首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
经蒸汽爆破预处理的杨木为原料进行同步糖化共发酵(SSCF)法产乙醇。使用里氏木霉Rut C-30产纤维素酶,滤纸酶活(FPA)与纤维素酶产酶速率最大值分别为6.283 IU/mL、0.035 IU/mg.h。同步糖化共发酵中,重组大肠杆菌(KO11)与酿酒酵母的混合发酵乙醇产量高于单菌种发酵。乙醇含量随残糖量的降低而逐渐升高。底物浓度为5%和10%时,乙醇含量最高值分别为8.97 g/L和13.98 g/L,乙醇得率分别为53.8%和41.9%。  相似文献   

2.
丁醇作为新一代生物燃料,已经成为世界研究的热点。利用本实验选育的丁醇高产突变株——拜氏梭菌Clostridium beijerinckii U-57,以杨木蒸汽爆破渣为原料发酵产丁醇。结果表明:杨木蒸汽爆破渣糖化液经分步糖化发酵和同步糖化发酵,丁醇产量分别为2.19、1.79 g/L;进而对同步糖化发酵条件进行正交设计优化,优化后同步糖化发酵得到的丁醇和总溶剂产量分别为2.16、3.44 g/L,比之前提高了20.7%、16.7%。该研究首次探讨了杨木纤维发酵产丁醇的工艺条件,为进一步提高产量提供了基础。  相似文献   

3.
于初始底物质量浓度100 g/L,酶解6 h、12 h分别补料50 g/L条件下,以总底物质量浓度200 g/L的绿液预处理玉米秸秆,先预酶解24 h后同步糖化发酵48 h,体系中乙醇质量浓度47.58 g/L,乙醇得率为0.42 g/g(以纤维素计,下同)。而不经预酶解直接同步糖化发酵72 h,体系中乙醇质量浓度48.57 g/L,乙醇得率为0.43 g/g。与基于补料预酶解的半同步糖化发酵相比,补料同步糖化发酵技术工艺简单,适合于高浓度底物绿液预处理玉米秸秆的生物转化。  相似文献   

4.
研究了糠醛渣(FR)经不同强度绿液-过氧化氢预处理脱木质素后,与木薯渣(CR)混合进行同步糖化发酵生产乙醇,通过改变原料底物浓度、纤维素酶用量和添加无患子表面活性剂来优化混合底物同步糖化发酵条件,并分析了发酵过程中乙醇和副产物的浓度变化。结果表明,在糠醛渣预处理条件为:底物质量浓度5g/L、温度80℃、H_2O_2用量为0.6g/g、绿液用量为2mL/g(以糠醛渣计)预处理时间3h,在此条件下糠醛渣木质素脱除率可达56.5%。同步糖化发酵产乙醇条件为无患子皂素表面活性剂添加量0.5g/L,纤维素酶用量12FPU/g,纤维二糖酶用量15IU/g,预处理后的糠醛渣与木薯渣混合作底物(质量比为2∶1),底物质量浓度200g/L时,发酵120h最终乙醇质量浓度可达56.6g/L,乙醇得率为86.3%。同步糖化发酵过程中添加无患子皂素表面活性剂不仅降低了纤维素酶用量,还可延缓副产物乳酸的形成,减小甘油生产波动。  相似文献   

5.
玉米芯经碱预处理后,采用米根霉对其发酵制备L-乳酸,同时考察分步糖化发酵(SHF)和同步糖化发酵(SSF)两种工艺。实验结果表明,水洗碱预处理玉米芯酶水解性能优于未水洗碱预处理玉米芯,水洗过程可显著提高米根霉发酵性能。分步糖化发酵工艺下,米根霉于40℃下发酵48 h,可将含有31.84 g/L葡萄糖、6.38 g/L木糖的酶解液转化为14.65 g/L的L-乳酸,L-乳酸得率为0.29 g/g(以绝干物料计,下同);同步糖化发酵工艺下,米根霉40℃发酵36 h将底物质量浓度为50 g/L的水洗碱预处理玉米芯高效转化为L-乳酸,L-乳酸得率为0.44 g/g。  相似文献   

6.
以经过蒸汽爆破预处理后的杨木为原料,利用戊糖乳杆菌突变株进行同步糖化发酵。用高效液相色谱法测定发酵液中的乳酸含量,对酶解温度、酶解p H、纤维素酶添加量进行单因素试验分析,对发酵温度、发酵p H、接种量进行单因素试验分析,再通过正交试验对发酵条件进行优化。研究发现,最佳发酵条件:发酵温度为40℃,发酵p H为5.7,接种量为6%,纤维素酶添加量为15 FPU/g,乳酸产量为9.42 g/L,产酸量提高了83.62%。利用价格低廉且来源广泛的杨木发酵生产乳酸,具有广阔的工业应用前景。  相似文献   

7.
利用单因素、正交试验考察了黑曲霉L菌株发酵豆渣产β-葡萄糖苷酶的条件和酶解京尼平苷的特性。结果表明:2%豆渣适宜作为实验菌株液体发酵产酶培养基,当培养基中接种孢子浓度大于每毫升2×105个时,菌株产酶受发酵温度、装液量的影响显著,而不受接种量、摇床转速的影响,培养基初始pH值1.5时,菌株仍能正常产酶;优化的产酶培养基组成为豆渣1%、米糠1%和Tween 800.1%,初始pH值5.5;菌株在发酵温度28℃、装液量50 mL(250 mL摇瓶)、摇床转速150 r/min的发酵条件下发酵120 h,发酵液酶活为(200±10)U/mL。所产β-葡萄糖苷酶水解京尼平苷的最适温度为55℃、最适pH值2.5、最佳水解时间15 min;在该条件下酶的表观米氏常数(Km)为1.35 g/L,最大水解速率(Vmax)为26.45 g/(L.min.mg),酶活半衰期为15 min,50℃时大于60 min;酶的水解活性受Na+、Ca2+的显著激活,受Mg2+、Ba2+、Cu2+、Fe2+、Hg+、Zn2+、Mn2+等离子(10 mmol/L)和葡萄糖、乙醇的抑制。  相似文献   

8.
研究了玉米芯的酶法水解及酶解液的乙醇发酵。采用里氏木霉ZU-02纤维素酶水解酸预处理后的玉米芯为原料,适宜的酶用量为20 FPIU(以每克底物计,下同),48 h后酶解得率为67.5%;添加黑曲霉ZU-07所产纤维二糖酶可有效解除纤维二糖累积引起的反馈抑制作用,当纤维二糖酶用量为6.5 CB IU时,48 h后酶解得率提高到83.9%。采用分批补料酶解工艺,使底物质量浓度提高到200 g/L,酶解60 h后还原糖质量浓度达到116.3 g/L,酶解得率为80.1%。利用一株耐高温酿酒酵母HTR-11在38℃下对酶解液进行乙醇发酵,质量浓度95.3 g/L的葡萄糖在18 h内发酵生成质量浓度为45.7 g/L的乙醇,其得率达到理论值的94%。  相似文献   

9.
比较研究休哈塔假丝酵母单菌发酵、休哈塔假丝酵母和酿酒酵母两步发酵、休哈塔假丝酵母和酿酒酵母同步发酵3种发酵模式下对混合糖(葡萄糖和木糖)的利用情况,结果显示2种酵母同步发酵能够有效解除葡萄糖的抑制,加快木糖利用速率。采用Plackett-Burman实验、最陡爬坡实验和中心组合设计,对2种酵母混菌利用戊糖己糖发酵生产乙醇的培养基进行优化,得到最优培养基条件:硫酸铵9.09 g/L、磷酸二氢钾8.96 g/L、氯化钙0.34 g/L,在此条件下发酵得到乙醇产量为21.71 g/L,较优化前(19.85 g/L)提高了9.4%;混菌在优化后的培养基下进行发酵,酵母浊度OD由12.12增长到了21.87,木糖利用率由优化前的82%增长到优化后的93%。  相似文献   

10.
针对己糖(葡萄糖)、戊糖(木糖)共发酵产纤维素乙醇抑制物控制的关键性瓶颈,分别以玉米秸秆及玉米秸秆中非木质素的4类组分纤维素、半纤维素、热水提取物和乙醇提取物为原料,并以0.75%稀硫酸和180℃预处理40 min得到5种稀酸预处理液。以60 g/L葡萄糖和30 g/L木糖为碳源,分别添加上述稀酸预处理液,比较了5种预处理液对休哈塔假丝酵母(Candida shehatae)共发酵产乙醇的影响,并探究主要抑制物来源。结果表明:133 g/L全玉米秸秆稀酸预处理的降解物会完全抑制C.shehatae糖代谢和共发酵。在玉米秸秆稀酸预处理过程中,4类非木质素组分降解物均会导致乙醇得率下降,其中100 g/L纤维素降解物完全抑制木糖的发酵,半纤维素降解物同时抑制葡萄糖和木糖的发酵,甚至对酵母产生致死毒性,热水提取物和乙醇提取物降解物延滞糖利用和酵母生长。玉米秸秆共发酵产乙醇抑制物主要来自于纤维素和半纤维素在稀酸预处理中的降解反应,主要为甲酸、乙酸、乙酰丙酸、5-羟甲基糠醛和糠醛,同时还存在着其他降解产物的毒性或协同毒性。  相似文献   

11.
为研究固定化混合菌种对戊糖和己糖同步发酵生产燃料乙醇的影响,以海藻酸钙为固定化载体,采用包埋法固定化休哈塔假丝酵母(Candida shehatae)和酿酒酵母(Saccharomyces cerevisiae)混合菌发酵生产燃料乙醇,并对固定化混合菌种的发酵条件进行优化。结果表明:固定化混合菌种发酵可以快速利用葡萄糖,解除葡萄糖代谢对木糖代谢的抑制作用,提高发酵效率,发酵时间从固定化单菌发酵的24 h缩短至20 h,发酵时间缩短16.67%。乙醇产量从13.28 g/L增加至14.89 g/L,升高了12.12%。固定化混合菌种的优化条件为:混合糖(葡萄糖和木糖)质量浓度为45 g/L,发酵温度为30℃,摇床转速为170 r/min,休哈塔假丝酵母和酿酒酵母菌体的比例为4∶1。在此条件下得到最佳乙醇产量为15.21 g/L,较优化前(13.74 g/L)提高了10.70%。本研究结果可为固定化混合菌发酵生产燃料乙醇的工业化提供理论依据。  相似文献   

12.
碳水化合物降解产物对酿酒酵母乙醇发酵的影响   总被引:2,自引:1,他引:1  
研究了木质纤维原料预处理产生的主要碳水化合物降解产物对酿酒酵母乙醇发酵的影响,以及酿酒酵母对玉米秸秆酶水解液的乙醇发酵.碳水化合物降解产物对酿酒酵母NLH13乙醇发酵毒性依次为:甲酸>乙酸>糠醛>羟甲基糠醛,酿酒酵母NLH13乙醇发酵可耐受的甲酸和乙酸质量浓度分别为1和4 g/L,酿酒酵母NLHl3在2~10 g/L范...  相似文献   

13.
以玉米芯为原料,采用同步糖化发酵(SSF)工艺,将玉米芯酶水解及2,3-丁二醇发酵耦合在一起同步进行.通过对SSF主要工艺参数的研究,确立了适宜的工艺条件为:纤维素酶添加量25 FPIU/g(以底物计,下同),纤维二糖酶添加量15 IU/g,木聚糖酶添加量300 IU/g,底物质量浓度100~120 g/L,pH值6.0,36℃.底物质量浓度为120 g/L时,SSF周期36 h,2,3-丁二醇质量浓度可达46.02g/L,产率为1.28 g/(L·h),转化率为0.424g/g(以纤维素及半纤维素为参照).  相似文献   

14.
菌株是丁醇发酵生产的重要因素,优良丁醇菌株的选育及发酵条件优化是提高丁醇产量的有效途径。本研究选取工业上重要的产丁醇菌株——拜氏梭菌Clostridium beijerinckii ATCC 55025为对象,进行紫外诱变,获得了一株丁醇产量高、耐受性强和稳定性好的优良突变株Clostridium beijerinckii U-57,由中国典型培养物保藏中心保存,注册号为CCTCC M 2013208。该突变株发酵产丁醇和总溶剂(丙酮、丁醇、乙醇)分别为6.44g/L、10.57 g/L,较原始菌株分别提高了7.15%、6.98%。采用Plackett-Burman设计以及Box-Behnken响应面设计,对突变株U-57的最佳培养基组分进行了筛选。进一步通过正交实验对突变株U-57的最佳发酵条件进行了优化,发酵得丁醇和总溶剂产量分别为7.85 g/L、12.28 g/L,比优化前分别提高了21.9%、15.3%。研究结果为进一步工业化应用提供了基础。  相似文献   

15.
通过研究米根霉NLX-M-1利用葡萄糖无载体固定化发酵产L-乳酸的影响因素,获得米根霉利用木质纤维基葡萄糖进行无载体固定化发酵的最优条件。优化的米根霉无载体固定化产L-乳酸条件:初始葡萄糖质量浓度100 g/L,(NH4)2SO4质量浓度2 g/L,接种量2%(体积分数),CaCO330 g/L,KH2PO40.1 g/L,MgSO4·7H2O 0.25 g/L,ZnSO4·7H2O 0.1 g/L。在优化条件下,以纯葡萄糖为碳源的米根霉发酵过程,形成平均直径1 mm的微球,L-乳酸产量为76.6 g/L,转化率为81.6%。以玉米秸秆酸爆渣酶解葡萄糖浓缩至60 g/L进行L-乳酸发酵,米根霉形成直径约1.2 mm的微球,L-乳酸产量为36.4 g/L,转化率为63.5%。  相似文献   

16.
杨木稀酸预处理液木糖发酵产乙醇工艺条件的研究   总被引:3,自引:1,他引:2  
以1.0%H2SO4在150℃预处理杨木屑20 min可水解溶出66.5%木聚糖和7.1%葡聚糖,生成以木糖为主、含有乙酸和甲酸等发酵抑制物的预处理液,脱毒后可采用Candida shehatae R发酵产乙醇,而Pichia stipitisNL23不能生长。减压蒸发加石灰中和法对预处理液的脱毒效果最佳,可脱除70.0%乙酸和40.0%甲酸,糖损失仅为5.0%~6.0%,C.shehataeR的耗糖率和乙醇得率可达到93.2%和83.6%。采用廉价的无机盐能够满足C.shehataeR发酵脱毒液的营养要求。由于包括乙酸和甲酸以外其它毒性物的抑制,C.shehataeR发酵脱毒液的适宜糖质量浓度为30.0 g/L,发酵12 h,耗糖率和乙醇得率为84.7%和75.3%,乙醇质量浓度达到最高值8.54 g/L,同时生成6.08 g/L木糖醇,C.shehataeR对木糖的利用未受葡萄糖的抑制。  相似文献   

17.
基因重组酵母发酵木糖产酒精的研究   总被引:2,自引:0,他引:2  
以一株基因重组酵母为研究对象,探讨了厌氧条件下pH值、底物浓度、接种量、乙酸质量分数和葡萄糖添加量等关键因子对木糖发酵的影响。结果表明,重组酵母Saccharomyces cerevisiae ZU-10有较强的发酵木糖产乙醇的能力,在80g/L(相对木糖)、初始pH值5.5、接种量1.2g/L(细胞干质量,相对培养液)、30℃下发酵72h,发酵液中乙醇质量浓度达到28.9g/L。发酵液中的乙酸质量分数低于0.05%时对发酵木糖影响不大。添加适量的葡萄糖可促进木糖发酵,在30g/L木糖培养液中添加40g/L葡萄糖,36h内木糖利用率从79.0%增加到85.7%。  相似文献   

18.
在纤维素酶20 U/g,发酵温度38℃,接种量15%,管囊酵母和酿酒酵母的接种比例2∶1条件下,选择不同的固液比(1∶5、1∶10、1∶15和1∶20),研究了稻草秸秆同时糖化法产乙醇的动力学。结果表明:固液比1∶15时,获得了较高的乙醇产率为0.183 g/g,方程c=abt/(1+bt)可以被用来描述乙醇浓度(c)与发酵时间(t)的关系,动力学参量a随着固液比减小而减小,而动力学参量b随着固液比的减小而增加;同时,在不同固液比条件下,稻草秸秆转化乙醇反应被证明是类分形的,方程k=k1t-h能被用来很好的描述速率常数与发酵时间之间的关系。  相似文献   

19.
以筛选到的一株高效产几丁质酶的粘质沙雷氏菌MEW06为材料,为了提高该菌产几丁质酶的能力,对MEW06产几丁质酶的发酵培养基条件进行了优化。通过Plackett-Burman设计、最陡爬坡试验和响应面法Box-Behnken设计试验,得到了MEW06产几丁质酶的最优培养基配方。实验表明:在MEW06菌株在产几丁质酶的最适条件(pH 7.0、温度31℃、接种量3%、装液量35%、摇床转速150rpm和培养时间为48h)的基础上,优化出来的培养基配方为:淀粉17.5g/L、胶体几丁质8/1000(wt/vol)、蛋白胨20g/L、K_2HPO_4 0.56g/L、KH_2PO_4 0.375g/L、MgSO_4·7H_2O 0.5g/L、FeSO4·7H_2O 0.01g/L、ZnSO_4 0.01g/L。优化后MEW06发酵产几丁质酶活达197.32 U/mL,相比于初始培养基酶活提高了2.58倍。可为MEW06菌株在农业生防方面的应用以及在降解几丁质方面的应用提供实验依据。  相似文献   

20.
以碱处理玉米芯渣为原料,研究米根霉利用高质量浓度玉米芯渣同步糖化发酵(SSF)生产富马酸,同时从米根霉菌体中提取真菌壳聚糖。结果表明,高底物质量浓度纤维素酶水解提高了葡萄糖质量浓度,有利于米根霉发酵产富马酸。米根霉利用质量浓度为100 g/L的玉米芯渣SSF,发酵至72 h,富马酸质量浓度达到28.65g/L,是质量浓度为50 g/L玉米芯渣SSF中富马酸质量浓度的1.95倍。采用碱法从米根霉菌体中提取壳聚糖,米根霉壳聚糖脱乙酰度为90%;米根霉壳聚糖溶液(质量浓度为20 g/L)黏度为2 m Pa·s,米根霉壳聚糖的重均分子量和数均分子量分别2 578和1 532 u。本研究实现了米根霉以木质纤维原料为碳源联产富马酸和真菌壳聚糖,为木质纤维原料高值生物转化有机酸和生物高分子提供成本较低的新途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号