首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduced tillage may affect N supply of plants by influencing soil microbial biomass and thereby N release. The aim of this study was to evaluate changes in microbial biomass due to tillage in relation to N mineralization and to assess the contribution to the N supply of sugar beet. For this purpose, in a field trial near Göttingen in 1995 microbial biomass and net N mineralization were determined in an in situ incubation of ploughed and reduced tilled soil in plots which were not given application of mineral N fertilizer. In reduced tilled soil the increase in mineral N concentration in the upper 10 cm of soil was mainly attributed to an increase in microbial biomass. The organic matter was more easily decomposable, indicated by the increase in Cmic/Corg and Nmic/Nt ratios; this was further supported by the enhanced turnover of microbial biomass in reduced tillage plots. A regression function was used to relate seasonal fluctuations of microbial biomass, soil moisture and soil temperature to N mineralization rate. There was a good agreement between measured and calculated N mineralization rate. Reduced tillage affected N mineralization by affecting the quantity and quality of microbial biomass. In 0–30 cm soil depth 169 kg N/ha were mineralized, 30 kg more N than in ploughed soil. However, despite improved N availability, the N uptake of sugar beet was decreased in reduced tilled soil. Because the N concentration in plants did not differ, it was concluded that sugar beet growth in reduced tilled soil was impaired due to other factors than N supply.  相似文献   

2.
Although reduced tillage is an agricultural practice reported to decrease soil erosion and external inputs while enhancing soil fertility, it has still rarely been adopted by European organic farmers. The objective of this study was to assess the long-term interactive effects of tillage (conventional (CT) vs. reduced (RT)) and fertilization (slurry (S) vs. composted manure/slurry (MCS)) on earthworms and microbial communities in a clay soil under spelt in an organic 6-year crop rotation. Earthworm populations (species, density and biomass, cocoons) were investigated by handsorting the soil nine years after initial implementation of the treatments. Soil microbial carbon (Cmic) and nitrogen (Nmic) were measured by chloroform-fumigation extraction and a simplified phospholipid fatty acid (PLFA) analysis was used to separate for populations of bacteria, fungi and protozoa. Significantly increased total earthworm density in RT plots was mainly attributed to increased numbers of juveniles. Moreover, we found five times more cocoons with RT. Species richness was not affected by the treatments, but tillage treatments had differentially affected populations at the species-level. In addition, cluster analysis at the community level revealed two distinct groups of plots in relation to tillage treatments. In RT plots Cmic increased in the 0–10 cm and 10–20 cm soil layers, while PLFA concentrations indicative of Gram-negative bacteria, fungi and protozoa only increased in the topsoil. Lower bacteria-to-fungi ratios in the upper soil layer of RT plots indicated a shift to fungal-based decomposition of organic matter whereas a higher Cmic-to-Corg ratio pointed towards enhanced substrate availability. Slurry application decreased microbial biomass and enhanced density of juvenile anecic earthworms but overall fertilization effect was weak and no interactions with tillage were found. In conclusion, tillage is a major driver in altering communities of earthworms and microorganisms in arable soils. The use of reduced tillage provides an approach for eco-intensification by enhancing inherent soil biota functions under organic arable farming.  相似文献   

3.
 The effects on soil condition of increasing periods under intensive cultivation for vegetable production on a Typic Haplohumult were compared with those of pastoral management using soil biological, physical and chemical indices of soil quality. The majority of the soils studied had reasonably high pH, exchangeable cation and extractable P levels reflecting the high fertilizer rates applied to dairy pasture and more particularly vegetable-producing soils. Soil organic C (Corg) content under long-term pasture (>60 years) was in the range of 55 g C kg–1 to 65 g C kg–1. With increasing periods under vegetable production soil organic matter declined until a new equilibrium level was attained at about 15–20 g C kg–1 after 60–80 years. The loss of soil organic matter resulted in a linear decline in microbial biomass C (Cmic) and basal respiratory rate. The microbial quotient (Cmic/Corg) decreased from 2.3% to 1.1% as soil organic matter content declined from 65 g C kg–1 to 15 g C kg–1 but the microbial metabolic quotient (basal respiration/Cmic ratio) remained unaffected. With decreasing soil organic matter content, the decline in arginine ammonification rate, fluorescein diacetate hydrolytic activity, earthworm numbers, soil aggregate stability and total clod porosity was curvilinear and little affected until soil organic C content fell below about 45 g C kg–1. Soils with an organic C content above 45 g C kg–1 had been under pasture for at least 30 years. At the same Corg content, soil biological activity and soil physical conditions were markedly improved when soils were under grass rather than vegetables. It was concluded that for soils under continuous vegetable production, practices that add organic residues to the soil should be promoted and that extending routine soil testing procedures to include key physical and biological properties will be an important future step in promoting sustainable management practices in the area. Received: 18 November 1997  相似文献   

4.
Soil microbial and extractable C and N after wildfire   总被引:12,自引:0,他引:12  
 The effect of wildfire on soil microbes and extractable C (Cext) and N (Next) changed with respect to the time from burning and soil depth. Initially, microbial biomass C (Cmic) and N (Nmic) were drastically reduced in the soil surface layer (0–5 cm) and reduced by 50% in the subsurface (5–10 cm), whereas Cext increased by 62% in the surface layer and did not significantly change in the subsurface. These parameters were affected for the following 4 years, during which the average reductions in the soil surface and subsurface layers were, respectively, 60% and 50% for Cmic, 70% and 45% for Nmic, 60% and 40% for the ratio Cmic: organic C (Corg) and 70% and 30% for the ratio Nmic: total N (Ntot), while for Cext the surface layer was the only zone consistently affected and Cext decreased by up to 59%. Immediately after a fire, the Cext : Corg ratio increased by 3.5-fold and 2-fold in the surface and subsurface layers, respectively; thereafter for 2 years, it decreased in the surface layer (by up to 45%) while the effect on the subsurface layer was not consistent. The effect of burning on Next lasted 1 year, in which Next increased by up to 7- and 3-fold in the surface and subsurface layers, respectively, while the average Next : Ntot ratio doubled in the surface layer and increased by 34% in the subsurface. During the time in which each parameter was affected by burning, the soil factor explained a high percentage of variance in the fluctuations of Cmic, Nmic, Cmic : Corg and Nmic : Ntot, while those of Next and Next : Ntot, but not those of Cext and Cext : Corg depended on both the soil and its depth. In the burned soils similar patterns of response were found between the following parameters listed in pairs: Cmic and Nmic; Cmic : Corg and Nmic : Ntot; Cext and Next; and Cext : Corg and Next : Ntot. However, after the fire relationships found previously between the parameters studied and many other soils properties were either no longer evident, or were inverted. Although the addition of cellulose to the burned soil favoured fungal mycelium development and increased Cmic and Cext contents, the negative effect of burning on the microbial biomass and the Cext was not counteracted even under incubation conditions suitable for both microbial growth and C mineralization. Received: 28 May 1997  相似文献   

5.
The relationships between arylsulfatase and microbial activity were investigated in regional and microenvironmental scales, at three study sites in Israel, that represent different climatic regions—Mediterranean (sub-humid), mildly arid and arid.Total arylsulfatase activity was divided into extracellular and intracellular (microbial biomass enzyme) activities according to the chloroform-fumigation method. The results show that with increasing aridity, Corg (soil organic carbon), Cmic (soil microbial biomass carbon), Nmic (soil microbial biomass nitrogen) and respiration rate decreased, while Cmic/Corg and metabolic quotient (qCO2) increased. Total, extracellular and microbial biomass arylsulfatase activities decreased with aridity. Expressed as percentage of total activity, the arylsulfatase activity of microbial biomass in the soil, at 0-2 cm and 5-10 cm depths, accounted for more than 50% of the total, in most measurements. This activity was significantly higher in the arid sites than that found in the Mediterranean one for the 0-2 cm soil. The results indicate the importance of the microflora as an enzyme source in soils, especially in arid climate conditions.Enzyme activity in the different study sites was found to be influenced by microenvironmental conditions. The Mediterranean site showed a much higher enzyme activity under shrubs than that under rock fragments and in bare soil. In the arid site rock fragments created a favorable microenvironment for microbial activity on soil surface, which resulted in a much higher microbial biomass and arylsulfatase activity than that in bare soil.The total, extracellular and intracellular arylsulfatase activities, were significantly correlated with Corg, Cmic, Nmic and respiration rate (p<0.05) at all study sites. The correlation coefficients between microbial biomass and arylsulfatase activity were usually higher than those between organic carbon and enzyme activity, especially in the arid sites. Close relationships between microbial biomass and arylsulfatase activities in all the studied sites supported the hypothesis that Corg content and enzyme activities should be related to each other via microbial biomass. Arylsulfatase activity was found to be a good indicator of microbial one. The regression equations between these factors can be incorporated into models of biogeochemical cycling for their easy method of analysis.  相似文献   

6.
 The effects of 5 years of continuous grass/clover (Cont grass/clover) or grass (Cont grass) pasture or 5 years of annual grass under conventional (Ann grass CT) or zero tillage (Ann grass ZT) were compared with that of 5 years of continuous barley (LT arable) on a site which had previously been under arable crops for 11 years. For added comparison, a long-term grass/clover pasture site (LT past) nearby was also sampled. Soil organic C (Corg) content followed the order LT arable=Ann grass CT<Ann grass ZT<Cont grass=Cont grass/clover<LTpast. Trends with treatment for microbial biomass C (Cmic), basal respiration, flourescein diacetate (FDA) hydrolytic activity, arginine ammonification rate and the activities of dehydrogenase, protease, histidase, acid phosphatase and arylsulphatase enzymes were broadly similar to those for Corg. For Cmic, FDA hydrolysis, arginine ammonification and the activities of histidase, acid phosphatase and arylsulphatase, the percentage increase caused by 5 years of continuous pasture (in comparison with LT arable) was 100–180%, which was considerably greater than that for organic C (i.e. 60%). The microbial metabolic quotient (qCO2) was higher for the two treatments which were mouldboard ploughed annually (LT arable and Ann grass CT) than for the undisturbed sites. At the undisturbed sites, Corg declined markedly with depth (0–15 cm) and there was a similar stratification in the size and activity of Cmic and enzyme activity. The microbial quotient (Cmic/Corg) declined with depth whilst qCO2 tended to increase, reflecting a decrease in the proportion of readily available substrate with depth. Received: 7 July 1998  相似文献   

7.
 A study of the effects of different qualities (fresh and composted) and rates (equivalent to 120, 240, and 360 kg N ha–1) of mustard meal application on wheat yields on humid tropical vertisol was started in 1990 at Ginchi Research Station in Ethiopia. After continuous wheat cropping for 7 years and without any further fertilisation, soil microbial parameters (basal respiration, microbial biomass-C and N, organic-C, and ecophysiological quotients) were studied during one growth period. After 7 years of application, mustard meal still exerted a significant positive effect on microbial biomass, basal respiration, organic-C, Cmic : Nmic ratio, and metabolic quotient (qCO2). Organic-C, qCO2 and Cmic : Nmic ratios were higher for the compost-amended plots than plots amended with fresh mustard meal. Basal respiration, Cmic, and Cmic : Nmic ratio showed a clear seasonality, but only in manured plots. The data indicate shifts in microbial community structure (from bacteria to fungi and from r to K strategists) and suggest positive medium-term effects of mustard meal on humid tropical vertisol biological qualities. Received: 25 May 1999  相似文献   

8.
In soil ecology, microbial parameters have been identified as sensitive indicators of changes in the soil environment. The Braunschweig FACE project provided the opportunity to study the effects of elevated CO2 (550 μmol mol−1) as compared to ambient CO2 (370 μmol mol−1) on total microbial biomass (Cmic), Cmic-to-Corg ratio and the fungal-to-bacterial respiratory ratio together with total Corg, Nt, C:N ratio and pH over a six-year period. Field management followed a typical crop rotation system of this region with either a crop-related full nitrogen supply (N100) or 50% reduced N supply (N50). The soil microbial parameters responded to the elevated CO2 treatment in varying intensities and time spans. The fungal-to-bacterial respiratory ratio was the most sensitive parameter in responding to an elevated CO2 treatment with highly significant differences to ambient CO2-treated control plots in the third year of CO2 fumigation. After six years bacterial respiratory activity had increased in ascending order to 34% in FACE-treated plots (N50 and N100) as compared to control plots. Soil microbial biomass (Cmic) responded more slowly to the FACE treatment with highly significant increases of >12% after the fourth year of CO2 fumigation. The Cmic-to-Corg ratio responded very late in the last two years of the CO2 treatment with a significant increase of >7.0% only in the N100 variant. Total Corg and Nt were slightly but significantly increased under FACE around 10.0% with ascending tendency over time starting with the second year of CO2 treatment. No significant FACE effects could be recorded for the C:N ratio or pH.These results suggest that under FACE treatment changes in the soil microbial community will occur. In our study the fungal-to-bacterial respiratory ratio was superior to total Cmic as microbial bioindicators in reflecting changes in the soil organic matter composition.  相似文献   

9.
Abstract

The study was conducted to evaluate the effect of tea cultivation on soil microbial biomass and community structure. Soil pH, extractable aluminum (Al), organic carbon (Corg) and total nitrogen were considerably modified by tea cultivation. Long‐term tea cultivation resulted in the increase of microbial biomass C (Cmic), microbial biomass N (Nmic), and basal respiration. The metabolic quotient declined as the tea cultivation age increased. The adjacent citrus orchard soil showed a higher Cmic/Corg ratio than the tea orchard soils. Microtitration plates with 21 carbon sources and two different pH levels (4.7 and 7.0) were used to determine the substrate utilization pattern of these soils. The average well color development (AWCD) of the carbon sources in the plates did not vary in a consistent manner with the microbial biomass. Multivariate analysis of sole carbon source utilization pattern demonstrated that land‐use history had a significant effect on substrate utilization pattern. The pH 4.7 characterization medium can increase the discrimination of this technique and is more adequate than the conventional neutral medium for the tea orchard soils.  相似文献   

10.
In a field study, long-term application of compost to a tropical Aeric Endoaquept under continuous rice growing in a rice-rice-fallow sequence resulted in the stimulation of microbial biomass and select soil enzyme activities. Mean seasonal soil microbial biomass-C (Cmic) increased by 42%, 39% and 89% in inorganic fertilizer, compost and compost+inorganic fertilizer treatments, respectively, over the unamended control. Cmic content was also influenced by the rice crop growth stage and was highest at maximum tillering stage irrespective of treatments and declined thereafter. Soil organic C (Corg) content showed highly significant positive correlation with dehydrogenase, urease, cellulase, β-glucosidase and fluorescein di-acetate (FDA) hydrolysis activity, and a positive but not significant correlation with invertase and amidase activity. C/N ratio which was lowest in unamended control plots showed a significant positive relationship with only the enzymes involved in C cycle. Stepwise regression analysis revealed that for prediction of both total organic C and total N, FDA hydrolysis activity contributed significantly for the variance and explained up to 85-96% variability. Results demonstrated that microbial biomass and soil enzyme activity is sensitive in discriminating between long-term organic residue amendment practices.  相似文献   

11.
The aim of this work was to investigate the response of soil microbial biomass and activity to practices in organic and conventional farming systems. The study was carried out at the Irrigation District of Piauí, Brazil. Five different plots planted with “acerola” orchard (Malpighia glaba) and established at the following management were evaluated: (1) under 12 months of soil conventional management (CNV); (2) under six months of soil organic management (ORG6); (3) under 12 months of soil organic management (ORG12); (4) under 18 months of soil organic management (ORG18); and (5) under 24 months of soil organic management (ORG24). Soil microbial biomass C (Cmic), basal respiration, organic carbon (Corg), Cmic-to-Corg ratio and metabolic quotient (qCO2) were evaluated in soil samples collected at 0–10 cm depth. The highest Corg and Cmic levels occurred in organic system plots ORG18 and ORG24 compared to the conventional system. Soil respiration and Cmic-to-Corg ratio were significantly enhanced by the organic system plots. The qCO2 was greater in conventional than in organic system. These results indicate that the organic practices rapidly improved soil microbial characteristics and slowly increase soil organic C.  相似文献   

12.
Soil microbial biomass carbon and nitrogen as affected by cropping systems   总被引:12,自引:0,他引:12  
 The impacts of crop rotations and N fertilization on microbial biomass C (Cmic) and N (Nmic) were studied in soils of two long-term field experiments initiated in 1978 at the Northeast Research Center (NERC) and in 1954 at the Clarion-Webster Research Center (CWRC), both in Iowa. Surface soil samples were taken in 1996 and 1997 from plots of corn (Zea mays L.), soybeans (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. The Cmic and Nmic values were determined by the chloroform-fumigation-extraction method and the chloroform-fumigation-incubation method, respectively. The Cmic and Nmic values were significantly affected (P<0.05) by crop rotation and plant cover at time of sampling, but not by N fertilization. In general, the highest Cmic and Nmic contents were found in the multicropping systems (4-year rotations) taken in oats or meadow plots, and the lowest values were found in continuous corn and soybean systems. On average, Cmic made up about 1.0% of the organic C (Corg), and Nmic contributed about 2.4% of the total N (Ntot) in soils at both sites and years of sampling. The Cmic values were significantly correlated with Corg contents (r≥0.41**), whereas the relationship between Cmic and Ntot was significant (r≤0.53***) only for the samples taken in 1996 at the NERC site. The Cmic : Nmic ratios were, on average, 4.3 and 6.4 in 1996, and 7.6 and 11.4 in 1997 at the NERC and CWRC sites, respectively. Crop rotation significantly (P<0.05) affected this ratio only at the NERC site, and N fertilization showed no effect at either site. In general, multicropping systems resulted in greater Cmic : Corg (1.1%) and Nmic : Ntot (2.6%) ratios than monocropping systems (0.8% and 2.1%, respectively). Received: 9 February 1999  相似文献   

13.
Increasing nutrient inputs into terrestrial ecosystems affect not only plant communities but also associated soil microbial communities. Studies carried out in predominantly unmanaged ecosystems have found that increasing nitrogen (N) inputs generally decrease soil microbial biomass; less is known about long-term impacts in managed systems such as agroecosystems. The objective of this paper was to analyze the responses of soil microorganisms to mineral fertilizer using data from long-term fertilization trials in cropping systems. A meta-analysis based on 107 datasets from 64 long-term trials from around the world revealed that mineral fertilizer application led to a 15.1% increase in the microbial biomass (Cmic) above levels in unfertilized control treatments. Mineral fertilization also increased soil organic carbon (Corg) content and our results suggest that Corg is a major factor contributing to the overall increase in Cmic with mineral fertilization. The magnitude of the effect of fertilization on Cmic was pH dependent. While fertilization tended to reduce Cmic in soils with a pH below 5 in the fertilized treatment, it had a significantly positive effect at higher soil pH values. Duration of the trial also affected the response of Cmic to fertilization, with increases in Cmic most pronounced in studies with a duration of at least 20 years. The input of N per se does not seem to negatively affect Cmic in cropping systems. The application of urea and ammonia fertilizers, however, can temporarily increase pH, osmotic potential and ammonia concentrations to levels inhibitory to microbial communities. Even though impacts of fertilizers are spatially limited, they may strongly affect soil microbial biomass and community composition in the short term. Long-term repeated mineral N applications may alter microbial community composition even when pH changes are small. How specific microbial groups respond to repeated applications of mineral fertilizers, however, varies considerably and seems to depend on environmental and crop management related factors.  相似文献   

14.
Urban soils (constructozems) were studied in Moscow and several cities (Dubna, Pushchino, and Serebryanye Prudy) of Moscow oblast. The soil sampling from the upper 10-cm-thick layer was performed in the industrial, residential, and recreational functional zones of these cities. The biological (the carbon of the microbial biomass carbon, Cmic and the microbial (basal) respiration, BR) and chemical (pHwater and the contents of Corg, heavy metals, and NPK) indices were determined in the samples. The ratios of BR to Cmic (the microbial respiration quotient, qCO2) and of Cmic to Corg were calculated. The Cmic varied from 120 to 738 μg C/g soil; the BR, from 0.39 to 1.94 μg CO2-C/g soil per hour; the Corg, from 2.52 to 5.67%; the qCO2, from 1.24 to 5.28 μg CO2-C/mg Cmic/g soil per h; and the Cmic/Corg, from 0.40 to 1.55%. Reliable positive correlations were found between the Cmic and BR, the Cmic and Cmic/Corg, and the Cmic and Corg values (r = 0.75, 0.95, and 0.61, respectively), as well as between the BR and Cmic/Corg values (r = 0.68). The correlation between the Cmic/Corg and qCO2 values was negative (r = −0.70). The values of Cmic, BR, Corg, and Cmic/Corg were found to correlate with the ammonium nitrogen content. No correlative relationships were revealed between the determined indices and the climatic characteristics. The principal component analysis described 86% of the variances for all the experimental data and clearly subdivided the locations of the studied soil objects. The ANOVA showed that the variances of Cmic, Corg, and BR are controlled by the site location factor by 66, 63, and 35%, respectively. The specificity of the functioning of the anthropogenic soils as compared with their natural analogues was clearly demonstrated. As shown in this study, measurable biological indices might be applied to characterize the ecological, environmental-regulating, and productive functions of soils, including urban soils.  相似文献   

15.
In the mineral horizons of the soils under different southern taiga forests (oak, archangel spruce, and aspen in the Kaluzhskie Zaseki Reserve of Kaluga region and the green moss spruce and spruce-broadleaved forests of the Zvenigorod Biological Station of Moscow State University in Moscow region), the carbon content in the microbial biomass (Cmic), the rate of the basal respiration (BR), and the specific microbial respiration (qCO2= BR/Cmic) were determined. The Cmic content was measured using the method of substrate-induced respiration (SIR). In the upper humus horizons of the soils, the Cmic content amounted to 762–2545 μg/g and the BR ranged from 1.59 to 7.55 μg CO2-C/g per h. The values of these parameters essentially decreased down the soil profiles. The portion of Cmic in the organic carbon of the humus horizons of the forest soils was 4.4 to 13.2%. The qCO2values increased with the depth in the soils of the Biological Station and did not change in the soils of the Reserve. The pool of Cmic and Corg and the microbial production of CO2 (BR) within the forest soil profiles are presented.  相似文献   

16.
Conservation tillage (no-till and reduced tillage) brings many benefits with respect to soil fertility and energy use, but it also has drawbacks regarding the need for synthetic fertilizers and herbicides. Our objective was to adapt reduced tillage to organic farming by quantifying effects of tillage (plough versus chisel), fertilization (slurry versus manure compost) and biodynamic preparations (with versus without) on soil fertility indicators and crop yield. The experiment was initiated in 2002 on a Stagnic Eutric Cambisol (45% clay content) near Frick (Switzerland) where the average annual precipitation is 1000 mm. This report focuses on the conversion period and examines changes as tillage intensity was reduced. Soil samples were taken from the 0–10 and 10–20 cm depths and analysed for soil organic carbon (Corg), microbial biomass (Cmic), dehydrogenase activity (DHA) and earthworm density and biomass. Among the components tested, only tillage had any influence on these soil fertility indicators. Corg in the 0–10 cm soil layer increased by 7.4% (1.5 g Corg kg−1 soil, p < 0.001) with reduced tillage between 2002 and 2005, but remained constant with conventional tillage. Similarly, Cmic was 28% higher and DHA 27% (p < 0.001) higher with reduced than with conventional tillage in the soil layer 0–10 cm. In the 10–20 cm layer, there were no significant differences for these soil parameters between the tillage treatments. Tillage had no significant effect on total earthworm density and biomass. The abundance of endogeic, horizontally burrowing adult earthworms was 70% higher under reduced than conventional tillage but their biomass was 53% lower with reduced tillage. Wheat (Triticum aestivum L.) and spelt (Triticum spelta L.) yield decreased by 14% (p < 0.001) and 8% (p < 0.05), respectively, with reduced tillage, but sunflower (Helianthus annuus L.) yield was slightly higher with reduced tillage. Slurry fertilization enhanced wheat yield by 5% (p < 0.001) compared to compost fertilization. Overall, Corg, Cmic, and DHA improved and yields showed only a small reduction with reduced tillage under organic management, but long-term effects such as weed competition remain unknown.  相似文献   

17.
Tree species differ in their effect on soil development and nutrient cycling. Conversion of beech coppice to pine plantations can alter soil physical and chemical properties, which in turn may have significant impacts on soil microbial biomass C and N (Cmic, Nmic). The major objective of this study was to evaluate soil quality changes associated with the forest conversion in humid NW Turkey. Results from this study showed that levels of soil organic carbon (Corg), total nitrogen (Nt), moisture, Cmic and Nmic under beech coppice were consistently higher but levels of pH, CaCO3 and EC were lower compared to pine plantation. Differences between the forest stands in Cmic and Nmic were mainly related to the size of the Corg stores in soil and to tree species. In addition, high level of CaCO3 is likely to reduce pools of soil organic C and possibly even microbial biomass C and N in pine forests. The average Cmic:Nmic ratios were higher in soils under beech coppice than pine plantation, while Cmic:Corg and Nmic:Nt percentages were similar in both forest types. These results revealed the differences in microbial community structure associated with different tree species and the complex interrelationships between microbial biomass, soil characteristics, litter quantity and quality. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Management of soil ecosystems requires assessment of key soil physicochemical and microbial properties and the spatial scale over which they operate. The objectives were to determine the spatial structure of microbial biomass and activity and related soil properties, and to identify spatial relationships of these properties in prairie soils under different management histories. Soil were sampled along a transect at 0.2 m intervals in each of five long-term treatments, namely, undisturbed, cattle grazed at two intensities, and cultivated with either wheat (Triticum aestivum L.) or cotton (Gossypium hirsutum L.). Contents of organic carbon (Corg), dissolved organic C (DOC), soluble nitrogen (Nsol), and microbial biomass C (Cmic) and N (Nmic) as well as dehydrogenase activity (DH) in 70 samples were evaluated. Results showed that long-term soil management altered the spatial structure and dependence of Corg and microbial biomass and activity. Cultivation has contributed to high nugget variance for Corg, Cmic, Nmic and DH which interfered with detection of spatial structure at the sampling scale used. Contents of Corg were spatially connected to microbial biomass and activity and to DOC in the uncultivated but not in the cultivated soils, indicating that various factors affected by management may operate at different spatial scales.  相似文献   

19.
The chemical and microbial properties of afforested mine soils are likely to depend on the species composition of the introduced vegetation. This study compared the chemical and microbial properties of organic horizons and the uppermost mineral layers in mine soils under pure pine (Pinus sylvestris), birch (Betula pendula), larch (Larix decidua), alder (Alnus glutinosa), and mixed pine–alder and birch–alder forest stands. The studied properties included soil pH, content of organic C (Corg) and total N (Nt), microbial biomass (Cmic), basal respiration, nitrogen mineralization rate (Min-N), and the activities of dehydrogenase, acid phosphomonoesterase, and urease. Near-infrared spectroscopy (NIR) was used to detect differences in the chemical composition of soil organic matter under the studied forest stands. There were significant differences in Corg and Nt contents between stands in both O and mineral soil horizons and also in the chemical composition of the accumulated organic matter, as indicated by NIR spectra differences. Alder was associated with the largest Corg and Nt accumulation but also with a significant decrease of pH in the mineral soil. Microbial biomass, respiration, the percentage of Corg present as Cmic, Min-N, and dehydrogenase activity were the highest under the birch stand, indicating a positive effect of birch on soil microflora. Admixture of alder to coniferous stand increased basal respiration, Min-N, and activities of dehydrogenase and acid phosphomonoesterase as compared with the pure pine stand. In the O horizon, soil pH and Nt content had the most important effects on all microbial properties. In this horizon, the activities of urease and acid phosphomonoesterase did not depend on microbial biomass. In the mineral layer, however, the amount of accumulated C and microbial biomass were of primary importance for the enzyme activities.  相似文献   

20.
In 11 rain‐fed arable soils of the Potohar plateau, Pakistan, the amounts of microbial‐biomass C (Cmic), biomass N (Nmic), and biomass P (Pmic) were analyzed in relation to the element‐specific total storage compartment, i.e., soil Corg, Nt, and Pt. The effects of climatic conditions and soil physico‐chemical properties on these relationships were highlighted with special respect to crop yield levels. Average contents of soil Corg, Nt, and Pt were 3.9, 0.32, and 0.61 mg (g soil)–1, respectively. Less than 1% of Pt was extractable with 0.5 M NaHCO3. Mean contents of Cmic, Nmic, and Pmic were 118.4, 12.0, and 3.9 µg (g soil)–1. Values of Cmic, Nmic, Pmic, soil Corg, and Nt were all highly significantly interrelated. The mean crop yield level was closely connected with all soil organic matter– and microbial biomass–related properties, but showed also some influence by the amount of precipitation from September to June. Also the fraction of NaHCO3‐extractable P was closely related to soil organic matter, soil microbial biomass, and crop yield level. This reveals the overwhelming importance of biological processes for P turnover in alkaline soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号