首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Residual effects of chlorotriazine herbicides in soil at three Rumanian sites. I. Prediction of the persistence of simazine and atrazine Persistence of simazine and atrazine in the top 10 cm soil was measured at three sites in Rumania with variations in climate and soil conditions. Both herbicides were applied at 1 and 3 kg ai ha?1 to uncropped plots and to plots cropped with maize (Zea mays L.). Rates of residue decline were independent of application rate and crop cover but varied between sites. The time for 50% loss of atrazine varied from 36 to 68 days and that of simazine from 48 to 70 days. Laboratory studies were made with atrazine to characterize degradation rates under standard conditions and to measure adsorption and leaching behaviour in the different soils. Weather records for the periods of the field experiments were used in conjunction with appropriate constants derived from the laboratory results, or from data in the literature, in a computer program to simulate persistence in the field. Results from the model were in reasonable agreement with the observed soil residues although there was a tendency to overestimate rates of loss on some occasions. The results suggest that the model of persistence was sufficiently accurate for practical purposes, and that its use could preclude the need for extensive analytical measurements of residues.  相似文献   

2.
A pot bioassay procedure, based on root growth of pre-germinated maize was used to study residual phytotoxicity of chlorsulfuron and DPX-L5300 methyl-([4-methoxy-6-methyl-1,3,5-triazin-2-yl(methyl) carbamoyl]sulphamoyl)benzoate under field conditions. The results indicate that residual bioactivity of both herbicides, applied either pre-or post-emergence at 5, 10, 20 and 40 g a.i. ha?1, was increased with increasing rate of application. Chlorsulfuron persisted longer than DPX-L5300, and both herbicides, when applied pre-emergence, persisted longer than when applied post-emergence. Pot bioassay did not detect any residues eight months after either application. Maize and sunflower, planted as rotational field crops eight months after pre-emergence application, were not injured by either herbicide. Also, these crops were not affected when planted four months after post-emergence application of any of the DPX-L5300 rates or 5 or 10 g a.i. ha?1 of chlorsulfuron, but their fresh weight was significantly reduced where 20 or 40 g a.i. ha?1 of chlorsulfuron were applied.  相似文献   

3.
Solatium karsensis Symon, an Australian native perennial, has become an important weed in irrigated summer crops in far western New South Wales. A screening trial of 14 herbicides showed that atrazine was the most effective treatment, though 2,4-D also suppressed S. karsensis in grain sorghum (Sorghum bicolor L. cv. Rico) for the duration of the crop. Grain sorghum yields were higher in plots treated with atrazine at 2–5 kg (a.i.) ha?1 than for any other herbicide treatment or the untreated control. Because the root system remained viable annual herbicide application would be necessary for the continued control of 5. karsensis.  相似文献   

4.
Sprangletop (Leptochloa chinensis L. Nees) is a serious grass weed in direct‐seeded rice cropping systems in Thailand. One population of sprangletop, BLC1, was found to be resistant to fenoxaprop‐p‐ethyl at 62‐fold the concentration of a susceptible biotype, SLC1. This study elucidated the inheritance of resistance to fenoxaprop‐p‐ethyl in this sprangletop BLC1 genotype. The reaction to the herbicide at 0.12–2.4 mg ai L?1 was determined in the seedlings of self‐pollinated resistant BLC1, susceptible SLC1 and SLC1 that had been allowed to cross‐pollinate with BLC1. At 0.24 mg ai L?1, all the seedlings of SLC1 were killed, while 99% of BLC1 survived, along with 5% of the cross‐pollinated SLC1 seedlings, which were considered to be putative F1 hybrids. The root and shoot lengths of the F1 hybrids in 0.24 mg ai L?1 of fenoxaprop‐p‐ethyl, relative to those in the absence of the herbicide, were close to or the same as the resistant parent, indicating that the resistance is a nearly complete to complete dominant trait. One‐hundred‐and‐forty‐one of the F2‐derived F3 families were classified by their response to the herbicide at 0.24 and 0.48 mg ai L?1 into 39 homozygous susceptible : 72 segregating : 30 homozygous resistant, fitted with a 1:2:1 ratio at χ2 = 1.21 and P = 0.56, indicating that the resistance to fenoxaprop‐p‐ethyl in the sprangletop BLC1 genotype is controlled by a single gene.  相似文献   

5.
Wild barley (Hordeum spontaneum) is one of the most troublesome weed species in winter wheat (Triticum aestivum) in Iran. Two bioassay experiments were conducted in order to study the response of wild barley and wheat to different herbicides and to study the efficacy of pre‐emergence (PRE), postemergence (POST), and PRE followed by POST applications of sulfosulfuron on wild barely. Moreover, the degradation of sulfosulfuron was studied by liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS). The results showed that wild barley was highly tolerant to clodinafop‐propargyl and its dry weight was reduced by only 15%, compared to the control, at the recommended dose (64 g ai ha?1). Sulfosulfuron reduced the wild barley biomass by ≤50% at the highest dose (90 g ai ha?1) in the first bioassay but by not more than 20% and 12% at the recommended dose (22 g ai ha?1) in the first and second bioassay, respectively. Significant differences were found among the application methods of sulfosulfuron, with the POST application being the least effective method. In contrast to the POST application, wild barley was severely injured by the PRE application of sulfosulfuron, with an ED50 dose of 7.3 g ai ha?1. The degradation study showed that wild barley can metabolize sulfosulfuron that is applied POST, but at a lower rate than wheat. By 4 h after application, wild barley had metabolized 26% of the sulfosulfuron, compared to 46% by wheat. In conclusion, wild barley can metabolize the recommended dose of sulfosulfuron that is applied POST; thus, the PRE application of sulfosulfuron or other integrated methods should be considered for the effective control of wild barley in wheat.  相似文献   

6.
Herbicide resistance in Alopecurus myosuroides causes severe problems in Western European cropping systems. Costs of herbicide resistance were investigated in this study by analysing variable production costs and sales revenues. Three farms were selected for this study, with winter wheat as the dominating crop in all farms. Resistance in A. myosuroides populations was verified at all locations. Four farming approaches were simulated over a period of 20 years: (i) continuing the actual cropping system without increase of resistance, (ii) continuing the actual cropping system with increase of resistance, (iii) changing cropping practice to overcome resistance and (iv) changing cropping practice to prevent resistance. Contribution margins representing the proportion of sales revenue that is not consumed by variable costs were calculated for all approaches. Comparative static simulations showed that average contribution margins in a cropping system with more than 60% winter cereals and reduced tillage practice dropped from 807 € ha?1 a?1 without herbicide resistance to 307 € ha?1 a?1 with herbicide resistance. Alopecurus myosuroides population densities increased to more than 1000 plants m?2. Diverse crop rotations, including spring crops, clover–grass leys and intensive tillage, suppressed A. myosuroides populations, and average contribution margin was 630 € ha?1 a?1. Preventive methods with rotations of winter cereals and spring crops with less clover–grass leys resulted in an average contribution margin of 691 € ha?1 a?1. In conclusion, rotations of winter cereals and spring crops combined with inversion tillage and herbicides provide stable yields and can prevent weed population increase.  相似文献   

7.
Two populations of Echinochloa crus-galli (R and I) exhibited resistance to quinclorac. Another population (X) exhibited resistance to quinclorac and atrazine. The R and I populations were collected from monocultures of rice in southern Spain. The X population was collected from maize fields subjected to the application of atrazine over several years. The susceptible (S) population of the same genus was collected from locations which had never been treated with herbicides. The quinclorac ED50 value (dose causing 50% reduction in shoot fresh weight) for the R and I biotypes were 26- and 6-fold greater than for the S biotype. The X biotype was 10 times more tolerant to quinclorac than the S biotype and also showed cross-resistance to atrazine, being 82-fold more resistant to atrazine than the R, I and S biotypes. Chlorophyll fluorescence and Hill reaction analysis supported the view that the mechanism of resistance to atrazine in the X biotype was modification of the target site, the DI protein. Quinclorac at 20 mg litre-1 did not inhibit photosynthetic electron transport in any of the test biotypes. The quinclorac I50 values (herbicide dose needed for 50% Hill reaction reduction) of the S population was over 50000-fold higher than the atrazine I50 value for the same S population, indicating that quinclorac is not a PS II inhibiting herbicide. Propanil at doses greater than 0·5 kg ha-1 controlled all the biotypes. © 1997 SCI  相似文献   

8.
Greenhouse bioassays were carried out from 1999 to 2002 on several types of soils of central Italy to assess the carry‐over risk of imazamox residues to non‐target crops. No observable effect levels (NOELs) were determined on quartz sand; sugar beet showed the highest sensitivity to imazamox (NOEL 0.4–0.8 ng a.i. mL?1 of substrate), followed by spinach, oilseed rape, fennel, cauliflower and lettuce (NOELs from 1 to 5 ng a.i. mL?1 of substrate). Wheat, sunflower, grain sorghum and maize were not very sensitive to this herbicide. Imazamox availability was greatest on sandy soils and decreased in soils with high clay or organic carbon content, where herbicide efficiency was less than 50%, with respect to non‐sorptive media. The decline of herbicide efficiency was quick in sandy soils, where herbicide efficiency dropped to 50% in less than 3 days. In clay‐loam or organic soils, 50% relative efficiency was reached in 15–33 days. Such results suggest that imazamox sprayed at normal field application rates can pose slight risks of carry‐over of residues, which may damage very sensitive species (sugar beet, oilseed rape and spinach) in sandy soils. In these cases, safe recropping intervals of 1–3 months are required, so current label guidelines for imazamox are adequate to protect rotational vegetable crops in central Italy.  相似文献   

9.
The depletion of residues of benzolyprop-ethyl ( I ) and its hydrolysis product N-benzoyl-N-(3,4-dichlorophenyl)-DL -alanine ( II ) in soils is reported from various trials following applications of I to soil and crops at up to 3 kg ha?1. Quite rapid hydrolysis of I to II occurred in most soils and depletion of II followed. The total residue of I and II in the soil often initially increased, probably because of transfer of chemical from the crop to the soil, but the time for 50% disappearance of the total residue ( I+II ) was normally between 4 and 16 weeks. When four sites were treated for three successive years, carry-over of residues was negligible in three sites and showed no progressive increase in the fourth.  相似文献   

10.
The transport and differential phytotoxicity of glyphosate was investigated in maize seedlings following application of the herbicide to either roots or shoots. One-leaf maize seedlings (Zea mays L.) were maintained in graduated cylinders (250 mL) containing nutrient solution. Half of the test plants were placed in cylinders (100 mL) containing different 14C-glyphosate concentrations; the remainder received foliar appliation of 14C-glyphosate. After 26 h, the roots and the treated leaves were washed with distilled water, and the plants placed again in cylinders (250 mL) containing fresh nutrient solution for 5 days. Plants were weighed, and split into root, seed, cotyledon, coleoptile, mesocotyl, first leaf and apex. The recovery of 14C-glyphosate was over 86%. For both application treatments, the shoot apex was the major sink of the mobilized glyphosate (47.9 ± 2.93% for root absorption and 45.8 ± 2.91% for foliar absorption). Expressed on a tissue fresh weight basis, approximately 0.26 μg a.e. g−1 of glyphosate in the apex produced a 50% reduction of plant fresh weight (ED50) when the herbicide was applied to the root. However, the ED50 following foliar absorption was only 0.042 μg a.e. g−1 in the apex, thus maize seedlings were much more sensitive to foliar application of the herbicide.  相似文献   

11.
This study was undertaken to explore the potential of Aglaia odorata Lour. granules in various soil types (sand, sandy loam and clay) at 0.25, 0.5 and 1 t ai ha?1 to inhibit two major maize weeds, Digitaria adscendens and Trianthema portulacastrum L., in an experimental greenhouse. The results indicated that the emergence and seedling growth of both weeds were inhibited but varied with the soil type: the inhibitory effect of the A. odorata granules was stronger when applied in sand, followed by sandy loam and clay. The weed species responded differently to the A. odorata granule application. Generally, the inhibitory effect was greater for D. adscendens than for T. portulacastrum. Additionally, the potential of the A. odorata granules for weed control in maize field plots was evaluated. The three major weeds that were found in the experimental field were D. adscendens, T. portulacastrum and Amaranthus gracilis. The highest A. odorata granule dose (1 t ai ha?1) had a significant inhibitory effect on the emergence and growth of all of the weed species and their emergence was reduced by 96.7%, 47.2% and 56.2%, respectively, compared with the control treatment (unweeded). The dry weight of the weeds was reduced in a similar manner to their emergence. In contrast, the emergence of maize was not affected by any of the A. odorata granule applications. Rather, at an application rate of 1 t ai ha?1, the maize yield increased significantly and the effect was similar to that observed with an atrazine herbicide application under field conditions.  相似文献   

12.
The intensive use of the acetolactate synthase (ALS)‐inhibiting herbicides, imazethapyr, penoxsulam and bispyribac‐sodium, in imidazolinone‐resistant (Clearfield) rice increases the risk of the evolution of ALS‐resistant barnyardgrass. In 2009, imazethapyr failed to control barnyardgrass that was collected from a field in Arkansas, USA, following the failure of the herbicide in 2008. A greenhouse experiment was conducted to confirm and document the level of resistance of the biotype against three ALS‐inhibiting herbicides that currently are labeled in rice. The level of control of the resistant biotype at the labeled rate of bispyribac‐sodium of 35 g ai ha?1 was 10%, penoxsulam at 22 g ai ha?1 was 0% and imazethapyr at 70 g ai ha?1 was 25%. The level of mortality of the susceptible biotype was 100% with all the herbicides at the labeled rate. The dose needed to kill 50% of the resistant plants was 49 g ha?1 of bispyribac‐sodium, 254 g ha?1 of penoxsulam and 170 g ha?1 of imazethapyr. For the susceptible biotype, bispyribac‐sodium at 6 g ha?1, penoxsulam at 10 g ha?1 and imazethapyr at 12 g ha?1 killed 50% of the treated plants. Based on these findings, it was confirmed that a barnyardgrass population has evolved cross‐resistance to three ALS‐inhibiting herbicides in rice culture in Arkansas. Furthermore, an experiment was conducted to determine if the ALS‐resistant biotype could be controlled using other mechanisms of action. The results indicated that propanil, a photosystem II inhibitor, and quinclorac, a synthetic auxin, failed to control the resistant biotype at the labeled rates, whereas all the other evaluated herbicides provided effective control of both biotypes.  相似文献   

13.
Studies on competition between Ridolfia segetum Maris, and sunflower (Helianthemum annuus L.) were conducted at eight locations in southern Spain in 1990 and 1991. in order to define competition models and to estimate from these economic thresholds as affected by crop inputs and potential yields. Competition losses in sunflower crops ranged from 19% to 56% of weed–free yields. There were slightly better correlations between percentage sunflower reduction and weed density than with weed dry weight, (?0.66 and ?0.59, respectively). The weed competitive index, or sunflower crop dry weight reduction per unit dry weight of R. segetum, was 1.09. The percentage yield losses due to weed density (NPRt) were fitted to multiple linear, quadratic, exponential and hyperbolic models. The hyperbolic equation, %RSY=100 (1+1/b*NPRt)?1, where b=0.14 and is the R. segetum competitive ability index, had the lowest error sum of squares (SSE), and gave the best biological explanation for the competition response. Early emergence (before mid–March) made weeds about 1.5 times more competitive than late emergence. The economic threshold to offset the cost of a shallow post–emergence tillage, assuming 70% control efficiency, ranged from about 2.5 plants m ?2 for low–yielding crops(1200kgha?1) to less than one plant m?2 for higher–yielding crops (2800 kg ha?1).  相似文献   

14.
Blackcurrants, treated with 0.1 kg of 2,4,5-T ha?1 (as esters of mixed C4–C6 alcohols; ‘Tormona 80’), contained 0.1 mg of 2,4,5-T residues kg?1 in the berries at ripeness 29 days after treatment. Total residues in the berries were not reduced during growth and ripening, although the residue concentrations declined in the same period due to growth dilution. In spinach leaves from old plants, treated with 0.1 kg ha?1, 0.05 mg of 2,4,5-T kg?1 was found 14 days after treatment. Fodder peas showed no residues (< 0.002 mg kg?1) at harvest 62 days after treatment with 2,4,5-T esters. After application of 0.1 kg ha?1 on potato plants, the disappearance of 2,4,5-T was rapid during the first month, but residues were translocated into the tubers and reached a constant level of 0.02 mg kg?1 after 1 month until harvest at 108 days after treatment. In all crops, visible effects were observed after treatment with 0.1 kg ha?1. After the application at 0.01 kg ha?1, phytotoxic effects were observed only in blackcurrants, but negligible residues were found in all the test crops.  相似文献   

15.
The degradation and formation of major chlorinated metabolites of terbuthylazine and atrazine in three soils (loamy clay, calcareous clay and high clay) were studied in laboratory experiments using molecules labelled with 14C on the s-triazine ring. Soil microcosms were treated with the equivalent of 1 kg ha-1 of herbicide and incubated in the dark for 45 days at 20(±1)°C. The quantity of [14C]carbon dioxide evolved in the soils treated with atrazine was negligible and could not be attributed to mineralization of the parent molecule. The mineralization of terbuthylazine accounted for 0·9–1·2% of the initial radioactivity. In the soils studied, the extrapolated half-lives varied from 88 to 116 days for terbuthylazine and 66 to 105 days for atrazine, with no significant differences for the three soils and the two molecules. The deethyl metabolites of the two s-triazines and the deisopropyl-atrazine metabolite appeared during the incubation in the three soils. The completely dealkylated metabolite was not detected in any of the soils. After 45 days of incubation, the non-extractable soil residues for the high clay, loamy clay and calcareous clay soils represented for terbuthylazine, 33·5, 38·3 and 43·1% and for atrazine, 19·8, 20·8 and 22·3% of the initial radioactivity. © 1997 SCI.  相似文献   

16.
Echinochloa colona is the most common grass weed of summer fallows in the grain‐cropping systems of the subtropical region of Australia. Glyphosate is the most commonly used herbicide for summer grass control in fallows in this region. The world's first population of glyphosate‐resistant E. colona was confirmed in Australia in 2007 and, since then, >70 populations have been confirmed to be resistant in the subtropical region. The efficacy of alternative herbicides on glyphosate‐susceptible populations was evaluated in three field experiments and on both glyphosate‐susceptible and glyphosate‐resistant populations in two pot experiments. The treatments were knockdown and pre‐emergence herbicides that were applied as a single application (alone or in a mixture) or as part of a sequential application to weeds at different growth stages. Glyphosate at 720 g ai ha?1 provided good control of small glyphosate‐susceptible plants (pre‐ to early tillering), but was not always effective on larger susceptible plants. Paraquat was effective and the most reliable when applied at 500 g ai ha?1 on small plants, irrespective of the glyphosate resistance status. The sequential application of glyphosate followed by paraquat provided 96–100% control across all experiments, irrespective of the growth stage, and the addition of metolachlor and metolachlor + atrazine to glyphosate or paraquat significantly reduced subsequent emergence. Herbicide treatments have been identified that provide excellent control of small E. colona plants, irrespective of their glyphosate resistance status. These tactics of knockdown herbicides, sequential applications and pre‐emergence herbicides should be incorporated into an integrated weed management strategy in order to greatly improve E. colona control, reduce seed production by the sprayed survivors and to minimize the risk of the further development of glyphosate resistance.  相似文献   

17.
In a collaborative study by 12 laboratories the reproducibility of bioassay techniques was analysed by comparison and statistical treatment of the ED50-values (μg herbicide/g soil). Commonlyused bioassay techniques were investigated; two direct seeding methods, a transplanting method and a shoot extension method. The herbicides studied were two photosynthesis inhibitors, atrazine and metribuzin using Lepidium sativum and Brassica rapa as test plants; two germination inhibitors, tri-allate and trifluralin using Avena sativa as test plant. The mean ED50-value of atrazine in the direct seeding method was 0.18 with a variation from 0.12 to 0.29 and 0.12 (0.07–0.68) in the transplanting method. The values of metribuzin were 0.05 (0.02–0.11) and 0.03 (0.01–0.15) respectively. The values for triallate were 1.15 (0.50–2.60) in the direct seeding method and 1.10 (0.54–2.53) in the shoot extension method and for trifluralin 3.11 (0.72–18.31) and 1.33 (0.48–2.94) respectively. The reproducibility was best in the shoot extension method. No outliers (confidence intervals lying entirely outside the confidence interval of the overall mean) in the ED50-values were observed with atrazine and metribuzin when using the direct seeding method, whereas with the germination inhibitors a high number of results (four with tri-allate, six with trifluralin) could be considered as outliers. A comparison of the use of fresh weight and dry matter showed good agreement between the ED50-values they gave, with similar reproducibility.  相似文献   

18.
In Calabria (southern Italy), control of crown and root rot of capsicum caused by Phytophthora capsici has relied primarily on soil drenches of metalaxyl. However, severe outbreaks occur every year in glasshouse crops, in which the practice of using plastic mulch and furrow irrigation favours the disease. Single‐hypha isolates of P. capsici collected in Calabria in 1992/1998 were tested in vitro for their level of sensitivity to metalaxyl. Isolates of other species of Phytophthora were used as reference. Fungicide sensitivity was determined by plating mycelial plugs onto potato dextrose agar amended with metalaxyl, at final concentrations ranging from 0.1 to 1000μg mL?1 a.s. Inhibition of radial growth (%) was determined when colonies on unamended medium had covered approximately two‐thirds of the plate. The ED50 values for inhibition of mycelial growth of P. capsici isolates ranged from 1.41 to44.6μg mL?1 a.s. More than 80% of the P. capsici isolates from commercial plastic‐house crops in Calabria showed a moderate level of resistance as they were inhibited less than 60% at 5 μg mL?1 but more than 60% at 100μg mL?1  相似文献   

19.
A predictive model for the assessment of metribuzin and methabenzthiazuron residues in soil and their effects on succeeding crops Aus der simulierten Abbaukurve lassen sich somit für jeden beliebigen Zeitraum nach Applikation eines Herbizids die maximalen pflanzenverfügbaren Wirkstoffanteile ableiten, aus denen die Auswirkungen auf mögliche Folgekulturen prognostiziert wurden. Die relative Empfindlichkeit (im Bereich der ED50) der untersuchten Kulturpflanzen in Hydroponik war bei Metribuzin: Möhre < Bohne = Salat < Erbse = Spinat und bei MBT: Bohne = Erbse = Salat < Spinat = Möhre. Weiterhin konnte gezeigt werden, dass unter Labor- und Freilandbedingungen evtl. auftretende Schäden in fast allen Fällen in den gleichen Aktivitäskategorien lagen. The degradation of the herbicides metribuzin and methabenzthiazuron (MBT) was simulated under outdoor conditions in a sandy soil by a computer model based on the dominating influence of temperature and moisture on degradation, which is measured in preceding laboratory experiments. Depending on the conditions of incubation (10–30°C, 20–90% water holding capacity) the half-life of metribuzin was 11–60 days and of MBT 42 > 1200 days. Knowing the plant available soil water, the fraction of a total herbicide residue potentially available to plants can be calculated from the distribution coefficient (Kd-value). In the soil under investigation, for metribuzin 77% and for MBT 16% of the total residue was available to plants. Thus, the maximum residue available to plants can be calculated from the simulated degradation curve for any period after the application of a herbicide and in combination with a predictive model the effect on succeeding crops can be predicted. The specific susceptibility of the crops in question has to be established in preceding hydroponic culture experiments. The relative susceptibility (about ED50) of the plants in hydroponic-culture was earrot相似文献   

20.
Among 15 soils with different cropping practices, seven which had an history of repeated atrazine applications showed accelerated degradation of this herbicide. By contrast, grassland or agricultural soils with no recorded atrazine application, at least for the last three years, had a low degradation potential. No direct relation was found between the rate of atrazine mineralisation and the size of the microbial biomass. In adapted soils, the amounts of extractable residues were lowered and the very high percentages of radioactivity from [ring-14C]atrazine recovered as [14C]carbon dioxide demonstrated that N-dealkylation and deamidation were the only processes for micro-organisms to derive carbon and energy for heterotrophic growth. Kinetics of microbial 14C accumulation revealed that atrazine ring carbon could be incorporated by direct oxidative condensation with structural components of the bacterial or fungal cell whereas side-chain carbon was preferentially used for biosynthesis of new protoplasmic cell material, as confirmed by the high turnover rate of radiolabelled microbial components. From the determination of the Michaelis–Menten parameters, Vm and Km in the presence of different selective biocides, it was possible to conclude that fungi were probably less active in atrazine degradation than bacteria and that over years the microbial atrazine-degrading community showed an increased efficiency. © 1999 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号