共查询到20条相似文献,搜索用时 0 毫秒
1.
Concern about soil organic matter losses as a result of cultivation has been voiced consistently since the early part of the 20th century. Scientists working in the US. Great Plains recognized that organic matter losses from an already small pool could have major negative consequences on soil physical properties and N supplying capacity. The advent of reduced- and no-till systems has greatly improved our ability to capture and retain precipitation in the soil during the non-crop periods of the cropping cycle, and has made it possible to reduce fallow frequency and intensify cropping systems. The purpose of this paper is to summarize the effects of reduced tillage and cropping system intensification on C storage in soils using data from experiments in North Dakota, Nebraska, Kansas, Colorado, and Texas. Decades of farming with the wheat ( Triticum aestivum L.)–fallow system, the dominant farming system in the Great Plains, have accentuated soil C losses. More intensive cropping systems, made possible by the greater water conservation associated with no-till practices, have produced more grain, produced more crop residue and allowed more of it to remain on the soil surface. Combined with less soil disturbance in reduced- and no-till systems, intensive cropping has increased C storage in the soil. We also conclude that the effects of cropping system intensification on soil C should not be investigated independent of residue C still on the surface. There are many unknowns regarding how rapidly changes in soil C will occur when tillage and cropping systems are changed, but the data summarized in this paper indicate that in the surface 2.5 cm of soil, changes can be detected within 10 years. It is imperative that we continue long-term experiments to evaluate rates of change over an extended period. It is also apparent that we should include residue C, both on the surface of the soil and within the surface 2.5 cm, in our system C budgets if we are to accurately depict residue–soil C system status. The accounting of soil C must be done on a mass basis rather than on a concentration basis. 相似文献
2.
Public interest in soil quality is increasing, but assessment is difficult because soil quality evaluations are often purpose- and site-specific. Our objective was to use a systems engineering methodology to evaluate soil quality with data collected following a long-term tillage study on continuous corn ( Zea mays L.). Aggregate characteristics, penetration resistance, bulk density, volumetric water content, earthworm populations, respiration, microbial biomass, ergosterol concentrations, and several soil-test parameters (pH, P, K, Ca, Mg, Total-N, Total-C, NH 4-N, and NO 3-N) were measured on Orthic Luvisol soil samples collected from Rozetta and Palsgrove silt loam (fine-silty, mixed, mesic Typic Hapludalfs) soils. Plots managed using no-till practices for 12 years before samples were collected for this study had surface soil aggregates that were more stable in water and had higher total carbon, microbial activity, ergosterol concentrations, and earthworm populations than either the chisel or plow treatments. Selected parameters were combined in the proposed soil quality index and gave ratings of 0.48, 0.49, or 0.68 for plow, chisel, or no-till treatments, respectively. This indicated that long-term no-till management had improved soil quality. The prediction was supported by using a sprinkler infiltration study to measure the amount of soil loss from plots that had been managed using no-till or mold-board plow tillage. We conclude that no-till practices on these soils can improve soil quality and that the systems engineering methodology may be useful for developing a more comprehensive soil quality index that includes factors such as pesticide and leaching potentials. 相似文献
3.
Soil aggregation is influenced by the tillage system used, which in turn affects the amount of C and N in the different aggregate fractions. This study assessed the impact of different tillage systems on soil aggregates by measuring the aggregate stability, the organic carbon (C org) and the total nitrogen (N tot) contents within different aggregate fractions, and their release of dissolved organic carbon (DOC). Soil samples were collected from the top 0 to 10 cm of a long-term tillage experiment at Fuchsenbigl (Marchfeld, Austria) where conventional tillage (CT), reduced tillage (RT), and minimum tillage (MT) treatments were applied to a Chernozem fine sandy loam. The stable aggregates (1000–2000 μm) were subject to dispersion by the soil aggregate stability (SAS or wet sieving) method after Kemper and Rosenau (1986), and the ultrasonic method of Mayer et al. (2002). Chemical analysis of the soil was obtained for the aggregate fractions 630–1000, 250–630 and 63–250 μm gathered from the ultrasonic method. Using the SAS method, CT and RT had the least amounts of stable aggregates (18.2% and 18.9%, respectively), whereas MT had twice as much stable aggregates (37.6%). Using the ultrasonic method, MT also had the highest amount of water stable aggregates in all three fractions (1.5%, 3.7%, and 35%, respectively), followed by RT (1%, 2.3%, 32.3%), and CT (0.8%, 1.7%, 29.1%). For comparison, a reference soil, EUROSOIL 7 (ES-7) was also analysed (40%, 6.7%, and 12.1%). The highest amounts of C org and N tot were measured under MT in all three fractions, with 8.9%, 3.8%, and 1.3% for C org, and 0.4%, 0.3%, and 0.1% for N tot. Apart from the fraction 630–1000 μm, the aggregates of RT and CT contained <50% of the C org and N tot values of MT. The C/N ratio was least favourable for CT (42.6) in the aggregate fraction 630–1000 μm. The DOC release from stable aggregates after 10 min of ultrasonic dispersion was highest from MT soil (86.7 mg l −1). The values for RT and CT were 21% and 25% below this value. The results demonstrate that tillage type influences both aggregate stability and aggregate chemical composition. This research confirms that CT interferes more with the natural soil properties than RT and MT. Furthermore, MT has the highest potential to sequester C and N in this agriculturally used soil. 相似文献
4.
Soil movement by tillage redistributes soil within the profile and throughout the landscape, resulting in soil removal from convex slope positions and soil accumulation in concave slope positions. Previous investigations of the spatial variability in surface soil properties and crop yield in a glacial till landscape in west central Minnesota indicated that wheat ( Triticum aestivum) yields were decreased in upper hillslope positions affected by high soil erosion loss. In the present study, soil cores were collected and characterized to indicate the effects of long-term intensive tillage on soil properties as a function of depth and tillage erosion. This study provides quantitative measures of the chemical and physical properties of soil profiles in a landscape subject to prolonged tillage erosion, and compares the properties of soil profiles in areas of differing rates of tillage erosion and an uncultivated hillslope. These comparisons emphasize the influence of soil translocation within the landscape by tillage on soil profile characteristics. Soil profiles in areas subject to soil loss by tillage erosion >20 Mg ha −1 year −1 were characterized by truncated profiles, a shallow depth to the C horizon (mean upper boundary 75 cm from the soil surface), a calcic subsoil and a tilled layer containing 19 g kg −1 of inorganic carbon. In contrast, profiles in areas of soil accumulation by tillage >10 Mg ha −1 year −1 exhibited thick sola with low inorganic carbon content (mean 3 g kg −1) and a large depth to the C horizon (usually >1.5 m below the soil surface). When compared to areas of soil accumulation, organic carbon, total nitrogen and Olsen-extractable phosphorus contents measured lower, whereas inorganic carbon content, pH and soil strength measured higher throughout the profile in eroded landscape positions because of the reduced soil organic matter content and the influence of calcic subsoil material. The mean surface soil organic carbon and total nitrogen contents in cultivated areas (regardless of erosion status) were less than half that measured in an uncultivated area, indicating that intensive tillage and cropping has significantly depleted the surface soil organic matter in this landscape. Prolonged intensive tillage and cropping at this site has effectively removed at least 20 cm of soil from the upper hillslope positions. 相似文献
5.
Tillage erosion studies have mainly focused on the effect of topography and cultivation practices on soil translocation during tillage. However, the possible effect of initial soil conditions on soil displacement and soil erosion during tillage have not been considered. This study aims at investigating the effect of the initial soil conditions on net soil displacement and the associated erosion rates by a given tillage operation of a stony loam soil. Tillage erosion experiments were carried out with a mouldboard plough on a freshly ploughed (pre-tilled) soil and a soil under grass fallow in the Alentejo region (Southern Portugal). The experimental results show that both the downslope displacement of soil material and the rate of increase of the downslope displacement with slope gradient are greater when the soil is initially in a loose condition. This was attributed to: (i) a greater tillage depth on the pre-tilled soil and (ii) a reduced internal cohesion of the pre-tilled soil, allowing clods to roll and/or slide down the plough furrow after being overturned by the mouldboard plough. An analysis of additional available data on soil translocation by mouldboard tillage showed that downslope displacement distances were only significantly related to the slope gradient when tillage is carried out in the downslope direction. When tillage is carried out in the upslope direction, the effect of slope gradient on upslope displacement distances was not significant. This has important implications for the estimation of the tillage transport coefficient, which is a measure for the intensity of tillage erosion, from experimental data. For our experiments, estimated values of the tillage transport coefficient were 70 and 254 kg m−1 per tillage operation for grass fallow and pre-tilled conditions, respectively, corresponding to local maximum erosion rates of ca. 8 and 35 Mg ha−1 per tillage operation and local maximum deposition rates of ca. 33 and 109 Mg ha−1 per tillage operation. 相似文献
6.
Short- and long-term field experiments are necessary to provide important information about how soil carbon sequestration is affected by soil tillage system; such systems can also be useful for developing sustainable crop production systems. In this study, we evaluated the short- and long-term effects of conservation tillage (CT) on soil organic carbon fractions and biological properties in a sandy clay loam soil. Both trials consisted of rainfed crop rotation systems (cereal–sunflower–legumes) located in semi-arid SW Spain. In both trials, results were compared to those obtained using traditional tillage (TT). Soil samples were taken in flowering and after harvesting of a pea crop and collected at three depths (0–5, 5–10 and 10–20 cm). The soil organic carbon fractions were measured by the determination of total organic carbon (TOC), active carbon (AC) and water soluble carbon (WSC). Biological status was evaluated by the measurement of soil microbial biomass carbon (MBC) and enzymatic activities [dehydrogenase activity (DHA), o-diphenol oxidase activity (DphOx), and β-glucosidase activity (β-glu)].The contents of AC and MBC in the long-term trial and contents of AC in the short-term trial were higher for CT than TT at 0–5 cm depth for both sampling periods. Furthermore, DHA and β-glucosidase values in the July sampling were higher in the topsoil under conservation management in both trials (short- and long-term). The parameters studied tended to decrease as depth increased for both tillage system (TT and CT) and in both trials with the exception of the DphOx values, which tended to be higher at deeper layers.Values of DHA and β-glu presented high correlation coefficients ( r from 0.338 to 0.751, p ≤ 0.01) with AC, WSC and TOC values in the long-term trial. However, there was no correlation between either TOC or MBC and the other parameters in the short-term trial. In general, only stratification ratios of AC were higher in CT than in TT in both trials. The results of this study showed that AC content was the most sensitive and reliable indicator for assessing the impact of different soil management on soil quality in the two experiments (short- and long-term).Conservation management in dryland farming systems improved the quality of soil under our conditions, especially at the surface layers, by enhancing its storage of organic matter and its biological properties, mainly to long-term. 相似文献
7.
The world is experiencing climate change that in no way can be considered normal, and the challenge that this brings to agriculture is twofold. The first challenge relates to the continuing need to reduce greenhouse gas emissions that generate the changes to climate. Australia's National Greenhouse Gas Inventory estimates that agriculture produces about one-quarter of Australia's total greenhouse gas emissions (including land clearing). The main gases emitted are carbon dioxide, methane, and nitrous oxide. These gases are derived from high-value components within the agricultural production base, so reducing emissions of greenhouse gases from agriculture has the potential to provide production and financial benefits, as well as greenhouse gas reduction. Methane essentially derives from enteric fermentation in ruminants. Nitrous oxide and carbon dioxide, on the other hand, are strongly influenced, and perhaps even determined by a range of variable soil-based parameters, of which the main ones are moisture, aerobiosis, temperature, amount and form of carbon, organic and inorganic nitrogen, pH, and cation exchange capacity. Tillage has the potential to influence most of these parameters, and hence may be one of the most effective mechanisms to influence rates of emissions of greenhouse gases from Australian agriculture. There have been substantial changes in tillage practice in Australia over the past few decades – with moves away from aggressive tillage techniques to a fewer number of passes using conservative practices. The implications of these changes in tillage for reducing emissions of greenhouse gases from Australian agriculture are discussed. The second challenge of climate change for Australian agriculture relates to the impacts of climate change on production, and the capacity of agriculture to adapt where it is most vulnerable. Already agriculture is exposed to climate change, and this exposure will be accentuated over the coming decades. The most recent projections for Australia provided by the CSIRO through the Australian Climate Change Science Programme, indicate that southern Australia can expect a trend to drying due to increased temperatures, reduced rainfalls, and increased evaporative potentials. Extremes in weather events are likely also to become more common. We anticipate that climate change will become an additional driver for continued change in tillage practice across Australia, as land managers respond to the impacts of climate change on their production base, and governments undertake a range of activities to address both emissions reduction and the impacts of climate change in agriculture and land management. 相似文献
8.
Seven mouldboard ploughing experiments were conducted to systematically investigate the effect of different tillage directions on soil redistribution on hillslopes. The present study included tillage directions other than parallel to the gradient or along the contour, that is, in our experiments the slope gradient changed simultaneously in tillage and in turning direction. Using physical tracers we developed a model of the two-dimensional tracer displacement as a function of topography and tillage variables. The displacements in tillage and in turning direction were separately described as 2nd degree polynomials in both tillage and in turning directions. This model fully accounted for the directionality of tillage. Displacement in turning direction additionally depended on tillage depth, while that in tillage direction was affected by tillage speed and soil bulk density. We found a large effect of tillage directionality on soil redistribution, and tillage at 45° to the gradient turning soil upslope was the least erosive tillage direction. We obtained non-linear relationships between soil redistribution and profile curvature, instead of the linear relationships reported previously. Consequently tillage erosivity varied in tillage direction and a unique tillage transport coefficient could not be obtained for all tillage directions. 相似文献
9.
Data are presented for the amount of clods >50 mm produced when five different soils were tilled at a range of different, naturally occurring water contents. The optimum water content for soil tillage is defined as that at which the amount of clods produced is minimum. The amount clods produced at this optimum water content is shown to be linearly and negatively correlated with the value of Dexter's index S of soil physical quality. This results in a rational model for soil tillage that enables predictions to be made for all different soils and conditions. Pedo-transfer functions can be used to estimate the input parameters for the model for cases, for which measured values are not available. It is concluded that for soils with good physical condition (i.e. S > 0.035), no clods >50 mm are produced during tillage. 相似文献
10.
The increased limiting effects of soil compaction on Central Anatolian soils in the recent years demonstrate the need for a detailed analysis of tillage system impacts. This study was undertaken to ascertain the effects of seven different tillage systems and subsequent wheel traffic on the physical and mechanical properties of typical Central Anatolian medium textured clay loam soil (Cambisol), south of Ankara, Turkey. Both tillage and field traffic influenced soil bulk density, porosity, air voids and strength significantly except the insignificant effect of traffic on moisture content. Traffic affected the soil properties mostly down to 20 cm. However, no excessive compaction was detected in 0–20 cm soil depth. The increases of bulk density following wheel traffic varied between 10–20% at 0–5 cm and 6–12% at 10–15 cm depth. In additions, traffic increased the penetration resistance by 30–74% at 0–10 cm and 7–33% at 10–20 cm. Less wheel traffic-induced effects were found on chisel tilled plots, compared to ploughed plots. Soil stress during wheel passage was highly correlated with soil strength. Also, both tillage and traffic-induced differences were observed in mean soil aggregate sizes, especially for mouldboard ploughed plots. The obtained data imply that chisel+cultivator-tooth harrow combination provides more desirable soil conditions for resisting further soil compaction. 相似文献
11.
This study reports the results of a series of experiments that were set up on agricultural land in central Belgium to investigate soil translocation and erosivity resulting from a secondary tillage operation using an implement sequence of a rotary harrow and seeder. Aluminium cubes were used as tracers of soil movement. Results show that soil displacement resulting from tillage with such an implement sequence is far from insignificant. This is mainly related to the relatively shallow tillage depth as well as to the loose initial soil condition of such secondary tillage operations. The calculated value for the tillage transport coefficient k (123 kg m −1 per tillage operation) is comparable with k-values from implements that are considered to be more erosive, like mouldboard and chisel implements. In conclusion, this study shows that tillage erosion not only results from relatively aggressive tillage operations such as mouldboard and chisel passes, but that secondary operations contribute significantly to soil displacement and tillage erosion. 相似文献
12.
Improved legume tree fallows have great potential to increase soil organic carbon (SOC), aggregate stability and soil infiltration rates during the fallowing phase. However, persistence of the residual effects of improved fallowing on SOC, aggregate stability and infiltration rates, under different tillage systems in Zimbabwe is not well documented. The relationships between SOC, aggregate stability and infiltration in fallow-maize rotation systems are also not well documented. We therefore evaluated effects of tillage on SOC, aggregate stability and infiltration rates of a kaolinitic sandy soil during the cropping phase of an improved fallow-maize rotation system. Plots that were under legume tree fallows ( Sesbania sesban; Acacia angustissima), natural fallow (NF) and under continuous maize during the previous 2 years were divided into conventional tillage (CT) and no-till (NT) subplots soon after fallow termination, and maize was cropped in all plots during the following two seasons. Aggregate stability was investigated using water stable macroaggregation index ( Ima), water dispersible clay (WDC) and using the mean weight diameter (MWD) after different wetting procedures. Infiltration rates were determined using simulated rainfall at intensity of 35 mm h −1 on 1 m 2 plots. Soil organic carbon was significantly higher ( P < 0.05) under fallows than continuous maize. For the 0–5 cm depth SOC was 11.0, 10.0, 9.4 and 6.6 g kg −1 for A. angustissima, S. sesban, NF and continuous maize, respectively, at fallow termination. After 2 years of cropping SOC was 8.0, 7.0, 6.1 and 5.9 g kg −1 under CT and 9.1, 9.0, 8.0 and 6.0 g kg −1 under NT for A. angustissima, S. sesban, NF and continuous maize, respectively. Aggregate stability was significantly greater ( P < 0.05) under fallows than under continuous maize and also higher under NT than under CT. The macroaggregation index ( Ima) for the 0–5 cm depth was 466, 416, 515 and 301 for A. angustissima, S. sesban, NF and continuous maize, respectively at fallow termination, decreasing to 385, 274, 286 and 255 under CT and 438, 300, 325 and 270 under NT, for A. angustissima, S. sesban, NF and continuous maize, respectively, after 2 years of cropping. Percent WDC was also significantly lower ( P < 0.05) in fallows than in continuous maize, and for the 0–5 cm it was 11, 10, 8 and 17 for A. angustissima, S. sesban, NF and continuous maize, respectively at fallow termination. After 2 years of cropping WDC (%) was 12, 14, 15 and 17 under CT and 10, 12, 12 and 16 under NT for A. angustissima, S. sesban, NF and continuous maize, respectively. MWD also showed significantly higher ( P < 0.05) aggregate stability in fallows than in continuous maize. Water infiltration rates were significantly greater under fallows than continuous maize but these declined significantly during the cropping phase in plots that had been fallowed. In October 2000, infiltration rates in the A. angustissima and NF plots were above 35 mm h −1 as no runoff was observed. Steady-state infiltration rates were 24 mm h −1 in S. sesban and 5 mm h −1 for continuous maize after 30 min of rainfall simulations. After 2 years of cropping infiltration rates remained above 35 mm h −1 in A. angustissima plots, but declined to 18 and 8 mm h −1 for NF, CT and NT respectively and 12 mm h −1 for S. sesban, CT and NT. It is concluded that legume tree fallows improved SOC, aggregate stability and infiltration rates, but these benefits accrued during fallowing decreased significantly after 2 years of cropping following the termination of fallows. The decrease in SOC and aggregate stability was higher under CT than NT. Coppicing fallows of A. angustissima were the best long-term fallow species when integrated with NT as improved soil physical properties were maintained beyond 2 years of post-fallow cropping. 相似文献
13.
土壤螨类是土壤生态系统中重要的指示生物之一。为探讨耕作方式对土壤螨类数量、类群数、群落结构以及垂直分布的影响, 试验选取位于东北黑土区中国科学院海伦农田生态系统国家野外科学观测研究站中5种耕作方式(免耕耕作、少耕耕作、平翻耕作、组合耕作和旋耕耕作)试验区内土壤螨类为研究对象, 采用改良干漏斗(Modified Tullgren)法, 于2009年5月、6月和7月3个时期分离0~15 cm土层中的土壤螨类。结果表明: 耕作方式对土壤螨类数量和类群数存在显著影响, 3个时期共捕获土壤螨类2 441只, 免耕耕作、少耕耕作、组合耕作、旋耕耕作和平翻耕作分别捕获土壤螨类366只、436只、553只、819只和267只, 分别隶属于13科、18科、13科、14科和11科。传统的旋耕耕作具有最高的土壤螨类个体数量, 而保护性耕作中的少耕耕作具有最高的土壤螨类类群数。不同时期耕作方式对土壤螨类垂直分布的影响不同, 5月除免耕耕作外其他4种耕作方式均较好地保持了土壤螨类垂直分布的表聚特征, 即0~5 cm土层中土壤螨类的数量显著( P<0.05)高于其他两层(5~10 cm, 10~15 cm), 其中组合耕作和少耕耕作在3个时期中均较好地保持了土壤螨类的表聚特征, 且少耕耕作较好地保持了土壤螨类的多样性。MGP分析结果表明: 土壤甲螨群落随季节的变化在组成上发生变化, 从最初的高等甲螨为优势类群转化为低等甲螨为优势类群, 免耕和少耕的这种趋势较其他耕作方式更为明显, 少耕耕作3个时期土壤甲螨的组成类型分别为P型、G型和O型, 而免耕耕作3个时期土壤甲螨的组成类型分别为P型、O型和G型。少耕和免耕两种保护耕作方式较其他耕作方式更有利于土壤螨类群落结构的稳定性及多样性的保持, 有利于农田土壤生态环境的保护。 相似文献
14.
为了明确不同外源有机物和耕作方式对土壤地力培育的影响,以水稻-小麦轮作系统为对象,通过2个年度(2016—2018年)大田试验研究了外源有机物(秸秆和有机肥)和耕作方式及其交互作用[稻麦秸秆还田配合旋耕(SR),稻麦秸秆还田配合翻耕(SP),秸秆不还田、增施有机肥配合旋耕(MR),秸秆不还田、增施有机肥配合翻耕(MP),秸秆不还田、不施用有机肥、旋耕深度15 cm(CKR)]对土壤团聚体和有机碳组成的短期影响。结果表明:SR处理能够降低水稻季土壤容重并增加总孔隙度。相比CKR,小麦季SR处理显著增加0.05mm水稳性团聚体含量,增加量为7.2%。此外,外源有机物和耕作对土壤有机碳活性组分具有显著影响。其中,易氧化有机碳(EOC)主要受耕作与有机物交互作用影响,酸水解有机碳(LPIc和LPII_c)主要受耕作措施的影响, SR处理的土壤EOC和LPI_c含量比CKR提高0.3~2.6 g·kg~(-1)。颗粒有机碳(POC)主要受外源有机物的影响,并且秸秆还田处理POC平均含量高于增施有机肥处理,增加量为0.75g·kg~(-1)。短期内,外源有机物和耕作及其交互作用对稳定性有机碳(黑碳和矿物结合态有机碳)的影响较小。综上,秸秆还田配合旋耕有助于提高土壤水稳性团聚体和活性有机碳的含量(EOC、LPI_c和POC)。 相似文献
15.
Soil compaction caused by traffic of heavy vehicles and machinery has become a problem of world-wide concern. The aims of this study were to evaluate and compare the changes in bulk density, soil strength, porosity, saturated hydraulic conductivity and air permeability during sugar beet ( Beta vulgaris L.) harvesting on a typical Bavarian soil (Regosol) as well as to assess the most appropriate variable factors that fit with the effective controlling of subsequent compaction. The field experiments, measurements and laboratory testing were carried out in Freising, Germany. Two tillage systems (conventional plough tillage and reduced chisel tillage) were used in the experiments. The soil water contents were adjusted to 0.17 g g −1 ( w1), 0.27 g g −1 ( w2) and 0.35 g g −1 ( w3).Taking the increase in bulk density, the decrease in air permeability and reduction of wide coarse pore size porosity (−6 kPa) into account, it seems that CT (ploughing to a depth of 0.25 m followed by two passes of rotary harrow to a depth 0.05 m) of plots were compacted to a depth of at least 0.25 m and at most 0.40 m in high soil water ( w3) conditions. The trends were similar for “CT w1” (low soil water content) plots. However, it seems that “CT w1” plots were less affected than “CT w3” plots with regard to bulk density increases under partial load. In contrast, diminishments of wide coarse pores (−6 kPa) and narrow (tight) coarse pores (−30 kPa) were significantly higher in “CT w1” plots down to 0.4 m. Among CT plots, the best physical properties were obtained at medium soil water ( w2) content. No significant increase in bulk density and no significant decrease in coarse pore size porosity and total porosity below 0.2 m were observed at medium soil water content. The soil water content seemed to be the most decisive factor.It is likely that, CS (chiselling to a depth of 0.13 m followed by two passes of rotary harrow to a depth 0.05 m) plots were less affected by traffic treatments than CT plots. Considering the proportion of coarse pore size porosity (structural porosity) and total porosity, no compaction effects below 0.3 m were found. Medium soil water content ( w2) provides better soil conditions after traffic with regard to wide coarse pore size porosity (−6 kPa), air permeability (at 6 and 30 kPa water suction), total porosity and bulk density. Proportion of wide coarse pores, air permeability and bulk density seems to be suitable parameters to detect soil compaction under the conditions tested. 相似文献
16.
Sustainability of agricultural management systems has become an issue of wide public concern and international debate. One result is that soil quality assessment has been suggested as a tool for evaluating sustainability of soil and crop management practices. Our objective was to adapt a soil quality index to assess the effects of three long-term tillage systems on sloping Grantsburg silt loam soil. Soil quality was evaluated using a framework that included three soil functions: (1) resist erosion (water relations), (2) provide plant nutrients (nutrient relations), and (3) provide a favorable root environment (rooting relations). A score for each of these functions was computed using measurements (indicators) that were normalized with one of the three (more is better, optimum, or worse) scoring functions. Six different indices were developed from a basic framework. Modifications included changing the weighting factors, threshold limits, or type of scoring function applied to indicators, and the addition of air-filled and water storage porosity to the nutrient and rooting relations functions. Changing threshold limits and the type of scoring function used for surface residue improved the correlation between water relations and soil loss. The addition of porosity indicators increased the sensitivity of nutrient and rooting relations functions to yield and cone index, respectively, and resulted in a better correlation between porosity indicators and plant population. Computing soil quality indices helped to combine different soil properties and processes into a simple tool that explained changes in complex soil properties in response to different tillage practices. This supports previous studies suggesting that computing soil quality indices and functions could be useful for selecting management practices to maintain or improve soil quality. Our results demonstrated that adjusting threshold limits for local conditions can make the function ratings more or less sensitive to the management practices being evaluated. 相似文献
17.
Residue retention and reduced tillage are both conservation agricultural management options that may enhance soil organic carbon (SOC) stabilization in tropical soils. Therefore, we evaluated the effects of long-term tillage and residue management on SOC dynamics in a Chromic Luvisol (red clay soil) and Areni-Gleyic Luvisol (sandy soil) in Zimbabwe. At the time of sampling the soils had been under conventional tillage (CT), mulch ripping (MR), clean ripping (CR) and tied ridging (TR) for 9 years. Soil was fully dispersed and separated into 212–2000 μm (coarse sand), 53–212 μm (fine sand), 20–53 μm (coarse silt), 5–20 μm (fine silt) and 0–5 μm (clay) size fractions. The whole soil and size fractions were analyzed for C content. Conventional tillage treatments had the least amount of SOC, with 14.9 mg C g −1 soil and 4.2 mg C g −1 soil for the red clay and sandy soils, respectively. The highest SOC content was 6.8 mg C g −1 soil in the sandy soil under MR, whereas for the red clay soil, TR had the highest SOC content of 20.4 mg C g −1 soil. Organic C in the size fractions increased with decreasing size of the fractions. In both soils, the smallest response to management was observed in the clay size fractions, confirming that this size fraction is the most stable. The coarse sand-size fraction was most responsive to management in the sandy soil where MR had 42% more organic C than CR, suggesting that SOC contents of this fraction are predominantly controlled by amounts of C input. In contrast, the fine sand fraction was the most responsive fraction in the red clay soil with a 66% greater C content in the TR than CT. This result suggests that tillage disturbance is the dominant factor reducing C stabilization in a clayey soil, probably by reducing C stabilization within microaggregates. In conclusion, developing viable conservation agriculture practices to optimize SOC contents and long-term agroecosystem sustainability should prioritize the maintenance of C inputs ( e.g. residue retention) to coarse textured soils, but should focus on the reduction of SOC decomposition ( e.g. through reduced tillage) in fine textured soils. 相似文献
18.
Different agricultural practices can result in a decline in soil organic carbon (SOC) and a consequent reduction in soil structural stability. Experiments were conducted on soils with a range of SOC values, to quantify the destabilizing effects of increased tillage intensity. Different tillage intensity was simulated with the use of a falling weight, where specific energy levels, similar to those experienced during tillage, were reproduced. The level of destabilization was assessed by the quantity of mechanically dispersed clay (using a turbidimetric technique) and the quantity of water-stable aggregates (WSA) > 0.25 mm remaining after being shaken in water. The quantity of clay dispersed increased with increasing water content, in the absence of any mechanical pretreatment, the rate of increase rising sharply with declining SOC. Following simulated tillage, and at water contents above the plastic limit, clay dispersion increased in proportion to the energy of disruption, and also increased with decreasing SOC levels. Below the plastic limit all the soils were relatively insensitive to mechanical disruption. A simple empirical model was derived to link clay dispersion to SOC, water content and energy of disruption. The proportion of WSA declined sharply with decreasing SOC, and to a lesser extent following tillage. The quantity of WSA following simulated intensive tillage (300 J kg−1) of grassland (SOC, 2.8–3.2 g (100 g)−1) was greater than that present, prior to tillage from fallow, arable and arable/ley rotation treatments (SOC 1.1–2.5 g (100 g)−1). Aggregate tensile strength was found to be relatively insensitive to differences in SOC. However, variations of strength within treatments, an indicator of soil friability, increased in proportion with SOC. A turbidity index was derived in which the turbidity of natural and remoulded aggregates was compared. Variation of this index with increasing mechanical energy is used as an indicator of the sensitivity of soils to damage during tillage. A visual representation is constructed to link the sensitivity of soils to damage during tillage with both SOC and water potential. These experiments illustrate that management practices, which lead to a long term reduction in SOC, are responsible for an increase in aggregate strength and reduction in stability plus an increase in sensitivity of soils to structural decline following subsequent tillage. 相似文献
19.
Andisols are very important land resources supporting high human population density. Maize ( Zea mays L.) production on Andisols located in the Purhepecha Region of central Mexico is representative of the highlands conditions of Mexico and Latin America. Farmers struggle with low crop yield and low soil nutrient availability. A 2-year field study was conducted to evaluate the effects of green manures either tilled into the soil (CT) or cut and left on the surface as a mulch (ZT), on maize yield and soil quality. Green manure treatments were: vetch ( Vicia sativa L.), oat ( Avena sativa L.) and none. No extra N was added to maize. Green manure and tillage had a significant effect on maize grain yield, N uptake and P uptake with CT vetch performing better than ZT oat. Soil organic C and total N were significantly higher under ZT than under CT management. Soils with vetch had higher P concentration. Soil under ZT oat had the highest infiltration rate and penetration resistance compared with other treatments. There appears to be a trade off between soil productivity and intrinsic soil physical properties among soil treatments. 相似文献
20.
Under semiarid Mediterranean climatic conditions, soils typically have low organic matter content and weak structure resulting in low infiltration rates. Aggregate stability is a quality indicator directly related to soil organic matter, which can be redistributed within soil by tillage. Long-term effects (1983–1996) of tillage systems on water stability of pre-wetted and air dried aggregates, soil organic carbon (SOC) stratification and crop production were studied in a Vertic Luvisol with a loam texture. Tillage treatments included conventional tillage (CT), minimum tillage (MT) and zero tillage (ZT) under winter wheat ( Triticum aestivum L.) and vetch ( Vicia sativa L.) rotation (W–V), and under continuous monoculture of winter wheat or winter barley ( Hordeum vulgare L.) (CM). Aggregate stability of soil at a depth of 0–5 cm was much greater when 1–2 mm aggregates were vacuum wetted prior to sieving (83%) than when slaked (6%). However, slaking resulted in tillage effects that were consistent with changes in SOC. Aggregate stability of slaked aggregates was greater under ZT than under CT or MT in both crop rotations (i.e., 11% vs. 3%, respectively). SOC under ZT tended to accumulate in the surface soil layer (0–5 and 5–10 cm) at the expense of deeper ones. At depths of 10–20 and 20–30 cm no differences in SOC were encountered among tillage systems, but CT exhibited the highest concentration at 30–40 cm depth. Nevertheless, when comparisons were made on mass basis (Mg ha−1), significant differences in stocked SOC were observed at depths of 0–10 and 0–20 cm, where ZT had the highest SOC content in both rotations. The stock of SOC to a depth of 40 cm, averaged across crop rotations, was greater under ZT (43 Mg ha−1) than under CT (41 Mg ha−1) and MT (40 Mg ha−1) although these figures were not significantly different. Likewise, no significant differences were encountered in the stock of SOC to a depth of 40 cm among crop rotations (i.e., 42 Mg ha−1 for W–V vs. 40 Mg ha−1 for CM). Crop production with wheat–vetch and continuous cereal showed no differences among tillage systems. Yields were strongly limited by the environmental conditions, particularly the amount of rainfall received in the crop growth season and its distribution. Similar yield and improved soil properties under ZT suggests that it is a more sustainable system for the semiarid Mediterranean region of Spain. 相似文献
|