量最高,秋、冬季奶样乳糖含量相对较低;冬季奶样SCC最高,而秋季奶样SCC则最低。SCS与日产奶量(-0.172)和乳糖含量(-0.283)之间存在极显著负相关(P<0.01),SCS与乳脂率(0.034)和乳蛋白率(0.111)之间存在极显著正相关(P<0.01)。因此,随着胎次增高,SCC有逐渐升高趋势;随着SCC的升高,日产奶量和乳糖含量有降低趋势,而乳脂率和乳蛋白率有升高趋势;季节对乳成分和SCC均有不同程度的影响;SCC对奶牛日产奶量、乳脂率、乳蛋白率、乳糖含量均有明显影响。  相似文献   

6.
A radioimmunoassay (RIA) based on anti-equine prolactin antiserum and radioiodinated canine prolactin was used to assess the dose response of plasma prolactin to thyrotropin releasing hormone (TRH) in mares in the nonbreeding season (winter) and in mares in estrus in the breeding season (summer). Mares were administered TRH intravenously and blood samples were collected via jugular catheters at −15, 0, 15, 30, 45, 60, 90, 120, 180 and 240 min relative to injection. Doses of TRH were 0, .08, .40, 2.0 and 10.0 mg per mare (n = 3 per dose within each season). The prolactin response was assessed by absolute hormonal concentrations before and after TRH injection and by net area under the curve. Prolactin concentrations in plasma before injection of TRH were higher (P < .01) in estrous mares in summer than in anestrous mares in winter (4.8 vs 1.3 ng/ml). Moreover, there was a greater (P < .01) response to TRH injection in estrous mares than in anestrous mares. Based on areas under the curve, there was an effect of season (P < .01) and of TRH dose (P < .01) as well as a season-dose interaction (P < .01). In general, there was little or no prolactin response to any dose of TRH in anestrous mares in winter when pre-TRH concentrations were low. In contrast, there was an increase in the prolactin response with increasing doses of TRH up to 2.0 mg in estrous mares in summer; 2.0 and 10.0 mg of TRH resulted in similar prolactin secretion. We conclude 1) that prolactin secretion in the horse is stimulated by TRH as has been reported for other species and 2) that prolactin concentrations and the TRH-induced secretion of prolactin are greater in estrous mares in summer than in anestrous mares in winter.  相似文献   

7.

This study aimed to investigate the milk production potential and the impact of nongenetic factors on milk yield and composition of Tunisian dromedary camels. Milk recording and sampling were carried out at monthly intervals over complete lactation for 3 years from 95 camels reared in intensive and semi-intensive systems. The overall means of daily milk yield and fat, protein, total solids, and ash contents were 4.21 ± 1.98 l/day, 2.45 ± 0.9%, 2.67 ± 0.74%, 10.75 ± 1.41%, and 0.85 ± 0.08%, respectively. The total milk yield was 1388.41 ± 575.46 l/lactation for 11 months of lactation. The daily milk yield increased regularly throughout lactation until it reached its peak in the 4th month postpartum and then decreased until the 17th month postpartum. The chemical components, except ash, followed an opposite trend to the milk yield. Their minimum contents were recorded during the 7th and 8th months postpartum, while the maximum levels were observed during the 17th month postpartum. Regarding seasonal variation, the highest daily milk yield was recorded during summer (June), whereas the lowest was found in winter (December). In contrast, the maximum and minimum contents of fat and protein were observed during winter (December) and summer (July), respectively. Similarly, total solids content was maximum in January and minimum in August. Parity had no effect on daily milk yield, while all chemical components were higher in milk from primiparous than multiparous camels. Calf sex and management system did not affect the milk yield and composition. These results are useful in order to develop feeding strategies and breeding programs for improving milk production.

  相似文献   

8.
Twenty each of healthy lactating Friesian and Holstein cows were studied. They were of similar age and body weight, nonpregnant in their third lactation and 80–100 days post partum. The investigation was carried out for 8 weeks on two farms at the same time during the hot summer season in Egypt. The first farm was in Demietta (North east of the Nile Delta, 31° 40 N) on 20 Friesian cows and the second was in Fakous (East of the Nile Delta, 30° 40 N) on 20 Holstein cows. On each of the two farms, 10 cows were newly imported and 10 were born in Egypt.The average daily milk yield and total milk production in the third lactation of the newly imported cows were significantly higher than those of the locally born cows for both Friesians and Holsteins. At the same time, the T4, T3, urea-N, haematological values and AST enzyme activity in the newly imported cows were significantly lower than those in the locally born ones in both breeds, while the locally born cows showed significantly lower values for rectal temperature and respiration rate, as well as for AST and Alk-P enzyme activities, than the newly imported cows of either breed.Holstein cows surpassed the Friesians in milk production, as well as thyroid hormone secretion and cholesterol, haemoglobin, packed cell volume and erythrocyte count values. The opposite was found for serum total protein, urea-N and creatinine concentrations, leukocyte count and AST, ALT and Alk-P enzyme activities.  相似文献   

9.
Primiparous beef cows produced in 3 calving systems were used in a 2-yr study with a completely random design to measure milk yield throughout a 190-d lactation (2002, n = 20; 2003, n = 24 per calving system). Calving occurred in late winter (average calving date = February 4 +/- 2 d), early spring (average calving date = March 30 +/- 2 d), and late spring (average calving date = May 26 +/- 1 d). Additionally, cows used in this study had been weaned at varied ages as calves, creating 6 dam treatments. Dam age at weaning was 140 (late spring), 190 (late winter, early spring, late spring), or 240 (late winter, early spring) d of age. Milk production was measured by using the weigh-suckle-weigh technique at an average of 20, 38, 55, 88, 125, 163, and 190 d in milk. Milk yield for the 190-d lactation period was calculated as area under the curve by trapezoidal summation. Data were analyzed with a model containing treatment, year, and their interaction. Orthogonal contrasts were used to separate effects when treatment was significant (P < 0.10). Total milk yield did not differ (P = 0.42) between cows in the late winter and early spring systems, but cows in the late spring system tended to differ (P = 0.09) from the average of the other 2 systems. Cows in the late spring calving system had increased milk yield in 2002 and lesser milk yield in 2003 compared with the other calving systems (treatment x year interaction, P < 0.001). Cows born in late spring that had been weaned at 140 d of age produced more (P = 0.05) total milk than those weaned at 190 d of age. Peak milk yield was affected (P < 0.001) by treatment and showed a treatment x year interaction (P = 0.006). Day of peak lactation differed among treatments (P = 0.002), with cows in the late winter system peaking later (P = 0.007) than early spring cows, and late spring cows peaking earlier (P = 0.004) than the average of late winter and early spring cows. The average date of peak lactation was May 4 for the late winter system, May 31 for the early spring system, and July 19 for the late spring system. Calf ADG differed (P < 0.001) for the late spring system compared with the average of the late winter and early spring systems, but the relationship interacted with year (P < 0.001). Cow BW and BW change differed among treatments (P < 0.004), with much of the difference associated with the amount of milk produced or the timing of peak lactation. Season of calving affects milk yield of primiparous cows grazing Northern Great Plains rangelands and ADG of their calves.  相似文献   

10.
Three experiments were conducted (1) to assess the effects of estradiol pretreatment on the prolactin response to various secretagogues, and (2) to determine whether elevated plasma thyroxine concentrations altered the prolactin responses to those secretagogues. Geldings were available and were used because their prolactin and luteinizing hormone responses to estradiol and dopamine antagonists are known to be similar to those in seasonally anovulatory mares. In the first experiment, performed in summer, estradiol cypionate (ECP; 100 mg) treatment of geldings increased (P = .07) plasma prolactin concentrations before the onset of exercise, and repeated exercise bouts stimulated (P < .001) plasma prolactin concentrations after each bout; there was no interaction with estradiol pretreatment. Epinephrine injection (5 μg/kg of body weight) did not alter prolactin concentrations. Prostaglandin-F administration (10 mg Lutalyse) stimulated (P < .001) prolactin concentrations, but there was no interaction with ECP pretreatment. Sulpiride administration (0.1 mg/kg of body weight) stimulated (P < .001) prolactin concentrations, and there was a greater (P = .038) response in ECP-treated geldings relative to controls. In the second experiment, performed in winter, ECP (50 mg) pretreatment of geldings before 21 days of daily thyrotropin-releasing hormone (TRH; 1.5 mg) injections did not alter prolactin secretion (P > .1); TRH stimulated prolactin secretion only after the very first injection. In the third experiment (performed in July), pretreatment of geldings with 50 mg of thyroxine in biodegradable particles (day 0) raised (P < .001) plasma thyroxine concentrations in plasma for the duration of the experiment, but had no effect on the prolactin responses to two exercise bouts on day 5, to an injection of prostaglandin-F on day 9, or to an injection of sulpiride on day 13. The previously reported stimulation of plasma prolactin concentrations by estradiol pretreatment and subsequent sulpiride administration in mares, as evidenced herein in geldings, does not occur when prolactin is stimulated by exercise, prostaglandin-F, or TRH. The practical impact of these data is that stimulation of prolactin concentrations after ECP treatment in winter, in an effort to stimulate ovarian activity in seasonally anovulatory mares, is likely limited to dopamine antagonists. Results of the third experiment indicate that TRH is not likely the mediator in the prolactin response to exercise or prostaglandin-F injection.  相似文献   

11.
产奶量差是奶牛个体同一胎次前后2个泌乳月产奶量的差值,可准确反映产奶量变化情况。为探究影响荷斯坦牛产奶量差的因素,本研究收集整理了江苏省某大型奶牛场2015-2018年55 193头次荷斯坦牛生产性能测定记录,并利用最小二乘法分析胎次、测定年度、产犊季节、泌乳月4个因素对荷斯坦牛产奶量差的影响。结果显示:胎次、测定年度、产犊季节、泌乳月及其交互作用对产奶量和产奶量差均有极显著影响(P<0.01)。其中,不同胎次、测定年度和产犊季节的荷斯坦牛总产奶量在第2个泌乳月增加最快,产奶量差为8.79kg;头胎第6泌乳月、二胎第7泌乳月和三胎及以上第6泌乳月产奶量下降最大,产奶量差分别为-2.86kg、-4.59kg和-6.13kg;2015-2018年4个测定年度中,第10、第6、第7、第6泌乳月产奶量降低最大,产奶量差分别为-2.26kg、-4.98kg、-4.44kg和-3.56kg;春季产犊的荷斯坦牛第4泌乳月、夏季产犊的荷斯坦牛第12泌乳月、秋季产犊的荷斯坦牛第9泌乳月、冬季产犊的荷斯坦牛第6或第7泌乳月产奶量下降最大,产奶量差分别是-4.34kg、-4.71kg、-5.36kg和-5.40kg。此外,产奶量差与泌乳持续力呈极显著正相关(P<0.01),与产犊间隔呈显著正相关(P<0.05),与泌乳天数、高峰奶、乳脂率、蛋白率、305d产奶量呈极显著负相关(P<0.01)。因此,产奶量差作为衡量奶牛产奶量变化的指标之一,可为牧场进行科学饲养管理提供参考。  相似文献   

12.
13.
Tumor necrosis factor (TNF)‐α is a powerful macrophage cytokine released during infection, circulating in the blood to produce diverse effects in the organism. We examined the effect of recombinant bovine TNF‐α (rbTNF‐α) administration on hormone release in dairy cows during early lactation. Twelve non‐pregnant Holstein cows were treated subcutaneously with rbTNF‐α (2.5 µg/kg) or saline twice (at 11.00 and 23.00 hours). At 11.00 hours the next day, the cows were given growth hormone‐releasing hormone (GHRH, 0.25 µg/kg), thyrotrophin‐releasing hormone (TRH, 1.0 µg/kg), thyroid‐stimulating hormone (TSH, 10 µg/kg) or adrenocorticotropic hormone (500 µg/head) via the jugular vein. In the growth hormone‐releasing hormone challenge, the plasma growth hormone concentration was lower in the rbTNF‐α group than in the control (saline) group. The growth hormone and TSH responses to TRH were also smaller in the rbTNF‐α group than in the control. The plasma prolactin response to TRH was not affected by the rbTNF‐α treatment. In the TSH challenge, the rbTNF‐α‐treated cows had lower responses, as measured by plasma triiodothyronine and thyroxine, than the control cows. The rbTNF‐α treatment produced an increase in the basal plasma cortisol level, but the cortisol response to adrenocorticotropic hormone was the same level in both groups. The plasma concentrations of TNF‐α and interleukin‐1β in the cows were elevated by the rbTNF‐α treatment. The milk yield was reduced by the rbTNF‐α administration during 4 days. These data demonstrate that TNF‐α alters the secretion of pituitary and thyroid hormones in lactating cows. This effect may contribute to the suppression of the lactogenic function of the mammary gland observed in cases of coliform mastitis with high circulating TNF‐α levels.  相似文献   

14.
Changes in total thyroxine (T4 [TT4]), free T4(FT4) and total tri-iodothyronine (T3 [TT3]) in serum after the intravenous administration of different doses of thyrotropin (TSH) and thy-rotropin-releasing hormone (TRH) were measured in six healthy beagles. Significant (P<0·05) elevations in serum TT4, FT4 and TT3 were observed at each sampling time (two, four, five, six, seven, eight and 10 hours) after administration of 1, 3 or 5 iu (total dose) TSH and peak mean responses were observed six to eight hours after injection. At six hours after injection the mean TT4, FT4 and TT3 levels were approximately 2·6, 3·9 and 1·5 times basal levels, respectively, and there were no significant differences between the three doses of TSH. Significant (P<0·05) elevations in serum TT4 and FT4 but not TT3 were observed at each sampling time (two, four, five, six, seven and eight hours) after the administration of TRH. Peak mean responses were observed at four hours after injection at which time TT4 and FT4 levels were approximately 1·7 and 1·9 times basal levels, respectively. No significant differences were observed between the four doses of TRH used (100, 200, 300 and 600 μg total dose). Concentrations of TT4, FT4 and TT3 were significantly (P<0·05) higher following the administration of TSH compared with TRH, and the response to TRH showed greater individual variation.  相似文献   

15.
The objectives of this study were to determine the effects of parity on milk production, body condition change, periparturient health, and culling in Korean dairy herds. The data utilized included; milk yield, body condition score, cow parity, calving condition, periparturient disorders, culling, and reproductive status, which were recorded from 1290 calvings in eight dairy herds. The mean milk yield in cows over 305 days increased with increasing parity (p < 0.01). Cows with parities of 3, 4, and 5 or higher lost more body condition than those with a parity of 1 during month 1 of lactation (p < 0.01), and body condition recovery by cows with parities of 4 and 5 or higher was slower (p < 0.01) than recovery by cows with parities of 1, 2, or 3 until month 3 of lactation. The risk of retained placenta, metabolic disorder, and endometritis also increased with advancing parity (p < 0.05). Moreover, the incidence of ovarian cysts was lower in cows with a parity of one than in cows with greater parities (p < 0.01). Culling rate due to reproductive failure also increased with advancing parity (p < 0.01). These results suggest that parity increases milk yield, body condition loss during early lactation, the risk of periparturient disorders, and culling due to reproductive failure in dairy herds.  相似文献   

16.
产犊季节、胎次及牛场对荷斯坦牛泌乳性能的影响   总被引:1,自引:0,他引:1  
本研究收集了3个千头以上奶牛场共8872条相关信息,采用多因素方差分析法分析了不同产犊季节、胎次和牛场对泌乳天数、305d校正奶量、305d脂肪产量、305d蛋白产量和全泌乳期产奶量5个泌乳性能指标的影响。结果表明,不同产犊季节、胎次和牛场都极显著影响奶牛的该5项泌乳性能(P〈0.01)。夏季和秋季产犊奶牛的泌乳性能较为理想。夏季产犊奶牛的泌乳天数和全泌乳期产奶量最高,其他三个泌乳性能指标都位居第二;秋季产犊奶牛的305d校正奶量、脂肪产量和蛋白产量都显著高于其他三个季节(P〈0.05),泌乳天数和全泌乳期产奶量也仅次于夏季。头胎牛的各项泌乳性能都显著高于其他胎次的奶牛(P〈0.05),其次为2胎产犊奶牛。随着胎次的增加,泌乳性能的各项指标都有不同程度的降低。不同的牛场极显著地影响奶牛的泌乳性能(P〈0.01)。  相似文献   

17.
Analyses of factors affecting dry matter intake of lactating dairy cows   总被引:1,自引:0,他引:1  
An experiment was conducted to analyze feed, climate and animal factors affecting dry matter intake (DMI) in lactating dairy cows. Sixteen lactating Holstein cows, with parity from 1 to 6, were assigned to a feeding trial for 2 years, comprising 31 lactations. The animals were fed Italian ryegrass silage, oat hay, alfalfa hay, beet pulp and three types of concentrate. The data, pooled and classified by stage of lactation, season of lactation and parity were analyzed by stepwise multiple regression to determine the nature and extent of factors affecting DMI. A total of 45 prediction equations for DMI were derived. Energy‐corrected milk yield or milk yield was selected as the primary factor of DMI in all the equations in which the ratio of contribution (R2) varied from 0.26 to 0.67. The dietary concentration of organic cell wall, crude fiber, crude protein, organic b fraction, forage to concentrate ratio, average ambient temperature and temperature–humidity index were selected as the secondary factors affecting DMI for pooled data, late lactation (251–350 days of lactation), summer (June–August), spring (March–May), ≥4th lactation, autumn (September–November) and 3rd lactation, respectively, and improved R2 up to 0.77. Except for an impact of bodyweight in several equations, feed and climatic factors significantly improved prediction equations effectively for data classified in different ways. To estimate DMI accurately in lactating dairy cows, feed and climatic factors should be considered for specific conditions.  相似文献   

18.
为了探究荷斯坦牛泌乳前期体况评分(body condition score,BCS)的影响因素及BCS对生产性能和离群寿命的影响,本研究收集江苏省某大型牛场2018年1月至2020年12月共7 811头荷斯坦牛泌乳前期BCS、生产性能测定(dairy herd improvement,DHI)结果及淘汰记录,利用多因素方差分析法在分析奶牛泌乳前期BCS变化及影响因素基础上,重点分析泌乳前期BCS及其变化对泌乳性能和离群寿命的影响,利用Cox回归对泌乳前期不同BCS的荷斯坦牛生存曲线进行绘制,并对不同BCS荷斯坦牛的淘汰原因进行卡方检验。结果表明,全群泌乳前期BCS均值为(2.95 ±0.32)。胎次、产犊季节和泌乳天数对泌乳前期BCS有极显著影响(P<0.01),1胎牛和夏季产犊的母牛泌乳前期BCS均最高;5~30、31~60、61~100 d BCS呈显著下降。泌乳前期BCS对产奶量、乳脂率、乳蛋白率、体细胞评分等均有极显著影响(P<0.01)。产奶量和高峰奶量随BCS的增加呈极显著下降(P<0.01)。泌乳前期BCS与产奶量、高峰奶量呈极显著负相关(P<0.01),与乳蛋白率呈极显著正相关(P<0.01)。泌乳前期BCS的变化对SCS和高峰奶量均有显著影响(P<0.05)。泌乳前期BCS对离群胎次和淘汰月龄有极显著影响(P<0.01)。生存分析表明,BCS为2.75的牛只生存概率最大。2胎和4胎母牛、冬季产犊的母牛不同BCS淘汰比例均呈极显著差异(P<0.01);低产淘汰的牛只泌乳前期BCS淘汰分布具有极显著差异(P<0.01)。在本研究牛群中,当泌乳前期BCS为2.75时,牛只生产性能较佳且淘汰风险最低,本研究为规模化牛场荷斯坦牛泌乳前期的饲养管理提供了参考。  相似文献   

19.

This study was conducted to determine the effect of estrus on the daily milk yield in Holstein cows and to investigate the chance of using the possible milk yield changes in determining the estrus. During the 3-year period of the study, 103 dairy cows were observed 4 days before and 4 days after daily milk yield of 240 estruses and a total of 2174 daily milk yields were evaluated. Variance analysis was used to determine the factors affecting the daily milk yield, and the LSD test was used for multiple comparisons. Insemination year, insemination season, number of lactation, milk yield group, and daily milk yield of lactation period were found to be significant (P?<?0.01). On the other hand, the effect of estrus days on milk yield was insignificant. In the days of estrus, the least square mean of milk yield is 31.0 kg, while the lowest and highest milk yields are 10.2 kg and 62.9 kg. The daily milk yield in the estruses decreased by an average of 300 g, which decreased to 400 g by continuing 1 day after the estruses. The next day, however, it increased rapidly by 600 g, and then dropped again, probably due to the effect of metestrus. It was found that, among all estruses, 31.3% of cows decreased their milk yield, whereas 26.5% of cows increased their milk yield. However, 42.2% of cows both decreased and increased their milk yield in different estruses. The interval between birth and the first insemination after were found to be longer (97.5 days and 92.9 days) at high milk-yielding cows compared to the low milk-yielding cows. According to the results of this study, daily milk yield changes could not be used as an estrus indicator.

  相似文献   

20.
As a result of research conducted in the US, recommendations for dry cow vitamin E intakes have increased seven fold there, however there has been no change to recommendations in the UK. As part of a larger study comparing the impact of existing UK and new US recommended vitamin E intakes on the health and fertility of commercial dairy cows in the UK, a study was set up to investigate the effect of route of supplementation and stage of lactation, over a 21 day period, on the response to mega-supplementation of cattle receiving supposedly adequate vitamin E. The study assessed the response of dry, peak lactation and mid lactation cows to in-feed or parenteral vitamin E supplementation (7 animals per treatment/lactation stage group) by measuring plasma and milk vitamin E concentrations, blood glutathione peroxidase (GSH-Px) activity and milk yields over a 21 day period. Plasma vitamin E concentrations were significantly influenced by a time, stage and treatment interaction (P = 0.046). Both dry and lactating animals had significantly higher plasma vitamin E concentrations at some time points in the parenteral supplemented cows compared to the in-feed supplementated animals (P ≤ 0.011 and P < 0.01, respectively). Milk vitamin E concentrations did not significantly differ between lactation stages but treatment had a significant effect on concentrations (P < 0.008) when lactation stage was removed from the model. There was no significant difference in milk yield between treatment groups. A significant relationship between plasma and milk vitamin E concentrations was only found in the parenterally supplemented cows (r = 0.435, P < 0.001). In cattle with intakes greater than the ARC recommendations, measurement of plasma vitamin E concentration may be of limited value in determining whether there has been a response to supplementation. The relationship between plasma and milk vitamin E concentrations is too poor for milk vitamin E concentrations to be used as a proxy for plasma vitamin E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号