首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information on seed germination and emergence ecology of Aegilops tauschii is scant, despite it being a widespread invasive weed in China. We conducted this study to determine the effects of various factors on seed germination and seedling emergence in three A. tauschii populations. Seeds germinated across a wide range of temperatures (5–35°C), with germination of over 90% at 15–20°C. Germination was completely inhibited when dry seeds were exposed to a temperature of 160°C for 5 min; a similar response was observed for pre-soaked seeds at 100°C. Light was neither required for nor inhibited germination. Germination was not significantly affected by pH. Aegilops tauschii was relatively tolerant to low osmotic potential and high salt stress: over 80% of seeds germinated at −0.3 MPa, and all three populations germinated in the presence of 400 mM salt (NaCl) although salt tolerance varied among the populations. Seeds buried at depths of 1–3 cm emerged well, but emergence was completely inhibited at depths greater than 8 cm. The addition of maize straw caused a linear reduction in seedling emergence, although the rate of reduction varied among the populations. The results of this study have contributed to understanding the requirements of A. tauschii germination and emergence and optimising an integrated management system for this weed in Huang–Huai–Hai Plain of China. In addition, our study provides data for development of models to predict the geographical distribution of this weed.  相似文献   

2.
Urochloa panicoides is an annual weed of summer crops. In Argentina, in subhumid areas with monsoon rainfall, it germinates and establishes in a single flush. To (i) identify the environmental factors that modify its seed dormancy level and germination and (ii) quantify the parameters describing the thermal behaviour of the germination and emergence dynamics of this weed under non‐limiting water conditions, we established a set of germination experiments performed (i) under controlled conditions using seeds after ripened for 3 or 6 months in different thermal and hydric conditions and (ii) under field conditions, where the soil temperature was modified by applying different shading levels. Seed dormancy level remained high with 3 months after ripening in all treatments. After 6 months, seeds stored at 4°C in dry conditions did not germinate at any temperature, while seeds stored at 25°C in dry conditions and in situ germinated c. 20% and 60% respectively. Germination percentage was higher in seeds harvested before their natural dispersal. The base, optimum and maximum temperatures for seed germination were 6, 35 and 45°C respectively. Shading reduced the number of emerged seedlings, possibly by reducing the soil thermal amplitude. The results explained the dormancy‐breaking mechanism of U. panicoides that allows a high germination rate in the field when rainfall occurs.  相似文献   

3.
Seeds of Poa annua from original collections in Louisiana, Maryland and Wisconsin were grown together in Louisiana over a 3-year period. The freshly harvested seeds and samples stored in moist soil at 30°C were tested for germination at a range of temperatures to compare dormancy and germination characteristics. Seeds of the Louisiana population were dormant over the germination temperature range of 5–25°C, and imbibed storage for 2 weeks did not break dormancy. Freshly harvested seeds of the Maryland population germinated well (78%) at 10°C. With 1 week of imbibed storage at 30°C, germination was good over the range from 5 to 15°C and near 50% at 20°C. Storage for 2 weeks had little further effect. Freshly harvested seeds of two Wisconsin populations germinated above 50% throughout the range of temperatures, and imbibed storage for 2 weeks at 30°C had no effect on germination. The variations in the dormancy of freshly harvested seeds and the varying responses of dormancy breaking from storing imbibed seeds at 30°C suggests that these populations have adapted to avoid high summer temperatures in Louisiana and Maryland but to grow as a summer annual in Wisconsin.  相似文献   

4.
Emergence of Veronica hederifolia seedlings began in mid-October and continued into spring; few appeared from June to September. Ripe seeds shed in June were dormant but wben buried in soil outdoors developed a capacity for germination initially at low temperatures (constant4 C; daily alternations of 4-10° and 4-1 5 C) and later at somewhat higher temperatures, with peak germination in September-November. During winter, spring and early summer thc germination capacity declined, to increase again in late summer and early autumn. Cyclic physiological changes thus occur in seeds of V,hederifolia present in the soil, with which lhe consistent seasonal periodicity of seedling emergence is associated. In dry storage ihe capacity for germination progressively increased, but alter 12 months there was a sharp decline in germination at 4° C. Few seeds germinated at 20° C, but moistening with GA 4/7; brought about complete germination at this temperature.  相似文献   

5.
Galinsoga quadriradiata (hairy galinsoga) and Galinsoga parviflora (smallflower galinsoga, gallant soldier) are very troublesome weeds in many vegetable row crops in Europe. To optimise management strategies for Galinsoga spp. control, an in‐depth study of germination biology was performed. Germination experiments were conducted to evaluate the impact of light and alternating temperatures on germination of a large set of Galinsoga populations. Seedling emergence was investigated by burying seeds at different depths in a sandy and sandy loam soil. Dormancy of fresh seeds harvested in autumn was evaluated by studying germination response in light at 25/20°C with and without nitrate addition. Seed longevity was investigated in an accelerated ageing experiment by exposing seeds to 45°C and 100% relative humidity. Galinsoga spp. seeds required light for germination; light dependency varied among populations. Seedling emergence decreased drastically with increasing burial depth. Maximum depth of emergence varied between 4 and 10 mm depending on soil type and population. In a sandy soil, emergence percentages were higher and seedlings were able to emerge from greater depths than in a sandy loam soil. Freshly produced G. parviflora seeds, harvested in autumn, showed a varying but high degree of primary dormancy and were less persistent than G. quadriradiata seeds that lack primary dormancy. Lack of primary dormancy of freshly harvested G. quadriradiata seeds and light dependency for germination may be used to optimise and develop Galinsoga management strategies.  相似文献   

6.
Myagrum perfoliatum is a noxious broad‐leaved weed in western Iranian farming systems. A better understanding of the timing of seedling emergence would facilitate the development of better control strategies for this weed. Therefore, the objective of this study was to examine the effects of different factors on muskweed seed germination. Only 2.8% of the seeds of this species, which are encapsulated in siliques, germinated by, while the seeds that had been removed from the siliques had a 50% germination rate. The immersion of muskweed fruits in concentrated sulfuric acid for 110 min was the best treatment for promoting germination. Gibberellic acid stimulated the germination of the naked seeds by 29.1%, potassium nitrate (40 mmol L‐1) increased the germination rate to 71%, while higher concentrations of potassium nitrate inhibited germination. The optimum germination temperature for the naked seeds was 20/10°C (day/night) and light was not required for germination. No seedling emerged when the seeds were buried 6 cm deep. The seeds were sensitive to both osmotic and salinity stress, but they germinated to 46–49% over a pH range of 4–10. The results of this study revealed that the seeds of M . perfoliatum have physiological dormancy and that it is slowly broken via after‐ripening. However, the fruit wall can prevent germination after physiological dormancy is broken. Thus, this species has the potential to form a persistent seed bank because of the presence of the fruit wall.  相似文献   

7.
Spring-produced seeds of Lamium amplexicaule L. were buried in pots of soil in an unheated glasshouse in June 1978, and at 1–2-month intervals, for 27 months, they were exhumed and tested for germination in light and darkness at temperatures simulating those in the habitat from early spring to late autumn. Freshly-matured seeds were dormant, but by autumn 85% or more germinated in light at 15/6, 20/10, 25/15 and 30/15°C but only 7% or less in darkness. During late autumn and winter germination in light decreased at 25/15 and 30/15 °C but not at 15/6 and 20/10 °C, and germination in darkness increased at 15/6 and 20/10 °C. During late winter and early spring germination in light at 15/6 and 20/10 °C decreased, and seeds lost the ability to germinate in darkness. By the second autumn of burial, seeds germinated to near 100% in light at 15/6 to 30/15 °C and to 10–25% in darkness at 15/6 and 20/10 °C. The cycle of germination responses was repeated during the second winter and spring and the third summer of burial. Autumn-produced seeds were dormant when buried in November 1979, but by spring they germinated to 81 and 36% at 15/6 and 20/10 °C, respectively, in light. These seeds afterripened further during summer. The consequence of seasonal changes in germination responses is that (1) seeds can germinate in the habitat in late summer, autumn and spring but not in early- to mid-summer or in late autumn and winter and (2) during both germination seasons, seeds produced during the previous spring(s) and/or autumn(s) can germinate.  相似文献   

8.
Freshly harvested seeds of Poa annua L. collected in south Louisiana were stored in moist soil at seven temperatures between 5°C and 35°C. At monthly intervals, seed lots were removed and germinated at each of the seven temperatures. Seed were dormant for at least 1 month at all test temperatures. Seeds stored for 2 months at 30 and 35°C showed conditional dormancy; there was 100% germination at 10 or 15°C, and poorer germination at 5 or 20°C. Seeds started to lose viability after 2 months at 35°C and were dead after 7 months. In seeds stored at 10–30°C, there were increased percentages and a wider range of germination temperatures as storage time or storage temperatures increased. Seeds stored at 10°C remained dormant for 9 months, but by 12 months of storage the seeds germinated only at 5 or 10°C. Nearly all seeds stored at the same temperatures in air dry soil remained dormant for 6 months, regardless of storage temperature. These results differ from other reports of low temperatures breaking seed dormancy in Poa annua L. and suggest an adaptation to subtropical climates.  相似文献   

9.
Seed germination, seedling emergence, and the morphological characteristics of juvenile seedlings of Commelina benghalensis L. were observed. For aerial seeds collected in September and October, seedling emergence peaked in April and June for large seeds and from June to August for small seeds, whereas seedling emergence for large seeds collected in November showed peaks in March and April under natural rainfall conditions, and in April and June under irrigation conditions. Seedlings from small seeds emerged intermittently over a longer period from April to August under both conditions. Aerial seeds of C. benghalensis germinated on wet filter paper on the second day after seeding (DAS) for large seeds and the fourth DAS for small seeds. The germination percentage for large seeds was higher than that for small seeds by the 14th DAS. The germination percentage for large aerial seeds showed no significant difference between light and dark conditions. However, the percentage for small aerial seeds was higher under light than under dark conditions. Seedlings from large aerial seeds emerged on the third DAS at 0–50 mm soil depths. The percentage of emergence at 0 and 1 mm soil depths increased until the 30th DAS, whereas those at soil depths of 5–50 mm showed no change after the 9th DAS. There was no emergence at a soil depth of 100 mm. Seedlings from small aerial seeds emerged on the 6th DAS at 0–1 mm soil depths, with the percentage increasing until the 30th DAS. Although seedlings at 5 and 10 mm soil depths also emerged on the 6th DAS, there was no change in the percentage after the 12th DAS. There was no emergence at soil depths of 20–100 mm. The hypocotyl and taenia (part of the cotyledon connected to the seed) in juvenile seedlings that emerged from soil depths of 50 mm were longer than those in seedlings emerging from a soil depth of 1 mm.  相似文献   

10.
Creeping mannagrass is a perennial grass weed widely distributed in China and is becoming increasingly problematic in nurseries and landscapes in some regions. Understanding the germination ecology and response to commonly available POST herbicides of this weed is critical to determining its adaptive capabilities and potential for infestation, and assist in the development of effective control strategies. In the light/dark regime, creeping mannagrass germinated over a wide range of temperatures (15/5 to 30/20°C), with maximum germination at 20/10°C (95%). No seed germinated at 35/25 or 10/0°C. The time required for 50% of maximum germination increased as temperature decreased. Compared with the light/dark conditions, germination was slightly stimulated when seeds were placed in the dark. Creeping mannagrass is moderately tolerant to osmotic and salt stress, which had 53 and 50% germination rates at ?0.6 mPa osmotic potential and 200 mM NaCl concentration, respectively. Seedling emergence of the seeds buried at a depth of 0.5 cm (86%) was higher than those sowing on the soil surface (17%), but declined with burial depth increasing. There were no differences in the emergence rates from a burial depth 0.5–2 cm. Few seeds (4%) could emerge when seeds were sowed at a depth of 8 cm. POST application of haloxyfop‐R‐methyl, quizalofop‐p‐ethyl, sethoxydim, and pinoxaden provides 100% control of creeping mannagrass at the three‐leaf to five‐leaf stages. To achieve 80% control with clodinafop‐propargyl, mesosulfuron‐methyl, and fenoxaprop‐p‐ethyl, herbicides had to be applied at the three‐leaf stage.  相似文献   

11.
Soil steaming to reduce intrarow weed seedling emergence   总被引:4,自引:1,他引:3  
Steaming the soil prior to crop establishment can be a very effective method of preventing weed seedling emergence on raised beds of vegetable crops. However, current mobile steaming technology for outdoor vegetables is characterized by an extremely high energy consumption and a low work rate. This has led to the concept of band-steaming, where only a limited soil volume is steamed corresponding to the intrarow area of a row-grown vegetable crop. Weeds growing in the intrarow area are difficult to remove by traditional non-chemical means, usually involving substantial input of manual labour in organic cropping. This paper presents the initial results from laboratory studies with steaming a limited soil volume simulating a band. The investigations describe the relationship between maximum soil temperature achieved from soil steaming for different periods and effects seen on subsequent weed seedling emergence. The relationships obtained were generally sigmoid and could appropriately be described by a common dose–response function. Seedling emergence from natural weed species was reduced by 90% when the maximum soil temperature reached 61°C, and a further 10°C rise in temperature gave 99% reduction. Added and non-imbibed seeds of Lolium perenne and Brassica napus generally required higher temperatures to achieve the same control level as the natural weeds in the soil samples.  相似文献   

12.
Low temperatures may inhibit dormancy break in seeds of winter annuals, therefore it was hypothesized that seeds of Capsella bursa‐pastoris and Descurainia sophia that mature at high latitudes in late summer–early autumn would not germinate until they had been exposed to high summer temperatures. Consequently, germination would be delayed until the second autumn. Most freshly matured seeds of both species collected in August and September in southern Sweden were dormant. After 3 weeks of burial at simulated August (20/10°C) and September (15/6°C) temperatures, 28 and 27%, respectively, of the C. bursa‐pastoris and 56 and 59%, respectively, of the D. sophia seeds germinated in light at 15/6°C. In contrast, in germination phenology studies conducted in Sweden, only a few seeds of either species germinated during the first autumn following dispersal. However, there was a peak of germination of both species the following spring, demonstrating that dormancy was lost during exposure to the low habitat temperatures between late summer and early autumn and spring. Nearly 100% of the seeds of both species subjected to simulated annual seasonal temperature changes were viable after 30.5 months of burial. In the burial study, exhumed seeds of C. bursa‐pastoris were capable of germinating to 98–100% in light at the simulated spring–autumn temperature regime (15/6°C) in both spring and autumn, while those of D. sophia did so only in autumn. In early spring, however, seeds of D. sophia germinated to 17–50% at 15/6°C. Thus, most seeds of these two annual weeds that mature in late summer do not germinate in the first autumn, but they may do so the following spring or in some subsequent autumn or spring.  相似文献   

13.
The effect was studied of sunlight and far-red (FR) light during seed development, on seed quality and germination of Sicyos deppei G. Don. Seeds exposed to FR during development were lighter in colour and their weight, size and water content were significantly lower. Less than 10% of non-scarified freshly harvested seeds germinated. Scarified, freshly harvested seeds developed under sunlight had a partially negative photoblastic response; both red (R) and FR light inhibited germination. The highest and fastest germination occurred in darkness, probably due to the effect of the high photon flux densities on the phytochrome during seed development. Scarified seeds ripened under FR light, germinated well in FR light and in darkness, but R light inhibited germination. After 6 months of storage, the permeability of S. deppei seeds increased, the partially negative photoblastic response was lost and germination of scarified seeds increased. Specifically, in seeds developed under FR, germination in darkness was faster than for the other light treatments, but slow in darkness for seeds developed under sunlight. The physiological and morphological heteroblastic responses in S. deppei probably extend its seed germination and seedling recruitment periods.  相似文献   

14.
Common ragweed (Ambrosia artemisiifolia L.) is one of the annual plants that were described recently as invasive weeds in Europe. This species is described as an invasive plant that produces seeds that are highly variable. Its production of variably sized seeds is regarded as promoting its spread in different environments. Experiments were carried out to determine the influence of the seed weight and temperature on germination and the influence of the seed weight and burial depth on seedling emergence. The seeds were divided into a number of classes of weight and the seed weight effect on germination was evaluated by Petri dish assays. In another experiment, the seeds were buried at different depths in a clay soil/sand mix to estimate the burial effect on germination and seedling emergence. The germination level of A. artemisiifolia was high overall, between 76.8% and 94.2%. The seed germination was modified by temperature but it was not influenced by the seed weight. The amounts of germination and seedling emergence were greater for the seeds on the soil surface and decreased with an increasing burial depth, from 2 to 8 cm. No germination or emergence was observed for the seeds that were buried at 10 and 12 cm. The lightest seeds were more sensitive to burial. A greater level of seedling emergence for those seeds that were placed near the soil surface could explain the success of this species in open habitats, where the probability of deeper burial is low. After high seed production, the management of A. artemisiifolia in fields could be partly achieved through soil tillage, burying seeds below 10 cm, and not carrying out deep soil tillage the following year.  相似文献   

15.
Germination, emergence and seedling growth of Hypericum perforatum L.   总被引:2,自引:0,他引:2  
Germination of new seeds (1–6 months old) of Hypericum perforation L. was restricted by high temperatures (16h/8h, 20/30°C), darkness and a chemical inhibitor in exudate from the capsule, whereas germination of old seeds (9 years) was only restricted by the inhibitor. The effect of the chemical inhibitor and high temperatures was overcome, respectively, by washing seeds in water and by reducing temperatures to constant 15°C. Calcium in solution from CaCO3 and from three different soils did not prevent the germination of new or old seeds or of seeds collected from five different locations. There were differences in the germination characteristics and dormancy mechanisms of seeds collected from different localities, Restriction of the emergence of seedlings by a covering of > 2 mm of soil appeared to be due to lack of seedling vigour rather than to lack of light. Seedling growth was much slower than in other pasture species. Thus the requirements for germination of H. perforatum of low temperature and moisture to wash away the chemical inhibitor favour its establishment but the slow growth of its seedling restricts its emergence and renders it extremely susceptible to competition from other plants.  相似文献   

16.
Mimosa pudica (common sensitive plant) is a problematic weed in many crops in tropical countries. Eight experiments were conducted to determine the effects of light, seed scarification, temperature, salt and osmotic stress, pH, burial depth, and rice residue on the germination, seedling emergence, and dormancy of M. pudica seeds. Scarification released the seeds from dormancy and stimulated germination, though the germination of the scarified seeds was not influenced by light. The scarification results indicate that a hard seed coat is the primary mechanism that restricts germination. The germination increased markedly with the exposure to high temperature "pretreatment" (e.g. 150°C), which was achieved by placing non-scarified seeds in an oven for 5 min followed by incubation at 35/25°C day/night temperatures for 14 days. The germination of the scarified seeds was tolerant of salt and osmotic stress, as some seeds germinated even at 250 mmol L−1 NaCl (23%) and at an osmotic potential of −0.8 MPa (5%). The germination of the scarified seeds was >74% over a pH range of 5–10. The seedling emergence of the scarified seeds was 73–88% at depths of 0–2 cm and it gradually decreased with an increasing depth, with no seedling emergence at the 8 cm depth. The rice residue applied to the soil surface at rates of ≤6 t ha−1 did not influence the seedling emergence and dry weight. The information gained from this study identifies some of the factors that facilitate M. pudica becoming a widespread weed in the humid tropics and might help in developing components of integrated weed management practises to control this weed.  相似文献   

17.
Iresine diffusa has become more abundant under no‐till soyabean in Argentina. The influence of temperature, light, cold‐wet storage, osmotic potential, dry storage and depth of seed burial on germination and emergence of I. diffusa was examined in a growth chamber experiment. Iresine diffusa seeds germinated at the highest proportion (>0.80) in all fluctuating day/night temperatures tested. Conversely, under a constant temperature regime, maximum germination rates occurred at 15 (0.78) and 20°C (0.82), and minimum germination rates occurred at 10 (0.19) and 30°C (0.36). Seed germination was not influenced by light exposure. However, germination decreased after 12 (0.76) and 16 (0.65) weeks in cold‐wet storage. To reduce germination significantly, ?0.4 MPa of osmotic potential (induced by PEG‐6000) or 120 mmol L?1 of salt (NaCl) concentration was required. Seeds of I. diffusa showed high viability (0.85) after 720 days of dry storage. Low emergence was recorded for seeds buried at 2 cm, and seedling emergence was completely inhibited when seeds were buried at 5 and 10 cm. Iresine diffusa seeds had high viability and were capable of emerging in a broad range of environmental conditions. The thermal germination conditions, shallow soil depths and high moisture conditions in germination phase for I. diffusa are congruent with the conditions in Argentina no‐tillage soyabean. Thus, no‐tillage could provide better conditions for germination than conventional tillage systems. However, due to the fact that I. diffusa can reproduce by rhizomes, further research should be conducted to understand the relative importance of the vegetative reproductive strategy in relation to the presence and persistence of this weed in fields.  相似文献   

18.
Controlled growth chamber experiments were conducted to determine factors affecting seed germination and emergence of the troublesome weed Gomphrena perennis. The objective of this research was to examine the effects of temperature, light, moist chilling, osmotic potential, dry storage and depth of seed burial on G. perennis germination and emergence. The optimum temperature for germination was around 15–20°C. Seeds showed germination rates above 90% under 20/10 and 25/15°C temperature regimes. The minimum exposure to light needed to stimulate germination was 1 min. However, the light requirement was reduced after a long storage period. Furthermore, germination was high (>90%) in all moist‐chilling treatments tested. Germination was highly sensitive to increasing osmotic stress. The highest germination percentage (94%) was achieved at 0 MPa, and decreasing osmotic potential from 0 to ?0.3 MPa reduced germination to 11%. The highest seedling emergence occurred for seeds placed from 0 to 1 cm deep, and no seedlings emerged from a 5‐cm burial depth. Gomphrena perennis has a suitable environment in a no‐till soybean field, where seeds remaining on the surface have the required temperature, light and depth needed for germination.  相似文献   

19.
Seed dormancy and persistence in the soil seedbank play a key role in timing of germination and seedling emergence of weeds; thus, knowledge of these traits is required for effective weed management. We investigated seed dormancy and seed persistence on/in soil of Chenopodium hybridum, an annual invasive weed in north‐western China. Fresh seeds are physiologically dormant. Sulphuric acid scarification, mechanical scarification and cold stratification significantly increased germination percentages, whereas dry storage and treatments with plant growth regulators or nitrate had no effect. Dormancy was alleviated by piercing the seed coat but not the pericarp. Pre‐treatment of seeds collected in 2012 and 2013 with sulphuric acid for 30 min increased germination from 0% to 66% and 62% respectively. Effect of cold stratification on seed germination varied with soil moisture content (MC) and duration of treatment; seeds stratified in soil with 12% MC for 2 months germinated to 39%. Burial duration, burial depth and their interaction had significant effects on seed dormancy and seed viability. Dormancy in fresh seeds was released from October to February, and seeds re‐entered dormancy in April. Seed viability decreased with time for seeds on the soil surface and for those buried at a depth of 5 cm, and 39% and 10%, respectively, were viable after 22 months. Thus, C. hybridum can form at least a short‐lived persistent soil seedbank.  相似文献   

20.
Several laboratory and glasshouse experiments were conducted to assess seed germination, seedling establishment and growth patterns of wrinklegrass (Ischaemum rugosum Salisb.) influenced by temperature and light regimes, and chemical media. Wrinklegrass was a positively photoblastic species, and seed germination was temperature‐dependent and light‐mediated. Seeds soaked in distilled water for 24 h, or oven‐dried at the respective temperature regimes of 15, 20, 25, 30, 35, or 40°C prior to treatment in distilled water and incubated in darkness, failed to germinate. Likewise, no germination prevailed when the seeds were exposed to similar temperature regimes and treated with 0.2 m KNO3, 5% H2O2 or 0.01 m HNO3, and incubated under continuous darkness. Seeds treated with 5% H2O2 at 30°C, or oven‐dried and treated with 0.01% M HNO3 at 35°C registered 10 and 20% germination. Approximately 75 and 90% of the light‐exposed seeds for all treatments germinated in the first three and six days at 25°C. No germination occurred at 15°C in the first three days after treatment. Seeds subjected to 40°C for six days after treatment recorded 36% germination. The optimum temperatures for seed germination were 25–30°C. Seed drying and soaking treatments widened the windows of the optimal temperatures for wrinklegrass germination. The acidic media of KNO3, H2O2 or HNO3 favored seed germination. Less than 5% of seed germination occurred with burial or water inundation at depths exceeding 2 cm. Seed burial or inundation at ≥2 cm depths inhibited seed germination. Seeds sown onto moist paddy soils registered ca. 50% germination. Free‐floating seeds on the water surface registered ca. 98% germination within the first six days after seeding. The mean number of seedlings that survived was inversely proportional to water depths, with close to 100% mortality at the 14 cm depths of inundation. Both plant height and seedling survival were linearly proportional to the amount of root mass of seedlings which penetrated the soil. The weed was a prolific seed producer (ca. 6000 seeds/genet or 18 000 seeds/genet per year). The vegetative and reproductive efforts of each wrinklegrass plant registered values of 0.68 and 0.32, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号