首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
红壤团聚体特征与坡面侵蚀定量关系   总被引:9,自引:4,他引:5  
为明确红壤结构特征对坡面侵蚀过程的影响,选取6种典型红壤为研究对象,通过团聚体稳定性分析和野外原位人工模拟降雨试验,就红壤团聚体稳定性特征与坡面侵蚀过程定量关系进行了初步探讨。结果表明:在野外尺度上,红壤团聚体稳定性是影响坡面侵蚀的重要因素;能定量描述土壤可蚀性的团聚体特征参数Ka,与径流强度、产沙强度等侵蚀参数显著相关;将Ka代入WEPP模型,建立了细沟间侵蚀预测方程,方程可决系数较高(R2=0.86),显示了较好的预测性能。该研究扩展了团聚体稳定性作为土壤可蚀性指标的适用范围,为红壤侵蚀机理研究提供了新思路。  相似文献   

2.
3.
The influence of soil structure on the degree of seed-soil contact within a seedbed is poorly understood. This paper presents a simple analogue of seed-soil contact which allows the examination of the influence of macroporosity and relative aggregate size on the degree of contact within a bed of deformable spheres. A method is described in which a rigid disc or sphere representing a seed is placed within a bed of deformable spheres of uniform size representing soil aggregates. The structure is then compressed uniaxially to a given macroporosity. Contact areas were measured by a technique involving the use of paint, dismantling of the sample, and image analysis. Results show that degree of contact increases as macroporosity decreases. Greatest levels of contact are achieved where rigid and deformable spheres are of similar size. This result appears to be a consequence of maximum stress concentration occurring at this size ratio. Contact points were unevenly distributed over the surface of the rigid sphere. The applicability of these findings is considered.  相似文献   

4.
前期含水量对机械压实后黑土团聚体特征的影响   总被引:3,自引:0,他引:3  
以东北典型黑土区耕地土壤为研究对象,通过对不同前期含水量下机械碾压处理后土壤干筛团聚体和水稳性团聚体粒级分布、破坏率(PAD0.25)、分形维数(D)、平均重量直径(MWD)、平均重量比表面积(MWSSA)等特征指标的测定和分析,对比研究了干湿处理条件下模拟机械作业过程中土壤团聚体特征的变化。结果表明:黑土耕作区0~30 cm范围内团聚体组成上干筛团聚体以>2 mm粒级的团聚体比例最高,而水稳性团聚体则随着粒级的减小,比例逐渐增加。不同前期土壤含水量能够对机械压实黑土的团聚体组成分布、分形等特征产生影响,低含水量时,机械碾压在一定程度上能够促进土壤团聚体的团聚,但同等负荷下多次积累压实会削弱土壤的水稳定性和机械稳定性;而在高含水量时,机械碾压相对更易对黑土团聚体产生负效应,加剧破坏、抑制团聚,降低其水稳定性和机械稳定性。同时发现,MWSSA与其他常用团聚体特征值PA0.25、MWD、D、PAD0.25的线性关系达到了极显著水平,说明MWSSA同样可以作为分析和研究土壤团聚体特征的有效指标。研究结果可为科学指导大机械作业提供理论依据。  相似文献   

5.
前期土壤含水率对红壤团聚体稳定性及溅蚀的影响   总被引:7,自引:6,他引:7  
为了探究前期含水率对南方红壤团聚体稳定性及溅蚀的影响,选取泥质页岩和第四纪红黏土发育的4个典型红壤为研究对象,就5个前期含水率(3%、5%、10%、15%、20%)条件下3~5 mm团聚体水稳定性特征及其与溅蚀的关系进行了初步的探讨。结果表明,消散作用是团聚体破碎最有效的机制,土壤前期含水率越大,团聚体破碎程度越小。随着前期含水率的升高,泥质页岩发育的2种红壤水稳性团聚体平均质量直径(MWDwa)显著增大;第四纪红黏土发育的2种红壤水稳性团聚体平均质量直径(MWDwa)先增大后减小,拐点出现在含水率为15%条件下。泥质页岩发育2种红壤溅蚀量随前期含水率的升高显著减小;第四纪红黏土发育2种红壤溅蚀量随前期含水率的升高呈现先减小后增大的趋势,在含水率为15%时达到最小。团聚体水稳性较高的土样,溅蚀粒径分布呈双峰曲线分布,主要分布1~0.5和0.05 mm范围内,且前期含水率越高,0.05 mm溅蚀颗粒含量越大;而团聚体水稳定性较差的土样,除前期含水率为20%外,溅蚀粒径分布呈单峰曲线分布,主要分布在0.25~1mm。该结果为红壤区农业水土工程及机侵蚀机理研究提供一定的参考,对完善坡面水蚀模型具有一定的参考价值。  相似文献   

6.
团聚体大小分布对孔隙结构和土壤有机碳矿化的影响   总被引:1,自引:0,他引:1  
土壤团聚体在外部和内部因素影响下发生团聚和破碎过程,形成不同大小分布的团聚体。团聚体大小分布的变化会改变土壤孔隙结构,影响各种土壤物理、化学和生物学过程,进而影响土壤有机碳(SOC)的周转。选择三种长期施用不同量有机肥的红壤(不施肥,CK;施低量有机肥,LM;施高量有机肥,HM),过不同大小孔径筛(5 mm,S5;2 mm,S2;0.5 mm,S0.5)改变团聚体的大小分布,然后填装土柱(直径2.9 cm、高度4 cm),填装容重为1.3 g·cm-3。利用X射线显微CT(Computed Tomography)成像技术分析土壤的孔隙结构,采用室内培养法测定土壤有机碳矿化量。结果表明,团聚体大小对孔隙结构有极显著的影响。相较于S5和S2处理,S0.5处理土壤的大孔隙度(>16μm)降低了83.0%~93.9%,孔隙连通性降低了95%以上。而S5和S2处理的大孔隙度和孔隙连通性只在HM土...  相似文献   

7.
基于土壤粒度和大风日数的风蚀风险预报   总被引:3,自引:3,他引:3  
为寻求一种较为简便、广泛适用的土壤潜在风蚀风险评价方法体系,选取内蒙古中西部的吉兰太戈壁、乌兰布和半固定沙地、毛乌素沙地、武川农田和希拉穆仁草原5种典型风蚀试验区,基于数字图像技术,获取地表不可蚀颗粒含量,结合地区大风日数资料,建立土壤潜在风蚀风险指数方程,并进行实地验证。结果表明:吉兰太戈壁、灌丛地表已经处于粗化过程后期,抗风蚀能力较强,平均抗风蚀指数分别为91.40%和81.40%。由于灌丛群落的存在,乌兰布和沙漠半固定沙地土壤颗粒空间分布差异明显,导致土壤抗风蚀能力呈现不同程度的差异。毛乌素沙地风成沙物质颗粒较细,抗风蚀指数仅为13.40%,极易起沙。应用土壤潜在风蚀风险方程实地表征所得结果与实际情况吻合,与人类活动关系最为密切的农田、草原土壤潜在风蚀风险最高。研究结果可实现科学、有效地预测地表潜在风蚀风险,为干旱、半干旱地区风蚀荒漠化监测提供理论依据和技术支撑。  相似文献   

8.
Soil interparticle forces can pose important effects on soil aggregate stability and rainfall splash erosion. Meanwhile, these interparticle forces are strongly influenced by specific ion effects. In this study, we applied three monovalent cations (Li+, Na+, and K+) with various concentrations to investigate the influence of specific ion effects on aggregate stability and splash erosion via pipette and rainfall simulation methods. The specific ion effects on soil interparticle forces were quantitatively evaluated by introducing cationic non-classical polarization. The results showed that aggregate stability and splash erosion had strong ion specificity. Aggregate breaking strength and splash erosion rate at the same salt concentration followed the sequence as Li+ > Na+ > K+. With decreasing salt concentration, the difference in aggregate breaking strength or splash erosion rate between different cation systems increased initially (1–10–2 mol L–1) and later was nearly invariable (10–2–10–4 mol L–1). The experimental results were well quantitatively explained by soil interparticle forces considering cationic non-classical polarization. Furthermore, both aggregate breaking strength and splash erosion rate of three cations revealed a strong positive linear relation with net force subjected to cationic non-classical polarization (R2 = 0.81, R2 = 0.81). These results demonstrated that different non-classical polarization of cations resulted in different soil interparticle forces, and thus led to differences in aggregate stability and splash erosion. Our study provides valuable information to deeply understand the mechanisms of rainfall splash erosion.  相似文献   

9.
土粒表面电场对土壤团聚体破碎及溅蚀的影响   总被引:1,自引:1,他引:0  
团聚体是土壤结构的基本单元,其稳定性是评估土壤抗侵蚀能力的重要指标。土壤团聚体破碎是降雨溅蚀发生的关键一步。土粒表面电场对团聚体稳定性具有重要影响,必然也会深刻影响降雨溅蚀过程。该文以黄土母质发育的黄绵土和塿土为研究对象,采用不同浓度的电解质溶液定量调控土粒表面电场,研究不同电场强度对团聚体破碎及溅蚀的影响。结果发现:1)随电解质浓度的降低,土粒表面电位升高,表面电场增大,黄绵土和塿土团聚体平均重量直径减小,团聚体稳定性降低,降雨溅蚀量增大。2)电解质浓度小于10-2mol/L,黄绵土和塿土表面电位绝对值分别高于202.0和231.6 mV,此时团聚体稳定性和溅蚀量变化不明显,表明表面电位202.0和231.6 mV分别是影响黄绵土和塿土团聚体稳定性及溅蚀的关键电位。3)随着土粒表面电场的减弱,团聚体破碎后释放的<0.15 mm微团聚体含量减小,>0.25 mm大团聚体含量增加,团聚体倾向于破碎为更大粒级的团聚体。4)电场作用下团聚体的破碎特征对降雨溅蚀具有重要的影响,溅蚀量与团聚体破碎释放的<0.15 mm微团聚体含量呈显著正相关,与>0.25 mm大团聚体含...  相似文献   

10.
初始含水率对土壤垂直线源入渗特征的影响   总被引:12,自引:6,他引:6  
为解决现有渗灌系统在深根系植物应用中存在的问题,该文设计了一种垂直线源灌水器,并通过室内土箱试验研究了不同初始含水率条件下砂黄土和塿土的垂直线源入渗特征。结果表明:Philip入渗公式的形式能够较好地描述2种土壤的三维入渗过程;入渗时间一定时,砂黄土和塿土的累积入渗量均与初始含水率之间呈二次函数递减关系;2种土壤入渗的最大径向距离、最大垂向距离、宽深比均与初始含水率之间呈二次函数抛物线关系;2种土壤相比,偏砂性的砂黄土累积入渗量在低初始含水率下较塿土大,但随着初始含水率的增加其减小速度较塿土快,偏黏重的塿土入渗临界初始含水率较砂黄土大,但其入渗范围较砂黄土小。这些结果可为不同土壤条件下的垂直线源灌水技术发展提供参考。  相似文献   

11.
保水剂对土壤水分垂直入渗特征的影响   总被引:17,自引:7,他引:17  
为了探明保水剂对土壤水分入渗性能及变化过程的影响,该文通过室内积水入渗试验,比较分析了保水剂作用下土壤水分的入渗率、累积入渗量及湿润锋等的动态变化。结果表明:保水剂对入渗率的影响具有稳定性和一致性。上层混施(0~10 cm)和层施(5 cm)保水剂会限制土壤水分向下运移,30 min后累积入渗量分别比对照显著减少了17.3%~36.6%和5.5%~46.6%;而且随着保水剂用量增加,抑制效应增大。相比较而言,这种减缓入渗的程度在保水剂层施,且用量为0.1%时更为明显。下层(10~20 cm)混施和层施(10 cm和15 cm)保水剂对土壤水分入渗的抑制是有限的,约比对照降低了4.9%~11.9%;但当保水剂层施量为0.1%时,土壤水分入渗反而会随着入渗进程而增加,累积入渗量可达到对照的1.1倍。层施保水剂后,保水剂层及保水剂下层土壤含水率会普遍增加1.1~1.9倍。  相似文献   

12.
Surface irrigation is the oldest and the most widely used method of irrigation. One disadvantage of surface irrigation is soil erosion. New technology employing water-soluble polymers may provide a technique that is effective and affordable to control soil erosion. Water-soluble anionic organic compound known as polyacrylamide polymer (PAM) is the most successful polymer in controlling soil erosion. This study investigated the effect of spraying PAM on the soil surface to control soil erosion and to increase soil infiltration on a Jordanian clay loam soil. Different PAM concentrations, namely 5, 10, and 20 mg/l in addition to the control (0 mg/l) were used in this study. The highest effect of PAM on the measured properties was attained at 20 mg/l. We noticed that PAM's efficiency was decreased with subsequent irrigations. The reduction in soil erosion was 72 and 47.6%, the reduction in runoff water turbidity was 83 and 35%, the increase in water advance time was 6 and 0.9% and the increase in soil infiltration was 36 and 20.8% for the first and fourth irrigation, respectively. PAM's efficiency in flocculating soil particles was studied in the lab where we noticed that its efficiency in sedimentation was increased as its concentration increased.  相似文献   

13.

Purpose

Soil aggregate mechanical characteristics can significantly affect soil strength and are important soil properties to predict soil erodibility. However, in most research, the aggregate mechanical strength is always measured under air-dried condition, and limited information is available about the mechanical strength of aggregates and soil blocks with different water contents. This study evaluated the effects of water content, bulk density, and aggregate size on mechanical properties of soil blocks and aggregates.

Materials and methods

Shear strength (τ) parameters (φ and c) of soil blocks in different states (undisturbed and remoulded) and tensile strength (TS) of aggregates were determined in the laboratory on two soils derived from Quaternary red clay (Q) and shale (S) with variations in water content, bulk density, and aggregate size.

Results and discussion

The results indicated that the φ values were higher in drier and denser soil and showed no obvious variation with varying aggregate size. The c values increased first and then decreased with increasing water content and decreasing aggregate size and increased with increasing bulk density. The water content corresponding to the rapid decrease of the c value appeared to be related to soil properties. Tensile strength increased with decreasing water content in all sizes of aggregates. It decreased with increasing aggregate size at a relative low water content (3.2–7.3 %), but increased with increasing aggregate size at a relative high water content (10.6–14.8 %). The effect of soil moisture on soil strength varied with soil states. Thus, water content, bulk density, and aggregate size have significant effects on the mechanical properties of the soil blocks and aggregates.

Conclusions

The result from this research may contribute to a better understanding of the soil erosion resistance of Aquults from the perspective of soil mechanics.
  相似文献   

14.
Considerable attention has been paid recently to the influence of surface rock fragments on hydrological and erosional processes, although much of this research has been done on disturbed soils under laboratory conditions. I have studied the effects of rock fragments on soil infiltration, runoff and erosion under field conditions using simulated rainfall on bare areas of natural soils within typical Mediterranean scrubland characterized by patchily distributed vegetation. Sample areas were chosen where rock fragments cover more than half the surface within unvegetated patches. Twenty experiments were carried out by applying rain at an intensity of 55 mm h?1 for 60 minutes. This approach shows that rock fragments (i) retard ponding and surface runoff, and (ii) give greater steady‐state infiltration rates and smaller interrill runoff discharges, sediment concentrations and interrill erosion rates. A second set of six experiments was carried out by applying rainfall at an intensity of 55 mm h?1 for two runs of 60 minutes. The second run was initiated 10 minutes after the first. During this interval, surface rock fragments were removed in order to measure their effects on infiltration, interrill runoff and erosion rates. In this way, I showed that water and soil losses are reduced by the rock fragments. After the removal of rock fragments the steady‐state infiltration rate diminished from 44.5 to 27.5 mm h?1 and the runoff coefficient, sediment concentration and erosion rates were, respectively, 3, 33 and 39 times greater than they were before the rock fragments were removed.  相似文献   

15.
Nitrous oxide (N2O) is a potent greenhouse gas, which is mainly produced from agricultural soils. Ammonia oxidation is the rate‐determining step in N2O production, and the process is carried out by ammonia oxidizers, bacteria and archaea. Soil aggregate size has been shown to alter soil properties, which affect N2O emissions and bacterial communities. However, the effect of aggregate size on temporal and total N2O emissions and ammonia‐oxidizing bacteria (AOB) and archaea (AOA) is not fully understood. This incubation study investigated the effect of three different soil aggregate sizes on N2O emissions and ammonia oxidizer abundance under high urine‐N concentrations and the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), at reducing N2O emissions in different aggregate soils. It was found that temporal patterns of N2O emissions were affected by aggregate size with higher peak emissions in the large and medium aggregates. However, the total emissions were the same due to a ‘switch’ in emissions at day 66, after which smaller aggregates produced higher N2O emissions. It is suggested that the switch was caused by an increase in aggregate disruption in the small aggregates, following the urine application, due to their higher surface area to volume ratio. AOB and AOA abundances were not significantly affected by aggregate size. DCD was effective in reducing N2O emissions in all aggregate sizes by an average of 79%. These results suggest that similar ammonia oxidizer abundance is found in soils of different aggregate sizes, and the efficacy of DCD in reducing N2O emissions was not affected by aggregate size of the soil.  相似文献   

16.
《Soil biology & biochemistry》2001,33(7-8):965-971
Laboratory experiments were conducted to find out under which conditions the soil from Italian rice fields could change from a source into a sink of atmospheric CH4. Moist (30% H2O=68% of the maximum water holding capacity (whc)) rice field soil oxidized CH4 with biphasic kinetics, exhibiting both a low (145 ppmv CH4) and a high (20,200 ppmv CH4) Km value and Vmax values of 16.8 and 839 nmol gdw−1 h−1, respectively. The activity with the low Km allowed the oxidation of atmospheric CH4. Uptake rates of high CH4 concentrations (16.5% v/v) and of O2 linearly decreased with aggregate size of soil between 2 and 10 mm. Atmospheric CH4 (1.8 ppmv) was consumed in soil aggregates <6 mm, but soil aggregates >6 mm released CH4 into the atmosphere. Similarly, net uptake of atmospheric CH4 turned into net release of CH4 when the soil moisture was decreased below a water content of about 20% whc. The uptake rate of atmospheric CH4 increased threefold when the soil was amended with sterile quartz sand. Flooded microcosms with non-amended and quartz-amended soil emitted CH4 into the atmosphere. The CH4 emission rate increased when the flux was measured under an atmosphere of N2 instead of air, indicating that 30–99% of the produced CH4 was oxidized in the oxic soil surface layer. Removal of the flood water resulted in increase of CH4 emission rates until a water content of about 75–82% whc was reached, and subsequently in a rapid decrease. However, the soil microcosms never showed net uptake of atmospheric CH4. Our results show that the microorganisms consuming atmospheric CH4 were inactivated at an earlier stage of drainage than the microorganisms producing CH4, irrespective of the soil porosity which was adjusted by addition of quartz sand. Hence, it is unlikely that the Italian rice fields can act as a net sink for atmospheric CH4 even when drained.  相似文献   

17.
田块尺度土壤入渗特性空间变异研究   总被引:1,自引:4,他引:1  
土壤入渗特性是田块尺度参数估值的重要基础。该文以陕西省杨凌区一级阶地砂壤土和三级阶地粘壤土所选典型田块的双环入渗试验为基础,分析了归一化因子在单一尺度和多尺度上的分形特征,并在此基础上建立了估算归一化因子的土壤转换函数。结果表明:对于修正Kostiakov公式所采用的归一化处理方法是可行的,可较好地预测典型田块各测点的土壤入渗过程;在单一尺度上,一级阶地和三级阶地所选典型田块的归一化因子最优半方差函数均为球状模型,其分形维数分别为1.796和1.840;在多尺度上,一级阶地典型田块归一化因子的空间变异受粉粒含量、砂粒含量和土壤容重的影响显著,三级阶地典型田块归一化因子的空间变异与黏粒含量、粉粒含量、砂粒含量和土壤初始含水率相关程度最高(显著性水平0.01);估算归一化因子的土壤转换函数具有较高的精度和可靠性,其一级阶地和三级阶地典型田块验证样本归一化因子的实测值与估算值相对误差绝对值均值分别为13.15%和9.95%。研究结果可较好地解决田块尺度内土壤入渗点面转换及入渗参数难以取得的问题。  相似文献   

18.
不同PAM施用方法对土壤入渗和侵蚀的影响   总被引:12,自引:3,他引:9  
施用土壤调理剂PAM可增加入渗率和减少土壤侵蚀,为了研究不同PAM形态与施用方法对施用PAM效果的影响,该文对3种形态的PAM(溶胶态、溶液与干粉状)以及干粉PAM与石膏混合的2种施用方法进行了试验。结果表明,3种不同形态PAM均能够显著增加土壤入渗、减少侵蚀量。与对照相比,喷洒溶胶和溶液PAM可分别提高土壤稳定入渗率1.0~2.5、1.7~2.8倍,直接施用干粉PAM可提高0.25~1.8倍。综合比较干粉PAM的两种施用方法,地表直接撒施干粉比与土壤混合效果略好一些,与石膏联合施用可明显提高干粉PAM增加入渗效果,并且增加幅度随着石膏混合量增加而增加。地表直接撒施干粉PAM,与对照相比减少土壤侵蚀量最大约80%,可达到施用溶胶态与溶液PAM减少侵蚀相同的效果。干粉PAM与表层土壤混合施用将降低PAM减少侵蚀的效果。增加石膏掺入量可以加强干粉PAM增加土壤入渗、减少径流的效果,但会降低减少土壤侵蚀的作用。综合比较3种形态PAM及干粉PAM施用方法对入渗与侵蚀的影响,直接使用干粉PAM不仅具有较好效果,且施用方法简单易行,适合在旱作农业区推广使用。  相似文献   

19.
草甘膦农药的大量喷施,使其在环境特别是土壤中的残留-累积风险日益突出,从团聚体粒径角度研究红壤不同粒径团聚体中草甘膦的降解动力学及其相互作用特征仍鲜有报道。基于此,本研究通过干筛筛分、室内控制培养、液质联用定量分析相结合等探究草甘膦降解残留,并进一步分析团聚体理化性质与草甘膦降解的关系。结果表明:1)不同粒径团聚体中,草甘膦残留量随降解时间不断减小,且粒径之间降解动力学差异不显著。降解半衰期为15.8~20.6 d,粒径最小的团聚体(0.25 mm)中草甘膦的降解半衰期最长,为20.6 d。草甘膦在土壤中的主要降解产物氨甲基磷酸(AMPA)的含量随着降解时间的增加而增加,且在第5d达到峰值,而后不断减小;不同粒径团聚体间AMPA含量差异显著(P0.05)。2)相关分析及主成分分析发现,草甘膦残留量与红壤团聚体中速效磷含量呈显著正相关(P0.05),而其降解产物AMPA含量与团聚体中酸性磷酸酶活性及N-乙酰氨基-β-葡萄糖苷酶活性呈显著正相关(P0.05)。团聚体粒径与草甘膦残留量间没有显著相关性,但与AMPA含量显著正相关(P0.05)。此外,草甘膦降解过程中,团聚体中有机质含量及β-葡萄糖苷酶、N-乙酰氨基-β-葡萄糖苷酶、酸性磷酸酶活性与团聚体粒径为显著负相关关系(P0.05)。由此表明:红壤不同粒径团聚体影响草甘膦降解速率,粒径最小的团聚体(0.25 mm)中草甘膦农药的降解速率最慢,但试验结束时,各粒径红壤团聚体中的草甘膦和AMPA含量均较高,可能会影响土壤健康及生态环境安全;此外,草甘膦降解与土壤磷素密切相关,后续研究需探讨磷亏缺或丰盈条件下,草甘膦农药的土壤环境特征,为后续农田草甘膦环境风险评估提供依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号