首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We assessed the geographic distribution, biovar, phylotype, DNA fingerprints (rep-PCR), and/or endoglucanase sequence of potato bacterial wilt pathogen, Ralstonia solanacearum (Rs), in Japan. Rs has been isolated from potato fields in southwestern, warm, temperate regions. Of the 188 isolates, 74 belonged to biovar N2 (39%), 44 to biovar 3 (24%), and 70 to biovar 4 (37%). Biovars N2 and 4 strains were widely distributed, from northern (Hokkaido) to southern (Okinawa) Japan. Based on the results of multiplex-PCR analysis, every potato strains belonged to either phylotype I or IV. Phylotype I comprised both biovars 3 and 4 strains. On the other hand, phylotype IV included biovar N2 strains. None of the strains belonged to phylotype II or III or biovar 1 or 2. Phylogenetic analysis based on DNA fingerprints and endoglucanase gene sequences clarified the genetic diversity of the Japanese potato strains and the close genetic relationship between the Japanese strains and the Asian strains in phylotypes I and IV.  相似文献   

2.
In the Philippines, bacterial wilt caused by Ralstonia solanacearum is one of the most important diseases affecting vegetables and banana. In this study, 89 strains of R. solanacearum isolated from various hosts were screened for their biovar, phylotype, pathogenicity, and genetic diversity. Foreign strains were included for comparison with these Philippine strains. Results of the biochemical and multiplex-PCR tests divided the Philippine strains into five biovars (1, 2, 3, 4, and N2) and three phylotypes (I, II, and IV). Three potato strains belonged to biovar N2/phylotype IV. Pathogenicity tests divided the strains into five pathogenicity types based on their virulence in tomato, potato, eggplant, sweet pepper, and tobacco. Strains classified as biovar N2 were weakly pathogenic to potato (pathogenicity type III) and almost all strains isolated from banana were not pathogenic to the test plants except potato (pathogenicity type V). The results of AFLP analysis divided the strains into four clusters. Cluster 1 was composed of strains isolated from solanaceous crops, ginger (Zingiber officinale), and Morus sp. from the Philippines and other Asian countries. Cluster 2 grouped the potato strains (biovar N2) from the Philippines and Japan and blood disease bacterium strains from Indonesia. Cluster 3 contained the local and foreign strains isolated from potato (biovar 2) and banana (biovar 1). Cluster 4 consisted only of the tomato strain from the USA.  相似文献   

3.
为了明确福建青枯雷尔氏菌(简称青枯菌)的遗传多样性,综合菌株的演化型、生化型及基于内源葡聚糖酶基因egl的序列变种鉴定,对福建省8个地区的番茄、辣椒和茄子寄主分离的56株青枯菌进行分析。结果表明:供试的56株青枯菌均属于演化型Ⅰ;53株为生化型Ⅲ(占94.64%),1株为生化型Ⅱ,2株为非标准生化型;从序列变种来看,4株来自茄子的青枯菌均属序列变种15,24株来自辣椒的青枯菌中,23株属于序列变种14,1株为序列变种16,28株番茄青枯菌鉴定出7个序列变种。进一步,选择上述鉴定的生化型Ⅲ和生化型Ⅱ的代表菌株为靶标菌进行生防菌筛选。结果表明,供试14株放线菌中,筛选到1株对生化Ⅲ青枯菌有拮抗作用的放线菌FJAT-31535。基于菌落形态特征和16S rRNA基因序列相似性分析,菌株FJAT-31535属于链霉菌属(Streptomyces sp.)。  相似文献   

4.
Bacterial wilt caused by Ralstonia solanacearum is a destructive disease for many crops. The aim of this study was to investigate the phylogenetic relationships and genetic structure of an R. solanacearum population from diverse origins in Taiwan. All 58 tested isolates belonged to phylotype I, except the two biovar 2 isolates from potato. These belonged to phylotype IIB sequevar 1 and were identical to known potato brown rot strains, which were probably introduced. Phylotype I isolates were grouped into 10 sequevars. Sequevar 15 was predominant (34 out of 56 isolates). Its distribution covered the whole island and it was largely associated with solanaceous crops such as tomato, and with tomato field soil. A total of 14 haplotypes were identified based on a partial endoglucanase gene sequence. Parsimony network analysis revealed that haplotype A was the oldest haplotype in the local population. It encompassed all but one of the sequevar 15 isolates. Large variation in virulence on tomato was observed among the 58 isolates, and seven pathotypes were identified. Significant genetic differentiation was detected among pathotypes. Moreover, genetic differentiation was detected between biovar 3 and biovar 4 subgroups and between the strains associated with solanaceous and non‐solanaceous species, but none was detected between strains from different geographic origins. The results suggest that the phylotype I population in Taiwan is homogeneous, while mutation and local adaptation to specific ecological niches keep shaping the population.  相似文献   

5.
A survey of bacterial wilt in China collected 286 strains of Ralstonia solanacearum from 17 plant species in 13 Chinese provinces to investigate genetic diversity using the biovar (bv.) and phylotype classification schemes. A phylotype-specific multiplex-PCR showed that 198 isolates belonged to phylotype I (bv. 3, 4 and 5) and 68 to phylotype II (bv. 2 and bv. 1). A phylogenetic analysis examined the partial sequence of the egl and hrpB gene of all strains and the genetic diversity of 95 representatives was reported, demonstrating that Chinese strains are partitioned into phylotype I (Asia) and II (Americas). Phylotype I strains (historically typed bv. 3, 4 and 5), had considerable phylogenetic diversity, including 10 different sequevars: seven previously described sequevars 12 to 18 and three new sequevars: 34, 44 and 48. Chinese strains Z1, Z2, Z3, Z7, Pe74 and Tm82 were not genetically distinguishable from the edible ginger reference strain ACH92 (r4-bv. 4) for sequevar 16. This is believed to be the first report of this ginger group in China. All Chinese bv. 2 strains falling into the genetically and phenotypically diverse phylotype II were placed into phylotype IIB sequevar 1 (historically the Andean race3-bv. 2 potato brown rot agent). In both the egl and hrpB sequence-based trees, strains isolated from mulberry were present in two distinct branches found in sequevars 12 and 48 (reference strains R292 and M2, respectively).  相似文献   

6.
The genetic diversity of Ralstonia solanacearum causing bacterial wilt of tomato in Trinidad was assessed using the hierarchical phylotyping scheme and rep‐PCR DNA fingerprinting. Seventy‐one isolates were collected in 2003 on infected tomato crops in the four main vegetable cropping areas of Trinidad (North, Central, South‐East and South). Two phylotypes were present, with phylotype II being much more prevalent (66%) than phylotype I (34%). Phylotype II strains consisted mainly of sequevar 7 in Central and South‐East, and sequevar 35 in North, South‐East and South. This is the first report of sequevar 7 outside south‐eastern USA. In contrast, no ‘brown rot’ (phylotype IIB/1, race 3 biovar 2) or emerging strains of phylotype IIB/4NPB were identified. Rep‐PCR data were used to assess population genetic structure. No significant clustering by geographical distance was found, suggesting regular gene flow among cropping areas (via waterways, plant or soil). However, the population from Central was significantly differentiated from the others, containing only phylotype II/seq 7 strains, with a high degree of clonality, suggesting a possible recent introduction from abroad. The South population was less aggressive and more genetically diverse, suggesting horizontal gene transfers within the population, even among isolates of different phylotypes. Phylotype I and phylotype II populations differed slightly in clonality levels, with indications of more frequent recombination events within phylotype I populations. Possible factors influencing genetic diversity and distribution within the island are discussed.  相似文献   

7.
Fifty-nine Ralstonia solanacearum isolates from diverse crops and regions were collected and characterized to determine the distribution and diversity of this soilborne pathogen in Guatemala. Three distinct types were present: a phylotype I, sequevar 14 strain, probably originating from Asia, infecting tomatoes and aubergines at moderate elevations; a phylotype II, sequevar 6 strain of American origin causing Moko disease in lowland banana plantations; and a phylotype II, sequevar 1 (race 3 biovar 2) strain causing brown rot on potatoes, Southern wilt of Pelargonium spp. and bacterial wilt of greenhouse tomatoes at high elevations. These data on strain diversity will inform effective regional efforts to breed for wilt resistance. A sensitive enrichment method did not detect the pathogen in fruits from naturally infected commercial tomato plants in Guatemalan fields and greenhouses, although it was detected in 6% of fruits from a wilt-resistant hybrid. Low numbers of R. solanacearum cells were also infrequently detected in fruits from plants artificially inoculated in the growth chamber with either race 3 biovar 2 or a phylotype II tomato strain.  相似文献   

8.
Bacterial wilt, caused by Ralstonia solanacearum, is a devastating disease resulting in tremendous losses of economic crops such as plants in the Solanaceae. Recent studies showed that R. solanacearum is spreading from the lowlands to the highlands in China. We studied 97 Chinese R. solanacearum strains that were isolated from four tobacco-growing zones over a wide range of elevations using phylotype specific multiplex polymerase chain reaction (Pmx-PCR) and phylogenetic relationships (egl and mutS). The results showed that all isolates belonged to phylotype I, which were further clustered into eight egl-sequence type groups (egl-group, sequevar): sequevars 13, 14, 15, 17, 34, 44, 54, and 55. In addition, Sequevar 55, found from the highlands, was a new/unknown one. Southeast China (Z3) had the largest number of egl-groups, containing six sequevars. The basin of the Yangzi River (Z1) and southwestern China (Z2) contained five egl-groups. The basin of the Huai River (Z4), near the north of China, where slight bacterial wilt occurred recently, contained a single group, sequevar 15. The distribution of sequevars was associated with elevation. Sequevar 15 was over-represented in lowland elevations, while sequevar 54 and the new/unknown one were only found in areas of moderate to high elevations. This finding suggested that the phylotype I strains infecting tobacco were diverse in China and regional integrated control strategies should be considered.  相似文献   

9.
Genetic Diversity of Japanese Strains of Ralstonia solanacearum   总被引:2,自引:0,他引:2  
ABSTRACT The genetic diversity of 74 Japanese strains of Ralstonia solanacearum was assessed by pathogenicity tests and the repetitive sequencebased polymerase chain reaction (rep-PCR) fingerprint method. Based on their genomic fingerprints, biovar N2 strains were divided into two distinct groups, one consisting of potato isolates belonging to race 3, and the other consisting of tomato, eggplant, pepper, and tobacco isolates belonging to race 1. Biovar 3 strains had low average similarity and were divided into five groups that differed in original host or pathogenicity. Biovar 4 strains consisted of only one group at the 80% similarity level. Comparative analysis of the rep-PCR fingerprints of 78 strains, including six biovars from Japan and various countries, revealed two main clusters. Cluster 1 comprised all biovar 3, 4, and 5 strains, biovar 1 strains from Reunion, and some biovar N2 strains from Japan. Cluster 2 included most of the biovar 1, 2, and N2 strains. The fingerprints showed low average similarity with biovar N2 strains from Japan and Brazil.  相似文献   

10.
The genetic and phenotypic diversity of C?te d'Ivoire Ralstonia solanacearum strains was assessed on a 168-strain collection sampled on Solanaceae both in the southern lowlands and western highlands. Phylotypes I, II, and III were prevalent, though at unexpected frequencies. Phylotype I strains (87.5%) were genetically diverse and overrepresented in all agroecological areas, including highlands (AEZ III). Phylotype II strains (10.7%) only belonged to one tropical lowland-adapted broad host range lineage (IIA-35), whereas no highland-adapted potato brown rot (IIB-1) or Moko strains were detected. African phylotype III strains were rare (1.8%). They originated from a single Burkina Faso lineage (III-23) and were only found in lowlands. Three phylotype I strains were found harboring pRSC35, a plasmid identified in phylotype III strains in Cameroon. From pathogenicity tests performed on commercial varieties and tomato/eggplant/pepper references, the virulence diversity observed was high, with five pathoprofiles described. Eggplant accessions MM152 and EG203 and tomato HW7996 displayed the largest resistance spectrum and highest level. Two highly virulent phylotype I strains were able to bypass resistance of HW7996 and the eggplant reference AG91-25. Collectively, these points lead to the conclusion that the situation in C?te d'Ivoire is specific towards other African countries, and specifically from the Cameroon reference, and that within phylotype I can exist a high virulence diversity. This calls for similar studies in neighboring West African countries, linking R. solanacearum pathogen genetic diversity to strain virulence at the regional level, for the rationalization of regional resistance deployment strategies and future resistance durability studies.  相似文献   

11.
Pathogenic characters of Japanese potato strains of Ralstonia solanacearum   总被引:1,自引:0,他引:1  
Ralstonia solanacearum (Rs) strains in phylotypes I and IV isolated from potato in Japan were investigated for pathogenicity on potato, tomato, eggplant, Solanum integrifolium, tobacco, groundnut, and pumpkin. The strains were divided into 17 types based on differences in their pathogenicity on the tested plants. Particularly, the pathogenicity of most phylotype I strains on eggplant was distinctly different from that of the phylotype IV strains. When nine potato varieties (included two breeding lines) were inoculated with several Rs strains, phylotype IV strains were highly virulent on the breeding lines that are regarded as resistant to phylotype I strains.  相似文献   

12.
Bacterial wilt or brown rot is one of the most devastating diseases of potato caused by a bacterium Ralstonia solanacearum (Smith 1986) Yabuuchi et al. (Microbiol Immunol 39:897–904 1995). Traditionally, R. solanacearum is classified into five races (r) on the basis of differences in host range and six biovars (bvs) on the basis of biochemical properties. Recently using molecular methods, R.?solanacearum has been classified into phylotypes based on the intergenic transcribed sequence of the ribosomal RNA genes 16S and 23S and into sequevars based on the endoglucanase gene (egl) sequence. In the present study, 75 bacterial strains, isolated from wilt infected potatoes from various potato growing regions of India, were classified by traditional and molecular methods. The identity of all the strains was confirmed as R. solanacearum as expected single 280-bp fragment resulted in all the strains following PCR amplification using R. solanacearum specific universal primer pair 759/760. Biovar (bv) analysis, based on utilization of disaccharide sugars and hexose alcohols, categorised the 75 strains into bv2 (78.7 %), 2 T (5.3 %), 3 (5.3 %) and 4 (10.7 %). The phylotype specific multiplex PCR assigned 78.7 % strains to phylotype II, 16.0 % to phylotype I and 5.3 % to phylotype IV. Phylogenetic analysis of egl gene sequences clustered all fifty nine phylotype II (bv2) strains with reference strain IPO1609 (IIB-1), all four phylotype IV (bv2T) strains with reference strain MAFF301558 (IV-8), three phylotype I (bv3) strains with reference strain MAFF211479 (I-30) and all eight phylotype I (bv4) and one phylotype I (bv3) strain with reference strain CIP365 (I-45). The study concluded that the Indian potato strains of R. solanacearum belong to three out of four phylotypes namely: the Asian phylotype I, the American phylotype II, and the Indonesian phylotype IV. This is the first study to address the diversity of R. solanacearum from potato in India using phylotype and sequevar scheme. We also report here for the first time the occurrence of phylotype IV sequevar 8 (bv2T) strain of R. solanacearum causing potato bacterial wilt in mid hills of Meghalaya in India.  相似文献   

13.
The diversity of 40 strains of Ralstonia solanacearum causing bacterial wilt of potato in the major potato-growing areas of Iran was assessed. Based on rep-PCR genomic fingerprinting, strains fell into two distinct groups. The first group contained 37 of the 40 strains and the second consisted of three strains from a narrow tropical region in Iran. The three strains from the narrow tropical region were found to be phenotypically and genotypically most similar to R. solanacearum biovar 2T strains, whereas all other strains were phenotypically and genotypically identified as being R. solanacearum biovar 2/race 3. Phylogenetic analysis of endoglucanase gene sequence information of two of the strains from the tropical region revealed that they belonged to phylotype II of the R. solanacearum species complex and had 100% sequence similarity to a biovar 2T strain from potato in Peru. This is the first report of the presence of R. solanacearum phylotype II/biovar 2T in Iran and the first report of the existence of this group of R. solanacearum outside South America.  相似文献   

14.
Ivey ML  Gardener BB  Opina N  Miller SA 《Phytopathology》2007,97(11):1467-1475
ABSTRACT The diversity of Ralstonia solanacearum strains isolated from eggplant (Solanum melongena) grown in five provinces of the Philippine island group of Luzon was assessed using a recently described hierarchical system. All strains keyed to race 1, biovar 3 or 4. Phylotype-specific multiplex polymerase chain reaction (PCR) indicated that, like most other strains of Asian origin, all the strains in our Philippine collection belong to phylotype I. Taxometric and phylogenetic analyses of partial endoglucanase gene sequences of strains from this collection and those previously deposited into GenBank revealed at least four subgroups among the otherwise monophyletic phylotype I strains. Nucleotide polymorphisms within each subgroup were infrequent and, among the subgroups identified in this study, variation was always <1.3%, indicating that the large majority of strains could be assigned to a single sequevar. Genomic DNA fingerprinting using enterobacterial repetitive intergenic consensus (ERIC)-PCR revealed additional fine-scale genetic variation that was consistent with the endogluconase sequence data. Whole-pattern and band-based analyses of the genomic fingerprint data revealed four and eight distinct genotypes, respectively, within our collection. Eggplant from infested fields in different provinces tended to harbor mixed populations of ERIC genotypes, with the predominant genotype varying by location.  相似文献   

15.
福建及贵州等地烟草青枯菌系统发育分析   总被引:3,自引:0,他引:3  
[目的]探寻烟草上青枯菌的系统发育.[方法]采用演化型分类框架对福建及贵州等地的62个烟草青枯病菌株进行鉴定分析.[结果]基于内切葡聚糖酶基因系统发育学的分析结果表明:所有参试菌株均归属于青枯菌亚洲分支的4个序列变种,分别为序列变种15、17、34和44;尚未发现归属于美洲或非洲分支的烟草青枯病菌株.其中序列变种15和17为优势菌系,序列变种34的菌株都来自福建省,只发现3个菌株属于序列变种44.基于avrA基因的氨基酸序列比对结果表明4个序列变种的avrA基因都属于RS1000类型.[结论]本研究表明福建及贵州等地烟草上的青枯菌存在一定的遗传分化.  相似文献   

16.
Bacterial wilt is one of the important constraints in the cultivation of solanaceous vegetables in India. The disease is caused by Ralstonia solanacearum, a soil bacterium. We have collected 232 isolates of R. solanacearum infecting solanaceous vegetables (eggplant, tomato and chilli) and other crops from different parts of India. Pathogenicity of the isolates was tested on eggplant, tomato and chilli and the pathogen was confirmed by PCR. Multiplex PCR and biochemical tests indicated that all the isolates were phylotype I and biovar 3. Ninety-five representative isolates selected based on geographical region, host range and pathogenicity were subjected to further phylogenetic and diversity analysis. Sequence analysis of egl, pga and hrpB genes of 95 isolates and genetic diversity of 50 representative isolates was reported and discussed. Indian isolates within the Phylotype I did not group based on the host or geographical location, except clustering of isolates from the Andaman Islands. Indian isolates clustered into two sub groups based on egl and pga trees indicating the presence of two major population groups. Sub group 1 is the dominant group in the data set and consists of unknown/newer sequevars, and sub group 2 consist of mainly the isolates which are designated with sequevar numbers based on egl sequences. In the hrpB based tree, the sub group 2 is the dominant group in the data set and it is the same for the sub group 1 of the egl tree. Indian phylotpe I R. solanacearum strains are phenotypically diverse including the previously described sequevars 14, 17, 44, 47 and 48. Our studies indicated the existence of R. solanacearum isolates with unknown/newer sequevars; the diversity existing among the phylotype I isolates might be due to a continuous evolutionary process. To our knowledge this is the first detailed report on the diversity of phylotype I R. solanacearum strains infecting solanaceous vegetables and the existence of unknown/newer sequevars in India.  相似文献   

17.
This is the first comprehensive study of a collection of Ralstonia solanacearum strains from the southeastern United States to be characterized based on biovar, pathogenicity, hypersensitive reaction on tobacco, and phylogenetic analyses of the egl sequence. Rigorous phylogenetic analysis of the commonly used egl gene produced robust phylogenies that differed significantly from a neighbor-joining tree differed from and previously published phylogenies for R. solanacearum strains. These robust trees placed phylotype IV within the phylotype I clade, which may suggest that phylogenies based solely on egl may be misleading. As a result of phylogenetic analyses in this study, we determined that U.S. strains from Georgia, North Carolina, South Carolina, and older Florida strains isolated from solanaceous crops all belong to phylotype II sequevar 7. However, many strains recently isolated in Florida from tomato and other crops were more diverse than the southeastern United States population. These unique Florida strains grouped with strains mostly originating from the Caribbean and Central America. One of the exotic strains, which in a previous study was determined to be established in northern Florida, was characterized more extensively. Upon using Musa-specific multiplex polymerase chain reaction, this strain produced a unique banding pattern, which has not previously been reported. Inoculation of this strain into Musa spp. did not result in wilt symptoms; however, the plants were stunted and root masses were significantly reduced. Furthermore, following root inoculation, the bacterium, unlike a typical Florida race 1 biovar 1 strain, was recovered from the roots and stems, indicating systemic movement. This is the first report of an R. solanacearum strain isolated in the United States that is deleterious to the growth of Musa plants.  相似文献   

18.
Bacterial wilt, caused by the Ralstonia solanacearum species complex (RSSC), is a destructive plant disease in Guangxi, China. However, the diversity of RSSC populations in the area is unknown. To this end, we performed an extensive bacterial wilt survey from 2015 to 2018. Using phylotype-specific multiplex PCR (Pmx-PCR) and an egl-based tree, 189 strains collected from 20 plant species were identified as R. pseudosolanacearum phylotype I, which included 14 sequevars (12, 13, 14, 15, 16, 17, 18, 30, 34, 44, 48, 54, 70, and 71); two strains isolated from potato plants belonged to R. solanacearum phylotype II, sequevar 1. Sequevars 13, 17, and 44 were prevalent in Guangxi, and sequevar 13 dominated the RSSC sequevars of four Cucurbitaceae plants. The susceptibility of different Cucurbitaceae species to bacterial wilt and the host range of 16 representative strains were further tested. Members of the Cucurbita, Momordica, and Luffa genera were susceptible to bacterial wilt, with wilt incidence ranging from 73% to 100%. Most strains were pathogenic to solanaceous plants, mulberry, and ginger plants but not to melon crops; however, the strains from kidney bean, pepper, and Cucurbitaceae plants were highly virulent to melon crops. This is the first comprehensive report on the genetic and host range diversity of the RSSC in Guangxi and the susceptibility of different Cucurbitaceae species to bacterial wilt, which can provide valuable information for the development of bacterial wilt control strategies.  相似文献   

19.
Ralstonia solanacearum is responsible for bacterial wilt disease. Specific and accurate identification of this pathogen is essential for protection of susceptible crops as well as breeding resistant varieties. Historically, R. solanacearum has been classified into biovars based on the use of sugar and alcohol as carbon sources, into races based on its ability to infect different hosts, more recently into phylotypes based on the intergenic transcribed sequence of the ribosomal RNA genes 16S and 23S and into sequevars based on the endoglucanase gene (egl) sequence. Race 3 biovar 2 (R3Bv2) is widespread in South and Central America, and in Brazil it is present in all potato-producing regions as the most prevalent strain. In this study, we classified 53 Brazilian R. solanacearum biovar 2 (Bv2) strains by traditional and molecular methods. PCR with specific primers confirmed all 53 bacterial strains as belonging to the R. solanacearum species complex, and all were classified as biovar 2A or 2T based on acidification of sugars and alcohols. Multiplex phylotype PCR assigned all strains to phylotype II. Phylogenetic analysis of egl sequences showed that most Bv2 strains from Brazil analyzed in this study did not cluster with known sequevars and are less clonal than the R3Bv2 strains reported for other countries. This is the first study to address the diversity of a collection of Brazilian R. solanacearum strains using the phylotype and sequevar classification scheme.  相似文献   

20.
Pectinolytic bacteria were isolated from 48 potato plants showing the symptoms of blackleg and collected in different fields of commercial potato production areas at Samsun, Amasya, Corum and Yozgat provinces in Turkey in 2015. The survey resulted in the isolation of 26 pectinolytic strains that belonged to P. atrosepticum, P. carotovorum subsp. brasiliense, P. carotovorum subsp. carotovorum and P. parmentieri species based on molecular identification with species-specific PCR and phenotypic characterization. The identified strains indicated typical biochemical characteristics of the assigned species. For 16 representative Pectobacterium isolates 10 unique rep-PCR band patterns were obtained. The 16S rRNA and recA and gapA gene fragment sequencing confirmed the species identity of the isolates. The phenotypic characterization of the strains revealed that for all assays but one (cellulase, protease activity, swimming but not swarming), the tested Pectobacterium species were significantly different from each other proving the diversity of the strains belonging to these genera. Recent outbreaks of blackleg and/or soft rot in potato production areas in Turkey may pose a threat on other crops, as tomato, pepper, cucumber, onion, cabbage, broccoli and sugar beet are cultivated in the same provinces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号