首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正> The irrigating warped soils occur in the old irrigation areas of arid and semi-arid re-gions of China, and distributed from Zhangjiakou of Hebei province, through InnerMongolia Autonomous Region, Ningxia Hui Autonomous Region, Gansu province,Qinhai Province, down to Xinjiang Autonomous Region, including the arid subalpine rivervalleys in the western part of Tibet.  相似文献   

2.
<正> Ningxia lies inland in China. Its annual rainfall is from 130 mm to 380 mm. It lies inthe arid and semiarid areas of the midtemperate zone. Dry climate, sand blown by thewind, common salinization and scattered plants are the main climatic characteristics. So itis very important for the afforestation, environmental protection and management of cities  相似文献   

3.
The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin.In this study,the arid remote sensing ecological index(ARSEI)for large-scale arid areas was developed,which coupled the information of the greenness index,the salinity index,the humidity index,the heat index,and the land degradation index of arid areas.The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019.The results show that the greenness index,the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin,while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment.The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement,followed by deterioration,and finally further improvement.The spatial variation of these changes was significant.From 2000 to 2019,grassland and wasteland(saline alkali land and sandy land)in the central and western parts of the basin had the worst ecological environment quality.The areas with poor ecological environment quality are mainly distributed in rivers,wetlands,and cultivated land around lakes.During the period from 2000 to 2019,except for the surrounding areas of the Aral Sea,the ecological environment quality in other areas of the Aral Sea Basin has been improved in general.The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were–0.593 and 0.524,respectively.Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin.However,human activities had a greater impact.The ARSEI can quantitatively and intuitively reflect the scale and causes of large-scale and long-time period changes of the eco-environmental quality in arid areas;it is very suitable for the study of the eco-environmental quality in arid areas.  相似文献   

4.
Water shortage is one bottleneck that limits economic and social developments in arid and semi-arid areas.As the impacts of climate change and human disturbance intensify across time,uncertainties in both water resource supplies and demands increase in arid and semi-arid areas.Taking a typical arid region in China,Xinjiang Uygur Autonomous Region,as an example,water yield depth(WYD)and water utilization depth(WUD)from 2002 to 2018 were simulated using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model and socioeconomic data.The supply-demand relationships of water resources were analyzed using the ecosystem service indices including water supply-demand difference(WSDD)and water supply rate(WSR).The internal factors in changes of WYD and WUD were explored using the controlled variable method.The results show that the supplydemand relationships of water resources in Xinjiang were in a slight deficit,but the deficit was alleviated due to increased precipitation and decreased WUD of irrigation.WYD generally experienced an increasing trend,and significant increase mainly occurred in the oasis areas surrounding both the Junggar Basin and Tarim Basin.WUD had a downward trend with a decline of 20.70%,especially in oasis areas.Water resources in most areas of Xinjiang were fully utilized and the utilization efficiency of water resources increased.The water yield module in the InVEST model was calibrated and validated using gauging station data in Xinjiang,and the result shows that the use of satellite-based water storage data helped to decrease the bias error of the InVEST model by 0.69×108m3.This study analyzed water resource supplies and demands from a perspective of ecosystem services,which expanded the scope of the application of ecosystem services and increased the research perspective of water resource evaluation.The results could provide guidance for water resource management such as spatial allocation and structural optimization of water resources in arid and semi-arid areas.  相似文献   

5.
The hydrogen isotopic composition of plant leaf wax(δDwax) is used as an important tool for paleohydrologic reconstruction. However, the understanding of the relative importance of environmental and biological factors in determining δDwax values still remains incomplete. To identify the effects of soil moisture and plant physiology on δDwax values in an arid ecosystem, and to explore the implication of these values for paleoclimatic reconstruction, we measured δD values of soil water(δDwater) and δDwax values in surface soils along two distance transects extending from the lakeshore to wetland to dryland around Lake Qinghai and Lake Gahai on the northeast Qinghai-Tibetan Plateau. The results showed that the δDwater values were negatively correlated with soil water content(SWC)(R2=0.9166), and ranged from –67‰ to –46‰ with changes in SWC from 6.2% to 42.1% in the arid areas of the Gangcha(GCh) and Gahai(GH) transects. This indicated that evaporative D-enrichment in soil water was sensitive to soil moisture in an arid ecosystem. Although the shift from grasses to shrubs with increasing aridity occurred in the arid area of the GH transect, the δDwax values in surface soils from the arid areas of the two transects still showed a negative correlation with SWC(R2=0.6835), which may be due to the controls of primary evaporative D-enrichment in the soil water and additional transpirational D-enrichment in the leaf water on the δDwaxvalues. Our preliminary research suggested that δDwax values can potentially be applied as a paleo-humidity indicator on the northeast Qinghai-Tibetan Plateau.  相似文献   

6.
The division of arid areas is important in water and land resources management, planning and for a long-term agricultural, economic and social planning. Northwest China(NW) dominates the main arid areas in China. There is thus a need to adopt adequate concepts relative to the scope of arid areas of NW China and identify its climate types and characteristics. In this study, we analyzed climatic data over the last 30 years(1981–2010) from 191 stations in three provinces and three autonomous regions of NW China. The factor-cluster analysis tech- nique(FC), an objective and automated method was employed to classify the dry/wet climate zones. The traditional methods with predefined thresholds were adopted for providing a comparison with FC. The results showed that the wet/dry climate zones by FC were mainly distributed along mountains, rivers and desert borders. Climate-division boundaries relied heavily on the major terrain features surrounding the grouped stations. It also showed that the climate was dry in the plain sandy areas but relatively wet in the high mountain areas. FC method can reflect the climate characteristics more fully in NW China with varied and complicated topography, and outperform the tradi- tional climate classifications. Arid areas of NW China were defined as four climate types, including five resultant classes in FC classifications. The Qinling and Da Hinggan Mountains were two important boundaries, besides main administrative boundaries. The results also indicated that there are some differences between two traditional clas- sifications. The precipitation moved and fluctuated to an extent, which confirmed that climate change played an important role in the dry/wet climate zoning, and the boundaries of dry/wet climate zones might change and migrate with time. This paper is expected to provide a more in-depth understanding on the climate characteristics in arid areas of NW China, and then contribute to formulate reasonable water and land management planning and agri- cultural production programs.  相似文献   

7.
<正> 1. The natural economic conditions of yanchi county Yanchi County (in Ningxia Province, China) lies between the Muwus Desert and theLoess Plateau, its geographical location is a typical transition belt. The view from south tonorth: the general configuration of the earth's surface is from the Loess Plateau to Ordos ta-bleland; the climate is from semi arid to arid. The transition of its geogrophical location pro-vides the area such features which are various,complex and fragile in natural conditions.  相似文献   

8.
The Penman-Monteith(PM)method is the most widely used technique to estimate potential worldwide evapotranspiration.However,current research shows that there may be significant errors in the application of this method in arid areas,although questions remain as to the degree of this estimation error and how different surface conditions may affect the estimation error.To address these issues,we evaluated the uncertainty of the PM method under different underlying conditions in an arid area of Northwest China by analyzing data from 84 meteorological stations and various Moderate Resolution Imaging Spectroradiometer(MODIS)products,including land surface temperature and surface albedo.First,we found that when the PM method used air temperature to calculate the slope of the saturation vapor pressure curve,it significantly overestimated the potential evapotranspiration;the mean annual and July–August overestimation was 83.9 and 36.7 mm,respectively.Second,the PM method usually set the surface albedo to a fixed value,which led to the potential evapotranspiration being underestimated;the mean annual underestimation was 27.5 mm,while the overestimation for July to August was 5.3 mm.Third,the PM method significantly overestimated the potential evapotranspiration in the arid area.This difference in estimation was closely related to the underlying surface conditions.For the entire arid zone,the PM method overestimated the potential evapotranspiration by 33.7 mm per year,with an overestimation of 29.0 mm from July to August.The most significant overestimation was evident in the mountainous and plain nonvegetation areas,in which the annual mean overestimation reached 5%and 10%,respectively;during July,there was an estimation of 10%and 20%,respectively.Although the annual evapotranspiration of the plains with better vegetation coverage was slightly underestimated,overestimation still occurred in July and August,with a mean overestimation of approximately 5%.In order to estimate potential evapotranspiration in the arid zone,it is important that we identify a reasonable parameter with which to calibrate the PM formula,such as the slope of the saturation vapor pressure curve,and the surface albedo.We recommend that some parameters must be corrected when using PM in order to estimate potential evapotranspiration in arid regions.  相似文献   

9.
Saline dust storms and their ecological impacts in arid regions   总被引:5,自引:3,他引:2  
In many arid and semiarid regions,saline playas represent a significant source of unconsoli-dated sediments available for aeolian transport,and severe saline dust storms occur frequently due to human disturbance.In this study,saline dust storms are reviewed systematically from the aspects of con-cept,general characteristics,conditions of occurrence,distribution and ecological impact.Our researches showed that saline dust storms are a kind of chemical dust storm originating in dry lake beds in arid and semiarid regions;large areas of unconsolidated saline playa sediments and frequent strong winds are the basic factors to saline dust storm occurrence;there are differentiation characteristics in deposition flux and chemical composition with wind-blown distance during saline dust storm diffusion;and saline dust storm diffusion to some extent increases glacier melt and results in soil salinization in arid regions.An under-standing of saline dust storms is important to guide disaster prevention and ecological rehabilitation.  相似文献   

10.
David BLANK  LI Yaoming 《干旱区科学》2022,14(10):1069-1085
Many arid areas have very severe climates with extremely high summer temperatures, strong solar radiation, and a lack of drinking water during the driest season. Therefore, antelopes living in arid areas are forced to solve two main problems: avoiding overheating and maintaining water balance.Generally, there are physiological, morphological, and behavioral mechanisms for antelope adaptations to arid environments. Among the mechanisms, behavioral adjustments have a minimal cost and are activated...  相似文献   

11.
The status of regional biodiversity is determined by habitat quality.The effective assessment of habitat quality can help balance the relationship between economic development and biodiversity conservation.Therefore,this study used the InVEST model to conduct a dynamic evaluation of the spatial and temporal changes in habitat quality of the Tarim River Basin in southern Xinjiang Uygur Autonomous Region of China by calc ulating the degradation degree levels for habitat types that were caused by threat factors from 1990 to 2018(represented by four periods of 1990,2000,2010 and 2018).Specifically,we used spatial autocorrelation analysis and Getis-Ord Gi*analysis to divide the study area into three heterogeneous units in terms of habitat quality:cold spot areas,hot spot areas and random areas.Hemeroby index,population density,gross domestic product(GDP),altitude and distance from water source(DWS)were then chosen as the main disturbance factors.Linear correlation and spatial regression models were subsequently used to analyze the influences of disturbance factors on habitat quality.The results demonstrated that the overall level of habitat quality in the TRB was poor,showing a continuous degradation state.The intensity of the negative correlation between habitat quality and Hemeroby index was proven to be strongest in cold spot areas,hot spot areas and random areas.The spatial lag model(SLM)was better suited to spatial regression analysis due to the spatial dependence of habitat quality and disturbance factors in heterogeneous units.By analyzing the model,Hemeroby index was found to have the greatest impact on habitat quality in the studied four periods(1990,2000,2010 and2018).The research results have potential guiding significance for the formulation of reasonable management policies in the TRB as well as other river basins in arid areas.  相似文献   

12.
Recent studies on alkaline soils of arid areas suggest a possible contribution of abiotic exchange to soil CO2 flux(Fc).However,both the overall contribution of abiotic CO2 exchange and its drivers remain unknown.Here we analyzed the environmental variables suggested as possible drivers by previous studies and constructed a function of these variables to model the contribution of abiotic exchange to Fc in alkaline soils of arid areas.An automated flux system was employed to measure Fc in the Manas River Basin of Xinjiang Uygur autonomous region,China.Soil pH,soil temperature at 0–5 cm(Ts),soil volumetric water content at 0–5 cm(θs)and air temperature at10 cm above the soil surface(Tas)were simultaneously analyzed.Results highlight reduced sensitivity of Fc to Ts and good prediction of Fc by the model Fc=R10Q10(Tas–10)/10+r7q7(pH–7)+λTas+μθs+e which represents Fc as a sum of biotic and abiotic components.This presents an approximate method to quantify the contribution of soil abiotic CO2 exchange to Fc in alkaline soils of arid areas.  相似文献   

13.
The middle and lower reaches of the Tarim River are currently one of the main regions of ecological restoration in the arid areas of western China.Using the principles and method of landscape ecology,this study has chosen the fluvial corridor landscape in the middle and lower reaches of the Tarim River,and discusses the region’s ecologically functional regionalization system and issues related to its practical classification.On this basis the corresponding regionalizing principles and standards were developed which were used to qualitatively divide the three main landscapes as the ecologically functional areas in the drainage basin.The paper has also analyzed the characteristic of the study areas,and has put forward the measures for its ecological restoration.  相似文献   

14.
<正> The following study of populations of gerbil in arid and Saharan terrain enables us toexamine the relationships between the essential determinants in the cycles of abundance. Social unity, methods of spatial distribution, dispersal, strategies for food and repro-duction, and also disappearance, are linked to climatic factors and defined according to therecognised hierarchy of stages of perceptions in Ecology individual, group, population,  相似文献   

15.
<正> The catchment of runoff which improves the moisture content condition in tree holes isof great improtance to the development of the afforestation in arid and semi-arid regions.The crux of this technique is the soil water content which influnences the survial rates,  相似文献   

16.
<正> This paper discussed some observation and calculation methods of evaporation and itscharacteristics in arid land taken an example in Turpan, Xinjiang, China by using the dataobtained from July 1, 1991 to June 30, 1992 in the observation station which was settled forthe Japan-China cooperation study in the marginal area of an oasis in Turpan, Xinjiang,China. It is pointed out that due to very low water content in arid land, real evaporation de-  相似文献   

17.
We analyzed the 1961-2006 mean surface air temperature data of 138 stations in China’s northwest arid and semi-arid areas(CNASA),to measure climate change in terms of annual mean air temperature changes.We used methods of linear regression analysis,multinomial fitting,Empirical Or-thogonal Function(EOF),Rotated Empirical Orthogonal Function(REOF),Mann-Kendall,Glide T-examination,wavelet analysis and power spectrum analysis.The results show that(1) the warming rate of the annual mean air temperature in CNASA was 0.35oC/10a during the 1961-2006 study period.Some places in the west part of Xinjiang and east part of the Qinghai plateau,which is impacted by the terrain of leeward slope,exhibit smaller increasing trends.However,the majority of region has shown distinct warming in line with general global warming;(2) The standard deviation of the annual mean temperature distribution is non-uniform.The south Xinjiang and east Qinghai-south Gansu areas show relatively small standard deviations,but the inter-annual variation in annual mean air temperature in the greater part of the region is high;(3) Inner Mongolia,Shaanxi,Gansu,Ningxia and Tarim Basin are the areas where the temperature changes are most sensitive to the environment.The degree of uniformity in annual mean air temperature increase is higher in the arid and semi-arid area.From the early 1970s,the trend in tempera-ture changed from a decrease to an increase,and there was a marked increase in mean temperature in 1986.After that mean temperature went through a period of rapid increase.The entire area’s 10 hottest years all occurred in or since the 1990s,and 90% of various sub-districts’ hottest years also occurred after 1990.The process of temperature change appears to have a roughly 5-year and a 10-year cycle;(4) An-nual mean air temperature variation has regional differences.In Inner Mongolia-Xinjiang and Shaanxi-Gansu-Ningxia-Qinghai areas,the temperature variation in their northern areas was very different from that in their southern areas;(5) Using  相似文献   

18.
ZHOU Zuhao 《干旱区科学》2020,12(3):357-373
Glaciers are a critical freshwater resource of river recharge in arid areas around the world. In recent decades, glaciers have shown evidence of retreat due to climate change, and the accelerated ablation of glaciers and associated impacts on water resources have received widespread attention. Glacier variations result from climate change, so they can serve as an indicator of climate change. Considering the climatic differences in different elevation ranges, it is worthwhile to explore whether different responses exist between glacier area and air temperature in each elevation zone. In this study, we selected a typical arid inland river basin(Sugan Lake Basin) in the western Qilian Mountains of Northwest China to analyze the glacier variations and their response to climate change. The glacier area data from 1989 to 2016 were delineated using Landsat Thematic Mapper(TM), Enhanced TM+(ETM+) and Operational Land Imager(OLI) images. We compared the relationships between glacier area and air temperature at seven meteorological stations in the glacier-covered areas and in the Sugan Lake Basin, and further analyzed the relationship between glacier area and mean air temperature of the glacier surfaces in July–August in the elevation range of 4700–5500 m a.s.l. by the linear regression method and correlation analysis. In addition, based on the linear regression relationship established between glacier area and air temperature in each elevation zone, we predicted glacier areas under future climate scenarios during the periods of 2046–2065 and 2081–2100. The results indicate that the glaciers experienced a remarkable shrinkage from 1989 to 2016 with a shrinkage rate of –1.61 km2/a(–0.5%/a), and the rising temperature is the decisive factor dominating glacial retreat; there is a significant negative linear correlation between glacier area and mean air temperature of the glacier surfaces in July–August in each elevation zone from 1989 to 2016. The variations in glaciers are far less sensitive to changes in precipitation than to changes in air temperature. Due to the influence of climate and topographic conditions, the distribution of glacier area and the rate of glacier ablation first increased and then decreased in different elevation zones. The trend in glacier shrinkage will continue because air temperature will continue to increase in the future, and the result of glacier retreat in each elevation zone will be slightly slower than that in the entire study area. Quantitative glacier research can more accurately reflect the response of glacier variations to climate change, and the regression relationship can be used to predict the areas of glaciers under future climate scenarios. These conclusions can offer effective references for assessing glacier variations and their response to climate change in arid inland river basins in Northwest China as well as other similar regions in the world.  相似文献   

19.
Analysis of spatial-temporal variations of desert vegetation under the background of climate changes can provide references for ecological restoration in arid and semi-arid areas.In this study,we used the Global Inventory Modeling and Mapping Studies(GIMMS)NDVI data from 1982 to 2006 and Moderate Resolution Imaging Spectroradiometer(MODIS)NDVI data from 2000 to 2013 to reveal the dynamics of desert vegetation in Hexi region of Northwest China over the past three decades.We also used the annual temperature and precipitation data acquired from the Chinese meteorological stations to analyze the response of desert vegetation to climatic variations.The average value of NDVImax(the maximum NDVI during the growing season)for desert vegetation in Hexi region increased at the rate of 0.65×10–3/a(P0.05)from 1982 to 2013,and the significant increases of NDVImax mainly appeared in the typical desert vegetation areas.Vegetation was significantly improved in the lower reaches of Shule and Shiyang river basins,and the weighted mean center of desert vegetation mainly shifted toward the lower reaches of the two basins.Almost 95.32% of the total desert vegetation area showed positive correlation between NDVImax and annual precipitation,indicating that precipitation is the key factor for desert vegetation growth in the entire study area.Moreover,the areas with non-significant positive correlation between NDVImax and annual precipitation mainly located in the lower reaches of Shiyang and Shule river basins,this may be due to human activities.Only 7.64% of the desert vegetation showed significant positive correlation between NDVImax and annual precipitation in the Shule River Basin(an extremely arid area),indicating that precipitation is not the most important factor for vegetation growth in this basin,and further studies are needed to investigate the mechanism for this phenomenon.  相似文献   

20.
High total dissolved solids (TDS) content is one of the most important pollution contributors in lakes in arid and semiarid areas.Ulansuhai Lake,located in Urad Qianqi,Inner Mongolia,China,was selected as the object of study.Temperatures and TDS contents of both ice and under-ice water were collected together with corresponding ice thickness.TDS profiles were drawn to show the distribution of TDS and to describe TDS migration.The results showed that about 80% (that is 3.602×10 8 kg) of TDS migrated from ice to water during the whole growth period of ice.Within ice layer,TDS migration only occurred during initial ice-on period,and then perished.The TDS in ice decreased with increasing ice thickness,following a negative exponential-like trend.Within under-ice water,the TDS migrated from ice-water interface to the entire water column under the effect of concentration gradient until the water TDS content was uniform.In winter,6.044×10 7 kg (16.78% of total TDS) TDS migrated from water to sediment,which indicated that winter is the best time for dredging sediment.The migration effect gives rise to TDS concentration in under-ice water and sediment that is likely to affect ecosystem and water quality of the Yellow River.The trend of transfer flux of ice-water and water-sediment interfaces is similar to that of ice growth rate,which reveals that ice growth rate is one of the determinants of TDS migration.The process and mechanism of TDS migration can be referenced by research on other lakes with similar TDS content in cold and arid areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号