首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The objective was to investigate whether it is possible to improve the quality of stallion semen, with respect to sperm morphology and chromatin integrity, both of which have been linked to fertility, using either density gradient centrifugation (DGC) or a new method, hereby named single layer centrifugation (SLC). The two methods of colloidal centrifugation were evaluated using 38 ejaculates from 10 stallions. Sperm morphology, subjective motility and sperm chromatin integrity were compared in uncentrifuged samples and in centrifuged sperm preparations. The proportion of morphologically normal spermatozoa varied between stallions (p < 0.001) and was increased by both methods of colloidal centrifugation (median value before centrifugation 67.5%; after SLC 78%; after DGC 77%; p < 0.001). The incidence of certain abnormalities was reduced, e.g. proximal cytoplasmic droplets were reduced from 12.9% to 8.8% (p < 0.001), and mid-piece defects from 5.3% to 1.4% (p < 0.05). Similarly, sperm motility and chromatin integrity were significantly improved (p < 0.001), with no difference between the two centrifugation methods. Centrifugation through colloids can enrich the proportions of stallion spermatozoa with normal morphology and normal chromatin structure in sperm preparations. The new method, SLC, was as effective as DGC in selecting motile stallion spermatozoa with normal morphology and intact chromatin. SLC, being simpler to use than DGC, would be appropriate for routine use by stud personnel to improve stallion sperm quality in insemination doses.  相似文献   

2.
Although several selection techniques are available for processing spermatozoa, only colloid centrifugation has been used to any extent in this field, starting with density gradient centrifugation and progressing more recently to single-layer centrifugation (SLC). SLC through a species-specific colloid has been shown to be effective in selecting spermatozoa with good motility and normal morphology from stallion semen. The method is easier to use and less time-consuming than density gradient centrifugation, and has been scaled-up to allow whole ejaculates to be processed in a practical manner. The potential applications of SLC in equine breeding are as follows: to improve sperm quality in artificial insemination doses for “problem” ejaculates, to increase the shelf life of normal sperm doses, to remove pathogens (viruses, bacteria), to improve cryosurvival by removing dead and dying spermatozoa before freezing or after thawing, to select spermatozoa for intracytoplasmic sperm injection, and to aid conservation breeding.  相似文献   

3.
Reasons for performing study: An improvement in sperm quality after single layer centrifugation (SLC) has been seen in previous studies using small sample sizes (for example, n = 10 stallions). There is a need to investigate whether this improvement is repeatable over several breeding seasons with a larger number of stallions (n ≥ 30 stallions). Objective: To make a retrospective analysis of the results of SLC performed on more than 250 sperm samples (176 ejaculates) from 31 stallions in 3 consecutive breeding seasons. Methods: Sperm quality (motility, proportion of morphologically normal spermatozoa and the proportion of spermatozoa with undamaged chromatin) was assessed before and after SLC. Results: All parameters of sperm quality examined were significantly better in sperm samples after SLC than in their unselected counterparts (P<0.001 for each parameter). The yield of spermatozoa obtained after SLC was influenced by the type of extender used and also by the concentration of spermatozoa in the original ejaculate, with fewer spermatozoa being recovered when the loading dose contained a high concentration of spermatozoa. The optimal concentration was approximately 100 × 106/ml. Sperm concentration in the samples loaded on to the colloid influenced the sperm yield while the type of semen extender affected sperm quality and survival. Furthermore, the scaled‐up SLC method was found to be suitable for use with a range of ejaculates, with similar sperm kinematics being observed for standard and scaled‐up preparations. Conclusions: SLC consistently improved the quality of stallion sperm samples from a large number of ejaculates. The method could be scaled‐up, allowing larger volumes of ejaculate to be processed easily from a wide range of stallions.  相似文献   

4.
Although single layer centrifugation (SLC) selects robust spermatozoa from stallion semen, the effect of individual variation has not been studied in detail. The objective of this study was to determine the variation among stallions in the effects of SLC on sperm quality during cooled storage for up to 48 hr. Semen samples from seven stallions (18 ejaculates) were split, with one portion being used for SLC and the other serving as a control (CON). Sperm quality (kinematics, reactive oxygen species (ROS) production, membrane integrity (MI) and chromatin integrity) were analysed at 0, 24 and 48 hr using computer-assisted sperm analysis and flow cytometry. Sperm quality was better in SLC than in CON at all timepoints, especially chromatin integrity and MI (p < .0001 for both), and some categories of ROS production (e.g. proportion of live hydrogen peroxide negative spermatozoa, p < .0001), but the degree of improvement varied among stallions and type of ROS (p < .05–p < .0001). Total and progressive motility were also better in SLC samples than in CON at 24 and 48 hr (p < .0001), although the effect on sperm kinematics varied. The interaction of treatment, time and stallion was not significant. In conclusion, sperm quality was better in SLC samples than in CON, although there was considerable individual variation among stallions. The improvement in sperm quality, particularly in chromatin integrity, was clearly beneficial, and therefore the use of this technique would be warranted for all stallion semen samples.  相似文献   

5.
Colloid centrifugation of boar semen has been reported sporadically for at least the last two decades, beginning with density gradient centrifugation (DGC) and progressing more recently to single layer centrifugation (SLC). Single layer centrifugation through a species-specific colloid has been shown to be effective in selecting the best spermatozoa (spermatozoa with good motility and normal morphology) from boar sperm samples. The method is easier to use and less time-consuming than DGC and has been scaled-up to allow whole ejaculates from other species, e.g. stallions, to be processed in a practical manner. The SLC technique is described, and various scale-up versions are presented. The potential applications for SLC in boar semen preservation are as follows: to improve sperm quality in artificial insemination (AI) doses for 'problem' boars; to increase the shelf-life of normal stored sperm samples, either by processing the fresh semen before preparing AI doses or by processing the stored semen dose to extract the best spermatozoa; to remove pathogens (viruses, bacteria), thus improving biosecurity of semen doses and potentially reducing the use of antibiotics; to improve cryosurvival by removing dead and dying spermatozoa prior to cryopreservation; to select spermatozoa for in vitro fertilization. These applications are discussed and practical examples are provided. Finally, a few thoughts about the economic value of the technique to the boar semen industry are presented.  相似文献   

6.
Slow-cooled stallion spermatozoa, with and without seminal plasma removed by centrifugation, were diluted in Kenney's extender (KE) containing nonfat dry skim milk with glucose and antibiotics or in KE supplemented by adding a modified high-potassium Tyrode's medium (KMT). Four ejaculates from each of four stallions were collected and divided factorially across these four treatments. Percentage of motile sperm, path velocity, and linearity immediately after treatment (0 h) and after storage at 4 degrees C for 24, 48, and 72 h were evaluated objectively by use of a HTM-2030 sperm motility analyzer. Stallions were a significant source of variation (P less than .01) throughout. After sperm had cooled, effects of stallion, extender, centrifugation, and their interactions were all found to be significant (P less than .01). The motility at 0, 24, 48, and 72 h for centrifuged KE was 74, 47, 39, and 24%; for uncentrifuged KE was 76, 56, 50, and 37%; for centrifuged KMT was 76, 75, 72, and 64%; and for uncentrifuged KMT was 80, 50, 26, and 13%, respectively. The extender x centrifugation interaction, after 24, 48, and 72 h of storage, accounted for half or more of the variation. Whereas centrifugation of semen extended in KE seemed to be harmful to sperm, motility of sperm extended in KMT after centrifugation was remarkably conserved for 72 h and was superior to all other treatments (P less than .05). This extender is promising for preserving liquid stallion semen when it must be transported before use in artificial insemination.  相似文献   

7.
Conception rates for mares bred with transported-cooled and fresh stallion semen were collected over a 4-yr period (1998–2002) for two stallions. Both stallions stood at a commercial breeding farm. Semen from both stallions was used immediately after collection on the farm and after 24 to 48 h of cold storage when transported to locations in the U.S. and Canada. Semen for insemination of mares located on the farm was extended with a commercially available skim milk glucose extender (SKMG). Spermatozoal motility following cold storage for spermatozoa diluted in SKMG extender was unacceptable. Thus, semen from both stallions was centrifuged, and spermatozoa were resuspended in SKMG supplemented with modified PBS. In a previous study, the percentage of motile spermatozoa increased following centrifugation and reconstitution of the sperm pellet in SKMG-PBS as compared with semen dilution in SKMG (Stallion A: 15% vs 47%; Stallion B: 18% vs 43%). In the current study, 22 of 25 (88%) and 3 of 4 (75%) mares conceived with transported-cooled semen from Stallions A and B, respectively. Conception rates for mares inseminated with transported semen did not differ (P>0.05) from those inseminated on the farm with fresh semen. These data illustrate that stallion owners can modify standard cooled semen processing procedures and semen extender composition to improve post-storage spermatozoa motility and to obtain acceptable fertility.  相似文献   

8.
Urospermia is a major ejaculatory dysfunction affecting stallions. It has been thought that urine-contaminated semen should not be cryopreserved; however, on select cases, urine contamination of semen cannot be avoided. A recent study suggested that urospermic semen can be cryopreserved after cushion centrifugation and extension. Thus, this study aimed to assess the use of single-layer colloid centrifugation (SLC) to process frozen-thawed urine-contaminated stallion semen. Raw ejaculates (n = 55) from eight stallions were split into three groups: no urine, low (20%), or high (50%) urine contamination. Semen was extended 1:1, cushion-centrifuged, and resuspended at 200 million sperm/mL in BotuCrio. Resuspended semen was loaded in 0.5 mL straws and cryopreserved in liquid nitrogen. Samples were thawed (37°C for 30 seconds) and processed by SLC (400 g/30 minutes). Percentages of total motility (TM) and progressive motility (PM) were assessed with computer-assisted semen analyzer. Sperm viability (%VIAB) and yield were assessed with a NucleoCounter before and after gradient centrifugation. Data were analyzed with two-way ANOVA and Tukey’s test. The motility parameters TM before SLC (control: 35 ± 2; low: 33 ± 0.7; high: 22 ± 1.8) after SLC (control: 51 ± 3.6; low: 42 ± 2.2; high: 25 ± 2.8) and PM before SLC (control: 24 ± 1.8; low: 21 ± 1.14; high: 12 ± 1.5) and after SLC (control: 40.3 ± 3.2; low: 31 ± 3.9; high: 14 ± 2) significantly decreased with increasing urine contamination. Urine contamination marginally reduced (P < .05) sperm viability after cryopreservation before SLC (control: 45 ± 0.7; low: 27 ± 0.2; high: 27 ± 0.3) and after SLC (control: 54 ± 0.5; low: 49 ± 0.7; high: 38 ± 0.6). Recovery rates of sperm after centrifugation were not significantly different between groups. In conclusion, urine contamination affects sperm motility parameters in a dose-dependent manner. Post-thaw SLC selected sperm with higher motility and viability in control and low groups but only selected sperm with higher viability in the high group.  相似文献   

9.
Improved sperm selection techniques are needed to increase the efficiency of equine-assisted reproduction. Single layer centrifugation (SLC) of spermatozoa has been shown to improve the quality of stallion sperm samples. In this study, the functionality of selected stallion spermatozoa was tested by intracytoplasmic sperm injection of equine oocytes after selection by SLC through Androcoll-E or by discontinuous density gradient centrifugation (DGC) through Redigrad and Tyrode's medium with added albumin, lactate, and pyruvate. The mean cleavage rates of the injected oocytes from SLC- and DGC-selected spermatozoa were 67% and 66%, respectively, whereas the proportion of blastocysts developing from cleaved oocytes was 28% and 22%, respectively (P > .05, not significant). An incidental finding was that there was a tendency for SLC-selected spermatozoa to have a higher percentage of spermatozoa with normal morphology than DGC (70% ± 22% vs. 58% ± 38%) and for more blastocysts to be obtained from subfertile ejaculates (21 [19.6%] vs. 15 [14.4%], respectively). In further experiments, stallion spermatozoa bound to hyaluronan, although binding may depend on the semen extender and sperm treatment as well as incubation time. In conclusion, SLC-selected stallion spermatozoa function normally when injected into oocytes. SLC may potentially be better than DGC at selecting spermatozoa from subfertile ejaculates, but this effect needs rigorous investigation with a much larger sample size. Use of the hyaluronan-binding assay for assessing the potential fertility of stallion spermatozoa may be useful but requires further evaluation.  相似文献   

10.
Low levels of intracellular reactive oxygen species (ROS) are essential for normal sperm function and are produced by sperm mitochondria as a byproduct of metabolism, but in excess, ROS can cause catastrophic cellular damage and has been correlated with infertility, poor sperm motility and abnormal morphology in humans. Stallion sperm motility is fueled predominantly by oxidative phosphorylation-produced ATP, requiring high basal rates of mitochondrial function. Consequently, whether elevated ROS production by stallion sperm is an indicator of dysfunctional or highly motile cells has been debated by researchers over the last decade. The objective of this study was to evaluate the relationship between various sperm morphologies and ROS production in fresh and cooled stallion semen by employing the novel method of imaging flow cytometry for stallion semen assessment. For evaluation of fresh semen, single ejaculates (n = 5) were collected from four resident stallions at the University of California, Davis. For the evaluation of 24-h cool-stored semen, single ejaculates were collected from stallions at Texas A&M University (n = 5) and shipped to the University of California, Davis overnight for evaluation. Ejaculate volume, sperm concentration and motility parameters were recorded. Samples were co-stained for viability and ROS detection with SytoxGreen™ and dihydroethidium (DHE), respectively, and evaluated with the Amnis® ImageStream® system (Luminex Corporation). Antimycin, an electron transport chain inhibitor that triggers ROS production (1 μM), was used as a positive control for DHE, while dead cells (2× snap frozen in liquid nitrogen) served as a positive control for SytoxGreen™. Unstained samples were also evaluated as controls. Imaging flow cytometric analysis was performed with the ideas ® software (Luminex Corporation). Evaluated morphologies included abnormal head (AH), abnormal midpiece (AM), abnormal tail (AT), proximal cytoplasmic droplet (PD), or distal cytoplasmic droplet (DD), and morphologically normal (MN) cells. For fresh semen, an additional abnormality, coiled tail and midpiece (CTM) was assessed; 24-h cool-stored semen did not contain enough viable CTM cells for analysis. Only cells with obvious, single abnormalities were selected for the first portion of analysis to minimize subjectivity. Mixed effects modelling was used to evaluate the relationship between each morphologic classification and the corresponding DHE fluorescence intensity. Compared to the MN population, ROS production was significantly higher in viable cells with AH, PD and AM (p < .0001) in both fresh and cooled semen. CTM cells had significantly higher levels of ROS production compared to MN cells in fresh semen (p < .0001). There was no significant difference in ROS levels between MN cells and AT and DD cells in either fresh or cooled semen (p > .05). These results suggest that ROS generation is indicative of abnormal cell morphology and function and confirm that imaging flow cytometry is a valuable tool for the assessment of stallion semen.  相似文献   

11.
This study was designed to evaluate the effect of single layer centrifugation (SLC) and subsequent cold storage on stallion sperm capacitation‐like status and acrosome reaction. Three stallions were included in the study, with three ejaculates per stallion. The samples were examined 4, 24 and 72 h after collection, extension and SLC, with storage at 6°C. Sperm capacitation‐like status was investigated using the fluorescent dye chlortetracycline (CTC). There was no difference in capacitation‐like status between colloid‐selected and non‐selected spermatozoa. Sperm motility decreased significantly during cold storage, whereas the proportion of apparently capacitated spermatozoa increased. There was no change in the proportion of acrosome‐reacted spermatozoa. In conclusion, SLC through Androcoll?‐E does not adversely affect the capacitation‐like status of stallion spermatozoa, although it did increase with time during cold storage.  相似文献   

12.
The objective of this case study was to investigate whether semen centrifugation and low-dose insemination techniques would improve fertility of an aged subfertile Quarter Horse stallion with low sperm concentration, motility, and morphology in ejaculates. Forty-five mares were bred by one of five treatments (n = 9 per group) using the entire ejaculate as follows: (1) Group Body: body insemination with ejaculate diluted 1:1 in TAMU extender; (2) Group Body-Cent: body insemination after centrifugation and re-suspension of sperm pellet to 1 mL in TAMU extender; (3) Group Horn-Cent: deep horn insemination after centrifugation and re-suspension of sperm pellet to 1 mL in TAMU extender; (4) Group Cent-Hys: hysteroscopic insemination onto the uterotubal papilla after centrifugation and re-suspension of sperm pellet to 200 μL in Kenney-Modified Tyrode’s extender; and (5) Group Dens-Hys: hysteroscopic insemination onto the uterotubal papilla after discontinuous density gradient centrifugation and re-suspension of the sperm pellet in 200-μL Kenney-Modified Tyrode’s extender. Pregnancy rates did not differ among treatment groups (P = .77). Semen centrifugation for low dose insemination did not appear to improve fertility of this subfertile stallion, despite use of entire ejaculates for each individual insemination dose.  相似文献   

13.
The aim of the present study was to investigate the influence of various centrifugation methods on sperm loss and quality of frozen-thawed semen. From at a total of 8 Warmblood stallions of the National Stud Farm in Avenches, 3 ejaculates each were collected and seminal plasma was removed using 3 different centrifugation regimes. In method I (reference method) centrifugation occurred by a speed of 600 x g during 10 minutes. In method II 1000 x g was used during 2 minutes while in method III centrifugation was performed by 2000 x g during 2 minutes. After centrifugation 90%, of the supernatant was removed and sperm loss calculated. After resuspension of the pellet with freezing medium, functional membrane integrity was evaluated by HOS-test and motility determined. In frozen-thawed semen motility, viability as well as functional membrane integrity (HOS-test) and acrosome status using chlortetracyclinassay (CTA) were assessed. Our results demonstrate that mean sperm loss (I, 1.9%; II, 8.7%; III, 3.7%) was significantly (P < 0.05) different between the three centrifugation regimes. Regarding semen quality of frozen-thawed semen, HOS in method III (52.1%) was significantly lower than in methods I (55.5%) and II (55.3%). Evaluation of the acrosome status by CTA showed that more than 70% of sperm cells were capacitated and 25% capacitated and acrosome reacted. From our results we conclude that sperm loss and functional membrane integrity (HOS-test) in frozen-thawed semen were significantly influenced by the centrifugation regime. Therefore, stallion semen should be centrifuged at 600 x g during 10 minutes before freezing in order to obtain low sperm loss and a good quality of frozen-thawed semen.  相似文献   

14.
OBJECTIVE: Duck and chicken egg yolk were compared for their protective effects against cold shock during the cryopreservation of stallion sperm in a lactose-EDTA-glycerol cryodiluent. DESIGN: A completely randomised design was used. Procedure Ejaculates from five stallions (n = 14 ejaculates) were split and diluted to either 20 or 200 x 10(6) sperm/mL in a lactose-EDTA extender containing either duck or chicken egg yolk. The extended semen was then frozen in liquid nitrogen. The percentage of sperm total motility and forward progressive motility were assessed before freezing and at 0 and 1 hr after thawing. Morphology data were also collected at 0 and 1 hr post thaw. RESULTS: Total and forward progressive motility were higher when the sperm were frozen in the presence of duck rather than chicken egg yolk. Furthermore, the total and forward progressive motility and percentage of morphologically normal sperm were higher when frozen at a concentration of 200 than 20 x 10(6)/mL. CONCLUSION: The results of this study demonstrate that the motility parameters of stallion sperm are improved when the semen is frozen in lactose EDTA extender supplemented with duck egg yolk rather than chicken egg yolk. Moreover, sperm motility and the percentage of morphologically normal sperm were higher after freezing at a concentration of 200 x 10(6)/ml rather than 20 x 10(6)/ml.  相似文献   

15.
The aim of the present study was to evaluate the quality of raw and cooled semen in Icelandic stallions. Experiments were performed using seven stallions aged between 3 and 19 years. From each stallion, six ejaculates were collected, and semen quality was determined. Thereafter, the semen was split into eight equal parts and processed with and without centrifugation using the extenders INRA 82-egg yolk, INRA 96, GENT, and Equi-Pro to a final concentration of 30 × 106 sperm/mL. The extended semen was then cooled in an Equitainer, where it was stored for 24 hours, and subsequently refrigerated for another 24 hours at 5°C. Immediately after dilution as well as after 24 and 48 hours storage, sperm motility was analyzed using computer-assisted sperm analyzer, and viability was assessed after dual DNA staining with SYBR-14 in combination with propidium iodide. The results show that the stallion had a significant (P < .05) influence on all variables evaluated in raw semen, and mean (±SEM) values of 43.4 ± 4.3 mL for the volume, 193.0 ± 17.0 × 106 sperm/mL for the concentration, 6.7 ± 0.5 × 109 for total sperm and 73.5 ± 2.1% for total sperm motility, 48.7 ± 2.0% for progressive motility, and 65.3 ± 2.0% for rapid cells were measured. In the cold-stored semen, all variables were significantly (P < .05) influenced by the stallion, extender, and storage time (48 hours). Except for Equi-Pro, all extenders examined were suitable for cooled semen preservation. For storage of more than 24 hours, centrifugation and removal of the seminal plasma were advantageous for all extenders with the exception of Equi-Pro.  相似文献   

16.
The objective of this study was to compare semen parameters and embryo recovery rates of cooled stallion semen extended with INRA 96 or BotuSemen Gold. In experiment 1, 45 ejaculates from nine mature stallions were collected, assessed, and equally split between both extenders and then extended to 50 million sperm/mL. Then, the extended semen was stored in three passive cooling containers (Equitainer, Equine Express II, and BotuFlex) for 48 hours. In experiment 2, the same ejaculates extended in experiment 1 were cushion-centrifuged, the supernatant was discarded, and the pellets were resuspended at 100 million sperm/mL with their respective extender. Semen was then cooled and stored as in experiment 1. In both experiments, sperm motility parameters, plasma membrane integrity, and high mitochondrial membrane potential were assessed at 0, 24, and 48 hours post cooling. For experiment 3, 12 mares (n = 24 cycles) were bred with 48 hour–cooled semen from one stallion. Semen was processed as described in experiment 1. Mares had embryo flushing performed by 8-day post-ovulation. In experiment 1, BotuSemen Gold displayed superior total and progressive motility relative to INRA 96 (P < .05). There were no significant differences between the types of containers in any experiment. In experiment 2, INRA 96 and BotuSemen Gold extenders had similar total and progressive motility, but BotuSemen Gold had superior sperm velocity parameters at all timepoints. Embryo recovery was identical for both extenders (50%). Finally, the results obtained herein suggest that BotuSemen Gold is a suitable alternative to be included in semen cooling tests against INRA 96 in clinical practice.  相似文献   

17.
The aim of this study was to determine whether there was an increase in pregnancy rates when frozen-thawed stallion semen was processed by single layer centrifugation (SLC) through a colloid before insemination. In addition, changes in semen parameters, including motility, were determined before and after SLC. Twenty light-horse mares (aged 3-16 years) and one Thoroughbred stallion (aged 16 years) having average fertility with fresh and cooled semen (>50% per cycle) and displaying a postthaw motility of >35% were used. Control mares were inseminated using 4- × 0.5-mL straws (200 × 106/mL) of frozen-thawed semen. Treatment mares were inseminated with 4 × 0.5 mL of frozen-thawed semen after processing by SLC. Pregnancy rates were compared using Fisher exact test, and continuous parameters were evaluated by a Student t test. The pregnancy rates at day 14 were not different for the mares inseminated with control versus SLC-processed semen, despite the difference in sperm number (171 × 106 ± 21, 59 × 106 ± 25 progressively motile sperm). After frozen-thawed semen was processed by SLC, the percentage progressively motile sperm improved (P < .05), and SLC processing resulted in a 21.8% recovery of spermatozoa. In summary, centrifugation of frozen-thawed semen through a single layer of colloid increased the percentage of motile spermatozoa, but did not improve pregnancy rates after deep horn insemination.  相似文献   

18.
The objective of this research was to improve the techniques in processing chilled and frozen‐thawed horse semen. In a preliminary experiment (Exp. I), different techniques for sperm selection and preparation [Swim‐up, Glass wool (GW) filtration, Glass wool Sephadex (GWS) filtration; Percoll] were tested for their suitability for equine spermatozoa and results were compared with the routine procedure by dilution (Exp. I). In the main experiment (Exp. II), two sperm preparation techniques (GWS, Leucosorb®) refering to the results of Exp. I and a previous study of our group (Pferdcheilkunde 1996 12, 773) were selected for processing complete ejaculates either for cooled‐storage or cryopreservation. In a third experiment (Exp. III), pregnancy rates from inseminations with semen processed according to the techniques tested in Exp. II were compared with those obtained with semen processed according to routine procedures. In Exp. I (six stallions, six ejaculates/stallion), between 48 and 92% of spermatozoa were lost following the different sperm selection procedures (p < 0.05). Preparation of sperm increased percentage of progressively motile spermatozoa (pms) [Swim‐up, GW, GWS vs dilution, Percoll (p < 0.05)] and decreased percentage of sperm head abnormalities [Swim‐up, GW, GWS vs dilution, Percoll (p < 0.05)] probably by not improving the quality of individual cells, but by elimination of spermatozoa of inferior quality. In Exp. II (eight stallions, three ejaculates/stallion) Leucosorb® and GWS procedures allowed the filtration of large volumes (extended ejaculates) for routine laboratory practice. GWS and Leucosorb® filtration resulted in increased motility, membrane integrity and sperm viability after storage of spermatozoa until 48 h at +5°C when compared with control (diluted) and centrifuged semen (p < 0.05). Significantly more spermatozoa were recovered after centrifugation (87.8 ± 15.4%) compared with GWS (63.5 ± 18.6%) and Leucosorb® filtration (53.6 ± 22.3%). GWS or Leucosorb® procedure resulted in successful cryopreservation of stallion semen without centrifugation for removal of seminal plasma. The per cycle conception rate of inseminated mares using 200 × 106 pms transferred within 8 h after collection of semen was not affected by GWS filtration or Leucosorb® separation when compared with centrifugation (n.s.; Exp. III). In conclusion, GWS and Leucosorb® filtration results in the improvement of semen quality and should be considered as a method for stallion semen processing. Additional studies are needed for the evaluation of potentially higher fertilizing ability of stallion spermatozoa separated by techniques for sperm selection.  相似文献   

19.
REASONS FOR PERFORMING STUDY: A method of removing equine arteritis virus (EAV) from equine semen used for artificial insemination is urgently needed. Recent medical studies suggest that a double semen processing technique of density gradient centrifugation followed by a 'swim-up' can provide virus-free sperm preparations for assisted reproduction. OBJECTIVES: To investigate the use of the double semen processing technique to obtain virus-free sperm preparations from stallion semen containing EAV. METHODS: Aliquots of an ejaculate from an uninfected stallion were spiked with virus and processed by the double processing technique. The sperm preparations were tested by PCR for the presence of EAV. The procedure was repeated using an ejaculate from a known shedding stallion, testing processed and unprocessed aliquots by PCR and virus isolation. RESULTS: Virus-free sperm preparations were obtained using the double sperm processing technique. The 'swim-up' step is apparently required to ensure complete virus removal. CONCLUSIONS: The double semen processing technique is potentially a useful and simple tool for the removal of EAV from the semen of shedding stallions. POTENTIAL RELEVANCE: The inclusion of density gradient centrifugation and 'swim-up' in protocols for the processing of semen for artificial insemination could help prevent the transmission of viral diseases carried in semen, such as EAV.  相似文献   

20.
Cooling of equine semen obtained from some stallions results in lower seminal quality and viability when the seminal plasma (SP) is present. The objective of this study was to evaluate the effect of the removal of SP using a Sperm Filter on the viability of cooled stallion semen. For this purpose, 31 stallions were used. Their ejaculates were divided into three groups: CN, semen was diluted with an extender; FLT, SP was removed by filtration; and CT, SP was removed by centrifugation and cooled to 15°C for 24 hours. Sperm kinetics and plasma membrane integrity were evaluated immediately after collection (T0) and after 24 hours of refrigeration (T1). No difference (P > .05) was noted at T1 for total sperm motility (TM), progressive sperm motility, or plasma membrane integrity when semen samples from all the stallions were analyzed. However, when samples from stallions termed “bad coolers” were analyzed (TM = <30% at T1), a difference was observed in TM and progressive sperm motility for CN compared with FLT and CT at T1. Sperm recovery was greater when SP was removed using the filter (FLT) to that when the SP was removed by centrifugation (CN) (89% vs. 81%). Thus, we concluded that filtering with a Sperm Filter is an efficient and practical method for removal of SP from stallion ejaculates, with lower sperm loss than centrifugation. We also found that the presence of SP reduces the quality and viability of cooled semen from stallions whose semen is sensitive to the process of refrigeration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号