首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘国海  李持衡  沈跃  刘慧  张亚飞  赵莎 《农业机械学报》2023,54(3):180-189,300
为提高同步转向高地隙喷雾机转向机构对目标状态的响应速度与鲁棒性,提出了一种滑模自抗扰姿态控制策略。首先,基于同步转向结构建立喷雾机姿态控制模型;其次,将喷雾机的姿态控制模型进行解耦并转换为反馈系统标准型;然后,设计线性扩张状态观测器对模型总扰动进行实时补偿,并根据补偿后的模型推导出终端滑模控制律;最后,分别通过仿真试验以及场地试验对姿态控制器的性能进行验证。在场地试验中:当目标转角为5°时,喷雾机前、后转向角的响应时间分别为1.55 s和1.45 s,当目标转角为20°时,前、后转向角的响应时间分别为3.05 s和2.95 s。本文所提出的滑模自抗扰姿态控制器与传统PID姿态控制器相比,前、后转向角的响应速度分别提高8.42%与1.89%,稳态误差分别降低2.96%与3.15%。仿真试验与场地试验结果表明,滑模自抗扰姿态控制算法收敛速度快、鲁棒性强,能够满足喷雾机在不同环境下进行无人自主导航作业的需要。  相似文献   

2.
为减少对人工驾驶的依赖和提高作业质量、实现拖拉机自动转向,提出一种基于IMC-PID的拖拉机前轮转角自动控制系统,阐述系统整体结构,介绍系统的组成、工作原理和硬件设计方案。通过分析拖拉机自动转向系统的需求和整体控制策略,基于转向系统模型设计拖拉机前轮转角控制器,详细阐述IMC-PID转角控制算法的设计过程,应用Matlab/Simulink工具箱搭建仿真模型验证算法的可行性,并结合双力704型拖拉机进行实车试验。仿真试验和实测结果表明:所设计的控制系统信号跟踪的最大误差为1°,平均误差为0.4°,响应时间小于0.2 s;在模型误差20%时,系统仍保持良好的跟踪性能和抗扰动性。研究表明:前轮转角自动控制系统具有较好的动态响应和良好的跟踪效果,能基本满足田间导航的作业需求。  相似文献   

3.
农田作业环境复杂,影响农业机器人作业精度和效率,稳定的转向系统控制器和控制算法至关重要。传统控制器和算法的开发过度依赖于田间试验、研发周期长、干扰因素多,因此建立转向系统半实物仿真平台,其主要包括转向闭环控制系统、力矩闭环控制系统、输入输出模块以及基于Windows+RTX的实时系统。对转向闭环系统进行建模,采用基于前馈补偿的复合控制算法,并在Matlab/Simulink中对建立的模型和算法进行仿真验证。将前馈补偿复合算法与未加补偿的算法进行试验对比,仿真结果表明,最大绝对误差减小72.3%。进一步进行试验验证,系统的响应时间为0.380 s,超调量为0.296%,最大跟踪误差为0.15°,平均绝对误差0.04°。幅值为30°时,平均绝对误差减小94.23%,最大绝对误差减小88.68%。  相似文献   

4.
高地隙液压四轮驱动喷雾机转向防滑控制系统   总被引:4,自引:0,他引:4  
建立了高地隙四轮驱动喷雾机转向过程中的线性2自由度模型,以前轮转向为例计算出了实际转向角,设计了一种以实际转速比与理论转速比差值为控制对象的转向防滑控制系统。构建了转向电液防滑系统试验装置,分别在转角为5°、10°、15°、20°、25°、30°以及转角在0°~30°连续变化时对控制系统进行了试验验证。结果表明,高地隙四轮驱动喷雾机的转向防滑控制效果良好,控制平均误差最大为2.01%,均值为1.25%。  相似文献   

5.
高地隙自走式喷雾机多轮转向系统设计与试验   总被引:1,自引:0,他引:1  
大型高地隙自走式喷雾机在田间作业过程中,由于整车地隙高、质量以及体积较大,导致换行及转场作业困难,影响作业效率。为提高喷雾机的机动性能和作业效率,设计了一套全液压多轮转向系统,并提出了基于PID控制方法的四轮转向系统控制方法。在建立全液压转向系统数学模型的基础上,应用Matlab/Simulink进行了转向系统仿真分析。仿真结果表明:四轮转向过程中后轮转角对前轮转角的跟随存在0. 04 s的滞后,最大转角跟随误差为2. 82°,误差在阿克曼转向理论允许范围之内,满足转向要求。基于研发的3WPG-3000型大型高地隙自走式喷雾机,搭建了多轮转向系统实车试验平台,进行了后轮对前轮转向角的跟随控制试验,试验结果表明:在田间随机转向试验过程中,最大转角跟随误差为2. 60°,满足四轮转向要求,验证了所设计的多轮转向系统的响应性、准确性和稳定性。  相似文献   

6.
设计了一种基于预瞄准纯追踪模型及模糊控制的轨迹追踪控制算法、基于液压系统及PID算法的自动转向控制系统。为测试轨迹追踪控制算法和自动转向控制系统的效果,以田间作业轮式机器人为试验平台,进行农机轨迹跟踪和转向控制试验。结果表明:轨迹追踪试验中车速为0.6m/s时,横向偏差最大为0.07m,平均横向偏差为0.05m左右;转向控制试验中,转向角响应时间不超过1.5s,超调量小于5%。  相似文献   

7.
针对传统机械传动式高地隙喷雾机底盘在水田环境行走时容易陷入泥泞和深沟的问题,本文设计了一种四轮独立电驱动自转向特殊结构电动底盘,底盘转向结构由可自转向的前后桥构成,根据自转向结构特点,提出了底盘结构部分动力学建模方法,将未建模动态以及外部扰动合并为总扰动,构建扩张状态观测器(Extended state observer, ESO)实时估计总扰动并进行扰动补偿,再对无扰动的线性模型设计串级比例控制器,进行模型参数辨识与控制验证。仿真结果表明,采用阶跃信号模拟扰动,ESO扰动观测值可在0.5s内收敛到实际扰动;扰动观测器收敛后,当期望转角从0°突加至20°,得到转角跟踪控制响应曲线的上升时间为1.9s,超调量2.3%;试验结果表明,喷雾机以1m/s的速度行驶在平坦路面时,前转向桥转角上升时间为3.1s,后转向桥转角上升时间为2.0s,验证了本控制方法拥有较好的控制效果;在满载的情况下工作在泥泞田间时,可以轻松越过宽20cm、深40cm的泥泞深沟,验证了其在田间拥有良好通过性。  相似文献   

8.
针对皖南山区高垄畦沟环境下小型烟草植保机田间作业易侧翻、难调头的问题,根据植保机在高垄畦沟田间行走的稳定性与转向要求,通过对传动系统与转向系统进行分析,设计了小型轮式烟草植保机。利用Recur Dyn/Track仿真软件,建立植保机与田垄结构的动力学与运动学模型,完成植保机移动平台设计和优化,并对植保机在高垄畦沟田间环境下进行试验。仿真结果表明,设计的植保机模型能够达到转向半径为0. 8 m的实际要求,且沿垄间直线行驶时移动平台侧倾角小于3°,移动平台最佳作业速度为1. 0 m/s,验证了植保机移动平台模型具有良好的转向性和稳定性。植保机样机田间试验结果表明,移动平台在烟草田头转向性满足南方烟草垄作环境需求,利用惯导装置测试垄间移动植保机作业速度为1. 0 m/s时,最大侧倾角为14. 38°,没有超过其发生侧翻的临界角,能够安全通过。  相似文献   

9.
基于直流电机与全液压转向器直联的自动转向系统研究   总被引:3,自引:0,他引:3  
针对农机装备电控液压自动转向系统生产成本高及电动方向盘自动转向系统中控制力矩小、存在自由行程的问题,设计了基于直流电机与全液压转向器直联的自动转向机构及其电控系统,该系统主要包括自动转向执行机构、自动转向控制器和液压转向机构等。自动转向执行机构与原车液压转向机构连接实现自动转向功能,考虑了底盘阿克曼角的自动转向控制器实现车轮转向的精确控制,通过在转向驱动电机输出轴安装电磁离合器和转向柱扭矩传感器实现人工驾驶模式和自动驾驶模式的自动切换。试验结果表明,车轮转角响应平均稳态误差小于0.1°,最大稳态误差为0.158°,±20°阶跃信号最快响应时间达1.2 s,超调量小于1%,可以满足对各种轮式农机的自动导航辅助驾驶转向系统性能的要求。  相似文献   

10.
高地隙喷雾机自转向电动底盘控制系统设计与试验   总被引:1,自引:0,他引:1  
沈跃  何思伟  刘慧  崔业民 《农业机械学报》2020,51(11):385-392,402
针对传统机械传动式高地隙喷雾机底盘在水田环境行走时容易陷入泥泞和深沟的问题,设计了一种四轮独立电驱动自转向电动底盘。底盘转向机构由可自转向的前后桥构成,根据自转向机构特点,提出了底盘部分动力学建模方法,将未建模动态以及外部扰动合并为总扰动,构建扩张状态观测器(Extended state observer, ESO),实时估计总扰动并进行扰动补偿,再对无扰动的线性模型设计串级比例控制器,进行模型参数辨识与控制验证。仿真结果表明,采用阶跃信号模拟扰动,ESO扰动观测值可在0.5s内收敛到实际扰动;扰动观测器收敛后,当期望转角从0°突加至20°时,得到转角跟踪控制响应曲线的上升时间为1.9s,超调量为2.3%。试验表明,喷雾机以1m/s的速度行驶在平坦路面时,前转向桥转角上升时间为3.1s,后转向桥转角上升时间为2.0s,说明本控制方法具有较好的控制效果;喷雾机在满载的情况下工作在泥泞田间时,可以越过宽20cm、深40cm的泥泞深沟,说明其在田间具有良好的通过性。  相似文献   

11.
针对农业轮式机器人各转向轮协调控制问题,提出一种转向运动控制方法。基于轮毂电机驱动的四轮独立转向机器人底盘结构,采用PID控制方法,构建轮间跟随联动的转向协调控制策略;设计轮式机器人转向控制的硬件与软件系统,对PID控制参数进行整定;并进行样机台架试验及路面验证试验。结果表明:该方法能精准控制轮毂电机转速,最佳PI控制参数Kp为0.45,Ki为0.02;台架试验中,底盘启动时存在1°~3°转向误差,但随时间推移,各轮逐渐吻合阿克曼转向关系;路面试验中,转向角可随目标信号实时调整,保持阿克曼转向关系,转角误差2°~3°,转向时间小于3 s,满足本文轮式机器人的作业要求。  相似文献   

12.
常规的农用作业装备很难适应坡地作业环境,为了使作业车身在坡地作业时保持水平,以主动平衡系统作为研究对象,开发了主动平衡试验平台及控制系统。基于SimMechanics与SimHdraulics模块建立了机-电-液多物理域仿真模型;针对双作用非对称式液压油缸推程与回程运动的不同特性,采用双通道式PID控制策略进行控制,分别对液压油缸跟随响应、位移误差变化、速度阶跃响应与平台双轴倾角进行仿真分析。仿真表明,双通道PID控制下最大跟随误差为1.90mm,响应时间为0.228s,极限状态下平衡时间为2.98s。与单通道PID控制相比,其最大控制误差降低49.3%,响应速度提高了45.8%。在实验室模拟8种不同坡度,对主动平衡试验平台进行响应时间和平衡效果测试,系统响应时间为0.328s;随着坡度的增加,试验平台调平最大误差为1.14°,最大均方根误差为0.299°,主动平衡试验平台及控制系统达到了设计要求。  相似文献   

13.
为了促进国产山地拖拉机发展,选择自主研发的404P型山地拖拉机作为研究对象,对液压调平系统工作原理进行分析,建立车身高度和提升液压缸总长的函数关系,基于AMEsim软件平台构建液压调平系统的仿真模型并进行液压作业仿真。结果表明:当车身倾斜4°时液压系统调平时间为1.25 s,8°时调平时间为2.44 s,12°时调平时间为3.6 s。试验结果表明该液压系统基本满足实际作业需求。   相似文献   

14.
果实收获机器人关节滑模控制系统设计与试验   总被引:2,自引:0,他引:2  
针对多关节果实收获机器人难以获得精确控制模型以及控制系统的抖振问题,提出基于遗传算法实时动态调整滑模参数的控制策略,设计并制作了基于STM32微控制器和AS5045位置反馈模块及CAN总线通信模块的关节控制系统仿真和试验平台,分别在空载与负载情况下进行了关节电机位置响应试验。结果表明,采用遗传算法动态调整滑模控制器参数能够提高关节控制系统位置跟踪的响应速度,减少外界干扰和负载变化引起的控制系统抖振的幅度与持续时间,具有较强的鲁棒性。由空载和负载试验结果可知,关节6实际试验控制系统的位置跟踪响应时间比理论仿真试验增加了0.5 s,负载时控制系统的位置跟踪响应时间比空载时增加了0.3 s,但负载对系统精度和超调量并无明显影响,系统具有良好的控制效果。  相似文献   

15.
基于机器视觉的农业车辆路径跟踪   总被引:2,自引:0,他引:2  
简述了一种基于机器视觉的农业车辆自动导航系统.提出了直线检测算法,显著降低了内存需求和时间消耗;以横向偏差和航向偏差作为输入量,构建了二维模糊决策器,对期望前轮转角进行决策;构建了基于PID的转向控制器,实现前轮转向控制,并采用简化的两轮车运动学模型进行了仿真.仿真和实验结果表明,该导航系统可以有效地实现直线路径跟踪.当车速为0.3m/s时,最大跟踪横向偏差不超过5cm,平均偏差不超过2cm;当车速为0.6m/s时,最大跟踪横向偏差不超过8cm,平均偏差不超过4cm.  相似文献   

16.
为进一步提升山地拖拉机的工作效率及作业过程中转向系统的运转平稳性与准确性,采用电机控制技术,针对山地拖拉机的电控液压转向系统进行设计分析。基于转向控制的内部形成机理,建立了电控液压转向控制系统数学模型,对转向系统的核心部件进行参数选取,实现机身转向平稳机构设计。利用SolidWorks构建电控液压转向系统的物理模型,并结合3Dmax提供山地作业场景,从转向系统转矩控制与拖拉机行进速度变化角度进行转向仿真试验。试验结果表明:选取转向角度与转向平稳性作为评价分析参数,在角度范围-25°~25°之间变化时,每次变化角度误差在-0. 64°~+0. 94°的范围内,满足设计要求;转向试验过程中机身的转向平稳性控制在79. 8%以上,大于75%的设计指标,说明仿真试验可行。  相似文献   

17.
接触式拖拉机导航控制系统   总被引:3,自引:0,他引:3  
为提高接触式拖拉机导航系统性能和导航精度,针对玉米秸秆行间作业,设计了双层控制器接触式导航控制系统.在分析接触式导航传感器检测信号的基础上,以触杆转角为输入、前轮目标转角为输出设计了模糊控制器作为导航控制的上层控制.下层控制针对电液系统的非线性,采用带非线性补偿的PID控制器实现对拖拉机前轮转向角的控制.该导航控制方法在Matlab/Simulink平台上进行了仿真,导航控制系统在秸秆行间进行了试验验证.仿真和田间试验结果表明,导航控制算法的响应快、稳定性好.当行驶速度不超过1 m/s时,拖拉机导航精度在50 mm以内,平均误差15 mm,能满足玉米秸秆行间作业要求.  相似文献   

18.
现代农业要求农机在工作过程中实现实时高效的控制性能。为此,将PID控制方法与模糊控制方法相结合形成模糊PID控制器,根据模糊控制规则以及PID控制算法表达式得到了ΔKP、ΔKI、ΔKD3个参数,控制器不断地检测e(t)和ec(t)的值得到响应曲线。试验平台建立在东方红拖拉机上并且进行了输出响应试验和转角试验,结合Mat Lab仿真来分析控制系统的性能,结果表明:此方法可以有效地缩短农机转向系统的响应时间,减小超调量,提高转向精度,是一种性能更加稳定的控制方法。  相似文献   

19.
诱导轮偏转角对离心泵叶轮空化性能的影响   总被引:1,自引:0,他引:1  
为了阐明诱导轮偏转角对离心泵叶轮空化性能的影响,改善离心泵的空化性能,找到最佳周向位置,基于均相流假设,采用IDM空化模型与RNG k-ε湍流模型,先选取诱导轮偏转角分别为0°,10°,20°,30°,40°,50°共6种方案,对离心泵外特性及诱导轮和叶轮空化性能进行数值模拟和试验对比,得到不同方案下离心泵的性能数据.计算得到的NPSHR曲线与试验数据吻合较好,验证了计算方法的准确性;基于数值模拟结果,分析了不同偏转角下诱导轮与叶轮内气泡分布规律,发现不同偏转角下诱导轮和叶轮内空化发展过程及气泡发展规律基本相同,但偏转角为10°时气泡发展速度较慢、各空化阶段分布面积较小,进一步选择5°和15°偏转角进行计算分析,得到更精确的结论,即诱导轮偏转角为5°时离心泵的综合水力性能最优.  相似文献   

20.
电动助力转向系统全工况建模及试验验证   总被引:2,自引:0,他引:2  
为克服以往车辆电动助力转向(EPS)模型的不足,结合简化的原地转向轮胎模型和基于Doguff轮胎模型的七自由度整车模型,建立了转向系统转向及回正时的力学模型。为得到车辆的转向力矩和回正性能特性,对无助力转向全工况(原地及行驶条件下)转向操纵转矩和回正的转向盘残留转角进行仿真,试验结果表明所设计的模型可以准确描述转向操纵转矩和回正特性。进而设计了基于滑模变结构电动助力转向控制策略进行助力和回正控制,仿真和实车验证结果表明,基于该模型设计的控制策略可以有效降低驾驶员的操纵转矩和提高车辆的回正性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号