首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacokinetics and pharmacodynamics of dexamethasone were studied in six male and six female camels after a single intravenous dose (0.05 mgkg(-1) body weight) of dexamethasone. The pharmacokinetic parameters of the two-compartment pharmacokinetic model for female and male camels, respectively (mean+/-SEM) were as follows: terminal elimination half-lives were 8.02+/-1.15 and 7.33+/-0.80 h, total body clearances were 95.5+/-16.0 and 124.5+/-11.9 ml h(-1) per kg, volumes of distribution at steady state were 0.72+/-0.08 and 0.87+/-0.14 litre kg(-1), and the volumes of the central compartment were 0.12+/-0.02 and 0.17+/-0.02 litre kg(-1). There was no significant difference in any pharmacokinetic parameter between female and male camels. Pharmacodynamic effects were evaluated by measuring endogenous plasma cortisol, circulating lymphocytes and neutrophils numbers and were analysed using indirect pharmacokinetic/pharmacodynamic models. The estimated IC50 of dexamethasone for cortisol and lymphocytes for female and male camels were 3.74+/-0.99 and 2.28+/-1.09 and 2.63+/-0.71 and 2.41+/-0.79 ng ml(-1), respectively. The EC50 for neutrophils for female and male camels were 24.5+/-5.83 and 20.2+/-3.82 ng ml(-1), respectively. There was no significant difference in any pharmacodynamic parameter between female and male camels. Dexamethasone in urine could be detected for 4-5 days by enzyme-linked immunosorbent assay and for 3-4 days by liquid chromatography/mass spectrometry after an intravenous dose of 0.05 mg kg(-1) body weight.  相似文献   

2.
The pharmacokinetics of flunixin were determined after an intravenous dose of 1.1 mg/kg body weight in six camels and 2.2 mg/kg body weight in four camels. The data obtained (mean ±  SEM) for the low and high dose, respectively, were as follows:
  The elimination half-lives ( t ½β) were 3.76 ± 0.24 and 4.08 ± 0.49 h, the steady state volumes of distribution ( V dss) were 320.61 ± 38.53 and 348.84 ± 35.36 mL/kg body weight, total body clearances ( Cl T) were 88.96 ± 6.63 and 84.86 ± 4.95 mL/h/kg body weight and renal clearances ( Cl r) were 0.52 ± 0.09 and 0.62 ± 0.18 mL/h/kg body weight. A hydroxylated metabolite of flunixin was identified by gas chromatography/mass spectrometry (GC/MS) under electron and chemical ionization and its major fragmentation pattern was verified by tandem mass spectrometry (GC/MS/MS) using neutral loss, daughter and parent scan modes. The detection times for flunixin and its hydroxylated metabolite in urine after an intravenous (i.v.) dose of 2.2 mg/kg body weight were 96 and 48 h, respectively.  相似文献   

3.
The pharmacokinetics of ketoprofen (KP) enantiomers were studied in ten female and eight male camels after a single intravenous dose (2.0 mg/kg) of racemic KP. A high performance liquid chromatographic (HPLC) method was developed for the quantitation of the R- and S-enantiomers without derivatization of the samples using a S,S-Whelk-01 chiral stationary phase column. The data collected (median and range) were as follows: the areas under the curve to infinity (AUC) (microg/mL per h) were 22.4 (13.5-29.7) and 19.8 (13.8-22.1) for R- and S-KP, respectively, in female camels while the corresponding values in male camels were 16.0 (12.9-22.4) and 14.4 (11.0-19.3). In both sexes, the AUC for the R-enantiomer was significantly larger than that of the S-enantiomer. Total body clearances (Cl(t)) were 44.6 (33.7-74.1) and 50.6 (45.2-72.4) mL/kg per h for R- and S-KP, respectively, in female camels and were 62.8 (44.6-77.8) and 69.6 (51.8-91.1) mL/kg per h for R- and S-KP, respectively, in male camels. In both sexes of camels, the Cl(t) values for R-KP were significantly lower than its corresponding antipode. The steady-state volumes of distribution (Vss) were 97.9 (82.8-147.2) and 102.0 (90.1-169.0) mL/kg for R- and S-KP, respectively, in female camels and were significantly different from each other, while the respective values in male camels were 151.5 (105.3-222.3) and 154.0 (114.7-229.0) mL/kg but were not significantly different from each other. The volumes of distribution (area) followed a similar pattern, where the values for R- and S-KP in female camels were 118.5 (95.6-195.2) and 137.6 (115.8-236.2) mL/kg, respectively, and the respective values in male camels were 215.6 (119.1-270.1) and 229.1 (143.3-277.4) mL/kg. The elimination half-lives (t1/2beta) were 1.88 (1.42-2.34) h and 1.83 (1.67-2.26) h for R- and S-KP, respectively, in female camels and were significantly different from each other, while the corresponding values in male camels were 2.11 (1.50-4.20) and 2.33 (1.52-3.83) h for R and S-KP, respectively, but were not significantly different from each other. The mean residence time followed a similar pattern. All pharmacokinetic parameters for R- and S-KP in female camels were significantly different from their corresponding values in male camels. The extent of protein binding for R- and S-KP was evaluated in vitro by ultrafiltration. The extents of protein binding for R- and S-KP were not significantly different from each other when each enantiomer was supplemented separately. However, when the enantiomers were supplemented together, protein binding of R-KP was significantly higher than that of S-KP in female but not in male camels.  相似文献   

4.
The pharmacokinetics of diphenhydramine (DPHM) was compared in camels (n = 8) and horses (n = 6) following intravenous (i.v.) administration of a dose of 0.625 mg/kg body weight. In addition, the metabolism and urinary detection time of DPHM was evaluated in camels. The data obtained (median and range in brackets) in camels and horses, respectively, were as follows. The terminal elimination half lives (h) were 1.58 (1.13–2.58) and 6.11 (4.80–14.1), and the total body clearances (L/h per kg) were 1.42 (1.13–1.74) and 0.79 (0.66–0.90). The volumes of distribution at steady state (L/kg) were 2.38 (1.58–4.43) and 5.98 (4.60–8.31) and the volumes of the central compartment of the two compartment pharmacokinetic model were 1.58 (0.80–2.54) and 2.48 (1.79–3.17). All the pharmacokinetic parameters in camels were significantly different from those of horses. Five metabolites of DPHM were tentatively identified in the camel's urine. Two metabolites, diphenylmethoxyacetic acid and 1-(4-hydroxyphenyl)-phenylmethoxyacetic acid, were present in the acid fraction. Two metabolites, desamino-DPHM and diphenylmethanol, were identified in the basic fraction, in addition to DPHM itself, which was present mainly as a conjugate. Even after enzymatic hydrolysis, DPHM could be detected for up to 24 h in camels after an i.v. dose of 0.625 mg/kg body weight.  相似文献   

5.
Norfloxacin was given to 6 healthy dogs at a dosage of 5 mg/kg of body weight IV and orally in a complete crossover study, and orally at dosages of 5, 10, and 20 mg/kg to 6 healthy dogs in a 3-way crossover study. For 24 hours, serum concentration was monitored serially after each administration. Another 6 dogs were given 5 mg of norfloxacin/kg orally every 12 hours for 14 days, and serum concentration was determined serially for 12 hours after the first and last administration of the drug. Complete blood count and serum biochemical analysis were performed before and after 14 days of oral norfloxacin administration, and clinical signs of drug toxicosis were monitored twice daily during norfloxacin administration. Urine concentration of norfloxacin was determined periodically during serum acquisition periods. Norfloxacin concentration was determined, using high-performance liquid chromatography with a limit of detection of 25 ng of norfloxacin/ml of serum or urine. Serum norfloxacin pharmacokinetic values after single IV dosing in dogs were best modeled, using a 2-compartment open model, with distribution and elimination half-lives of 0.467 and 3.56 hours (harmonic means), respectively. Area-derived volume of distribution (Vd area) was 1.77 +/- 0.69 L/kg (arithmetic mean +/- SD), and serum clearance (Cls) was 0.332 +/- 0.115 L/h/kg. Mean residence time was 4.32 +/- 0.98 hour. Comparison of the area under the curve (AUC; derived, using model-independent calculations) after iv administration (5 mg/kg) with AUC after oral administration (5 mg/kg) in the same dogs indicated bioavailability of 35.0 +/- 46.1%, with a mean residence time after oral administration of 5.71 +/-2.24 hours. Urine concentration was 33.8 +/- 15.3 micrograms/ml at 4 hours after a single dose of 5 mg/kg given orally, whereas concentration after 20 mg/kg was given orally was 56.8 +/- 18.0 micrograms/ml at 6 hours after dosing. Twelve hours after drug administration, urine concentration was 47.4 +/- 20.6 micrograms/ml after the 5-mg/kg dose and 80.6 +/- 37.7 micrograms/ml after the 20/mg/kg dose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Eight experiments were carried out on eight clinically healthy non-pregnant ewes. Each animal was injected intravenously with either sulphadiazine or sulphadimidine at a dose rate of 100 mg/kg body weight. A two-compartment pharmacokinetic model was developed to describe the disposition of these drugs. The elimination half-lives were 7.15 ± 0.58 h and 9.51 ± 0.59 h and the distribution half-lives were 0.56 ± 0.07 h and 0.42 ± 0.05 h for sulphadiazine and sulphadimidine, respectively. The apparent specific volumes of distribution were less than 1 litre/kg (0.410 and 0.501 litres/kg for sulphadiazine and sulphadimidine, respectively) which indicates a relatively lower distribution of these drugs to tissues than in plasma in sheep. The degree of plasma protein binding was similar for both drugs (19.15 ± 0.55% and 23.12 ± 0.32%) for sulphadiazine and sulphadimidine, respectively). Serum concentrations of ketone bodies, total lipids and calcium were significantly reduced, and blood glucose concentration significantly increased following administration of both of these sulphonamides, whilst serum total protein concentration was unaltered. The serum cholesterol concentration was significantly reduced following sulphadiazine administration, but not after sulphadimidine.  相似文献   

7.
A two-way crossover study was conducted in young Bikaneri camels (aged between 12 and 18 months) during the hot summer season to determine the bioavailability, pharmacokinetics and dosage regimens of sulphadimidine (SDM). A dose of 100 mg.kg-1 of SDM was used to study both the intravenous and oral pharmacokinetics of the drug. Analysis of the intravenous data according to a two-compartment pharmacokinetic model revealed that SDM was well distributed in the body (Vd(area):0.862 L.kg-1), had an overall body clearance of 0.035 +/- 0.019 L.h-1.kg-1 and the elimination of half-lives was in the range of 14.2 to 20.6 h. The mean maximum plasma SDM concentration following oral administration was 63.23 +/- 2.33 micrograms.mL-1, which was achieved 24 h after the oral administration. The mean bioavailability of SDM following oral administration was approximately 100%. To achieve and maintain the therapeutically satisfactory plasma sulphadimidine levels of > or = 50 micrograms.mL-1, the optimum dosage regimen for camels following either intravenous or oral administration would be 110 mg.kg-1 as the priming dose and 69 mg.kg-1 as the maintenance dose, to be repeated at 24 h intervals.  相似文献   

8.
The pharmacokinetics of tripelennamine (T) was compared in horses (n = 6) and camels (n = 5) following intravenous (i.v.) administration of a dose of 0.5 mg/kg body weight. Furthermore, the metabolism and urinary detection time was studied in camels. The data obtained (median and range in brackets) in camels and horses, respectively, were as follows: the terminal elimination half-lives were 2.39 (1.91-6.54) and 2.08 (1.31-5.65) h, total body clearances were 0.97 (0.82-1.42) and 0.84 (0.64-1.17)L/h/kg. The volumes of distribution at steady state were 2.87 (1.59-6.67) and 1.69 (1.18-3.50) L/kg, the volumes of the central compartment of the two compartment pharmacokinetic model were 1.75 (0.68-2.27) and 1.06 (0.91-2.20) L/kg. There was no significant difference (Mann-Whitney) in any parameter between camels and horses. The extent of protein binding (mean +/- SEM) 73.6 + 8.5 and 83.4 +/- 3.6% for horses and camels, respectively, was not significantly statistically different (t-test). Three metabolites of T were identified in urine samples of camels. The first one resulted from N-depyridination of T, with a molecular ion of m/z 178, and was exclusively eliminated in conjugate form. This metabolite was not detected after 6 h of T administration. The second metabolite, resulted from pyridine ring hydroxylation, had a molecular ion of m/z 271, and was also exclusively eliminated in conjugate form. This metabolite could be detected in urine sample for up to 12 h after T administration. The third metabolite has a suspected molecular ion of m/z 285, was eliminated exclusively in conjugate form and could be detected for up to 24 h following T administration. T itself could be detected for up to 27 h after i.v. administration, with about 90% of eliminated T being in the conjugated form.  相似文献   

9.
The pharmacokinetic disposition of theophylline was determined by high-performance liquid chromatographic analysis of plasma samples from six healthy, adult horses following the administration of intravenous aminophylline (dosed at 9.94 mg/kg as theophylline), immediate-release aminophylline tablets (dosed at 9.94 mg/kg as theophylline), and sustained-release theophylline tablets (dosed at 20 mg/kg). The elimination rate constant (lambda z), apparent volume of distribution (Vz), and clearance (Cl) determined by compartmental analysis of the intravenous data were 0.07 +/- 0.01 h-1, 0.80 +/- 0.06 l/kg, and 0.06 +/- 0.01 l/kg/h (mean +/- SD), respectively. Mean residence time determined by statistical moment theory of the oral data was different (P less than 0.05) for the immediate-release aminophylline (13.8 +/- 2.8 h) and sustained-release theophylline (18.2 +/- 2.3 h) formulation. Immediate-release aminophylline tablets quickly achieved peak theophylline plasma concentration of 11.51 +/- 1.4 micrograms/ml at 1.6 +/- 0.6 h while the sustained-release theophylline tablets were more slowly absorbed and achieved peak theophylline concentrations of 17.20 +/- 1.3 micrograms/ml at 7.3 +/- 1.0 h. Absolute bioavailability was 87% for the immediate-release and 97% for the sustained-release formulation. Using the principle of superposition, a loading dose of 20 mg/kg of the sustained-release formulation followed by maintenance doses of 15 mg/kg every 24 h was predicted to achieve trough-peak theophylline plasma concentrations between 6 and 17 micrograms/ml.  相似文献   

10.
The pharmacokinetics of ketoprofen were determined after an intravenous (i.v.) and intramuscular (i.m.) dose of 2.0 mg/kg body weight in five camels (Camelus dromedarius) using gas chromatography/mass spectrometry (GC/MS). The data obtained (median and range) following i.v. administration was as follows: the elimination half-life (t(1/2beta)) was 4.16 (2.65-4.29) h, the steady state volume of distribution (Vss) was 130.2 (103.4-165.3) mL/kg, volume of distribution (area method) (Vd(area)) was 321.5 (211.4-371.0) mL/kg, total body clearance (Cl) was 1.00 (0.88-1.08) mL/min x kg and renal clearance was 0.01 (0.003-0.033) mL/min x kg. Following i.m. administration, the drug was rapidly absorbed with peak serum concentration of 12.2 (4.80-14.4) microg/mL at 1.50 (1.00-2.00) h. The systemic availability of ketoprofen was complete. The apparent half-life was 3.28 (2.56-4.14) h. A hydroxylated metabolite of ketoprofen was identified by (GC/MS) under electron impact (EI) and chemical ionization (CI) scan modes. The detection times for ketoprofen and hydroxy ketoprofen in urine after an intravenous (i.v.) dose of 3.0 mg/kg body weight was 24.00 and 70.00 h, respectively. Serum protein binding of ketoprofen at 20 microg/mL was extensive; (99.1+/-0.15%).  相似文献   

11.
Ceftiofur is a new broad spectrum cephalosporin marketed for the treatment of acute bovine respiratory disease. In this investigation ceftiofur was administered by intramuscular injection, at 24 h intervals, to healthy beef-bred calves for four days at dosages of 2.2 and 4.4 mg/kg of body weight, with 4 wk intervals between dosing regimens. Serum, tissue chamber fluid (TCF), and bronchial secretion (BS) concentrations of ceftiofur were measured by microbiological assay after the first and fourth dose of each dosing regimen. Peak serum concentrations (Cmax) of 8.8 micrograms/mL and 17.3 micrograms/mL were obtained approximately 2 h (Tmax), the time of mean peak concentration) after single injections of 2.2 mg/kg and 4.4 mg/kg, respectively. The Cmax was increased approximately twofold following multiple doses of 2.2 mg/kg (Cmax = 13.1 micrograms/mL) and 4.4 mg/kg (Cmax = 24.1 micrograms/mL). Ceftiofur accumulated slowly into TCF and peak concentrations were found to be approximately 14% of those observed in serum after the first dose and approximately 24% after multiple dosing. Concentrations of ceftiofur in BS were obtained rapidly with peak concentrations reaching 45% of the serum Cmax after the first dose. After multiple dosing the Cmax for BS was approximately 25% of the serum Cmax. This study found that both the 2.2 mg/kg and 4.4 mg/kg dosing regimens resulted in continuous serum, TCF and BS concentrations of ceftiofur that exceeded the minimal concentration required to inhibit the bacteria most frequently isolated from calves with acute bovine respiratory disease.  相似文献   

12.
A comparative pharmacokinetic study was conducted in rainbow trout (Salmo gairdneri) and African catfish (Clarias gariepinus) following intravenous (i.v.) and intramuscular (i.m.) administration of oxytetracycline (OTC) at a dose rate of 60 mg/kg body weight. Trout and catfish were kept in aerated tap water in tanks at constant temperatures of 12 degrees C and 25 degrees C, respectively. The two- and three-compartment open models adequately described plasma drug disposition in African catfish and rainbow trout respectively, following i.v. OTC administration. Compared to catfish (COP = 86 +/- 10 micrograms/ml) an eightfold higher extrapolated zero time concentration was obtained in trout (COP = 753 +/- 290 micrograms/ml). A significant difference was observed with respect to the relatively large apparent distribution volumes (Vd(area] after i.v. OTC administration (trout, mean value: 2.1 l/kg; catfish, mean value: 1.3 l/kg). The mean final elimination half-lives of both fish species were greater than previously reported in mammals (trout, 89.5 h; catfish, 80.3 h). A mean maximum plasma concentration (Cmax = 56.9 micrograms/ml) was obtained in trout at 4 h after i.m. administration of OTC. In catfish a lower Cmax of 43.4 micrograms/ml was determined at about 7 h. No significant difference was observed with respect to bioavailability following i.m. administration of OTC (trout, 85%; catfish, 86%).  相似文献   

13.
The pharmacokinetics of a 2:1 ampicillin-sulbactam combination in six rabbits, after intravenous and intramuscular injection at a single dosage of 20 mg/kg bodyweight (13.33 mg/kg of sodium ampicillin and 6.67 mg/kg of sodium sulbactam) were investigated by using a high performance liquid chromatographic method for determining plasma concentrations. The plasma concentration-time curves were analysed by compartmental pharmacokinetic and noncompartmental methods. The disposition curves for both drugs were best described by an open two-compartment model after intravenous administration and a one-compartment model with first order absorption after intramuscular administration. The apparent volumes of distribution calculated by the area method for ampicillin and sulbactam were 0.62 +/- 0.09 and 0.45 +/- 0.05 L/kg, respectively, and the total body clearances were 0.65 +/- 0.04 and 0.42 +/- 0.05 L/kg h, respectively. The elimination half-lives of ampicillin after intravenous and intramuscular administration were 0.64 +/- 0.11 and 0.63 +/- 0.16 h, respectively, whereas for sulbactam the half-lives were 0.74 +/- 0.12 and 0.77 +/- 0.17 h, respectively. The bioavailability after intramuscular injection was high and similar in both drugs (73.34 +/- 10.08% for ampicillin and 83.20 +/- 7.41% for sulbactam). The mean peak plasma concentrations of ampicillin and sulbactam were reached at similar times (0.20 +/- 0.09 and 0.34 +/- 0.15 h, respectively) and peak concentrations were also similar but nonproportional to the dose of both products administered (13.07 +/- 3.64 mg/L of ampicillin and 8.42 +/- 1.74 mg/L of sulbactam). Both drugs had similar pharmacokinetic behaviour after intramuscular administration in rabbits.  相似文献   

14.
A study on bioavailability and pharmacokinetics of florfenicol was conducted in 20 crossbred healthy sheep following a single intravenous (i.v.) and intramuscular (i.m.) doses of 20 and 30 mg/kg body weight (b.w.). Florfenicol concentrations in serum were determined by a validated high-performance liquid chromatography method with UV detection at a wavelength of 223 nm in which serum samples were spiked with chloramphenicol as internal standard. Serum concentration-time data after i.v. administration were best described by a three-compartment open model with values for the distribution half-lives (T(1/2alpha)) 1.51 +/- 0.06 and 1.59 +/- 0.10 h, elimination half-lives (T(1/2beta)) 18.83 +/- 6.76 and 18.71 +/- 1.85 h, total body clearance (Cl(B)) 0.26 +/- 0.03 and 0.25 +/- 0.01 L/kg/h, volume of distribution at steady-state (V(d(ss))) 1.86 +/- 0.11 and 1.71 +/- 0.20 L/kg, area under curve (AUC) 76.31 +/- 9.17 and 119.21 +/- 2.05 microg.h/mL after i.v. injections of 20 and 30 mg/kg b.w. respectively. Serum concentration-time data after i.m. administration were adequately described by a one-compartment open model. The pharmacokinetic parameters were distribution half-lives (T(1/2k(a) )) 0.27 +/- 0.03 and 0.25 +/- 0.09 h, elimination half-lives (T(1/2k(e) )) 10.34 +/- 1.11 and 9.57 +/- 2.84 h, maximum concentrations (C(max)) 4.13 +/- 0.29 and 7.04 +/- 1.61 microg/mL, area under curve (AUC) 67.95 +/- 9.61 and 101.95 +/- 8.92 microg.h/mL, bioavailability (F) 89.04% and 85.52% after i.m. injections of 20 and 30 mg/kg b.w. respectively.  相似文献   

15.
Six healthy adult mares were each given an oral loading dose of ormetoprim(OMP)-sulfadimethoxine (SDM) at a dosage of 9.2 mg of OMP/kg and 45.8 mg of SDM/kg, followed by four maintenance doses of 4.6 mg of OMP/kg and 22.9 mg of SDM/kg, at 24 h intervals. Ormetoprim and SDM concentrations were measured in serum, synovial fluid, peritoneal fluid, cerebrospinal fluid, urine and endometrium. The highest mean serum OMP concentration was 0.92 micrograms/mL 0.5 h after the first dose; the highest mean SDM concentration was 80.9 micrograms/mL 8 h after the first dose. The highest mean synovial fluid concentrations were 0.14 microgram of OMP/mL and 28.5 micrograms of SDM/mL 12 h after the first dose. The highest mean peritoneal fluid concentrations were 0.19 micrograms of OMP/mL 6 h after the first dose and 25.5 micrograms of SDM/mL 8 h after the fifth dose. The highest mean endometrial concentrations were 0.56 micrograms of OMP/g and 28.5 micrograms of SDM/g 4 h after the fifth dose. The mean cerebrospinal fluid concentrations were 0.08 micrograms of OMP/mL and 2.1 micrograms of SDM/mL 5 h after the fifth dose. Mean trough urine drug concentrations were greater than or equal to 0.4 micrograms of OMP/mL and greater than or equal to 172 micrograms of SDM/mL. Two of the mares were each given a single intravenous (IV) injection of OMP and SDM at a dosage of 9.2 mg of OMP/kg and 45.8 mg of SDM/kg. Excitation and muscle fasciculations were observed in both mares after IV administration and all scheduled blood samples could be collected from only one of the two mares.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The pharmacokinetics and pharmacodynamics of A77 1726 and leflunomide after intravenous (i.v.) and oral (p.o.) administration were evaluated in adult cats. Three treatments were administered: a single i.v. dose of A77 1726 (4 mg/kg), a single oral dose of leflunomide (4 mg/kg), and multiple oral doses of leflunomide (2 mg/kg). Mean pharmacokinetic parameter values after a single i.v. dose of A77 1726 were distribution (A) and elimination (B) intercepts (15.2 μg/mL and 34.5 μg/mL, respectively), distribution and elimination half-lives (1.5 and 71.8 h, respectively), area under the curve (AUC(0 → ∞); 3723 μg*h/mL), mean residence time (MRT; 93 h), clearance (Cl(obs); 1.1 mL/kg/h), and volume of distribution at steady state (Vd(ss); 97 mL/kg). Mean pharmacokinetic parameter values after a single oral dose of leflunomide were absorption and elimination rate constants (0.3 1/h and 0.01 1/h, respectively), absorption and elimination half-lives (2.3 and 59.1 h, respectively), AUC(0 → ∞) (3966 μg*h/mL), and maximum observed plasma concentration (C(max); 38 μg/mL). The bioavailability after a single oral dose of leflunomide was 100%. The mean ± SD A77 1726 concentration that inhibited 50% lymphocytes (EC(50) ) was 16 ± 13.5 μg/mL. The mean ± SD maximum A77 1726 concentration (EC(max)) was 61.0 ± 23.9 μg/mL.  相似文献   

17.
Serum concentrations of metronidazole were determined in 6 healthy adult mares after a single IV injection of metronidazole (15 mg/kg of body weight). The mean elimination rate (K) was 0.23 h-1, and the mean elimination half-life (t1/2) was 3.1 hours. The apparent volume of distribution at steady state was 0.69 L/kg, and the clearance was 168 ml/h/kg. Each mare was then given a loading dose (15 mg/kg) of metronidazole at time 0, followed by 4 maintenance doses (7.5 mg/kg, q 6 h) by nasogastric tube. Metronidazole concentrations were measured in serial samples of serum, synovia, peritoneal fluid, and urine. Metronidazole concentrations in CSF and endometrial tissues were measured after the fourth maintenance dose. The highest mean concentration in serum was 13.9 +/- 2.18 micrograms/ml at 40 minutes after the loading dose (time 0). The highest mean synovial and peritoneal fluid concentrations were 8.9 +/- 1.31 micrograms/ml and 12.8 +/- 3.21 micrograms/ml, respectively, 2 hours after the loading dose. The lowest mean trough concentration in urine was 32 micrograms/ml. Mean concentration of metronidazole in CSF was 4.3 +/- 2.51 micrograms/ml and the mean concentration in endometrial tissues was 0.9 +/- 0.48 micrograms/g at 3 hours after the fourth maintenance dose. Two mares hospitalized for treatment of bacterial pleuropneumonia were given metronidazole (15.0 mg/kg, PO, initially then 7.5 mg/kg, PO, q 6 h), while concurrently receiving gentamicin, potassium penicillin, and flunixin meglumine IV. Metronidazole pharmacokinetics and serum concentrations in the sick mares were similar to those obtained in the healthy mares.  相似文献   

18.
Twenty-nine healthy 17- to 29-day-old unweaned Israeli-Friesian male calves were each given a single IV or IM injection of 10 or 20 mg of moxalactam disodium/kg of body weight. Serum concentrations were measured serially during a 12-hour period. Serum concentration vs time profiles were analyzed by use of linear least-squares regression analysis and the statistical moment theory. The elimination half-lives after IV administration were 143.7 +/- 30.2 minutes and 155.5 +/- 10.5 minutes (harmonic mean +/- SD) at dosages of 10 and 20 mg of moxalactam/kg of body weight, respectively. Corresponding mean residence time values were 153.1 +/- 26.8 minutes and 169.9 +/- 19.3 minutes (arithmetic mean +/- SD). Mean residence time values after IM administration were 200.4 +/- 17.5 minutes and 198.4 +/- 19.9 minutes at dosages of 10 and 20 mg/kg, respectively. The volumes of distribution at steady state were 0.285 +/- 0.073 L/kg and 0.313 +/- 0.020 L/kg and total body clearance values were 1.96 +/- 0.69 ml/min/kg and 1.86 +/- 0.18 ml/min/kg after administration of dosages of 10 and 20 mg/kg, respectively. Moxalactam was rapidly absorbed from the IM injection site and peak serum concentrations occurred at 1 hour. The estimated bioavailability ranged from 69.8 to 79.1%. The amount of serum protein binding was 53.4, 55.0, and 61.5% when a concentration of moxalactam was at 50, 10, and 2 micrograms/ml, respectively. The minimal inhibitory concentrations of moxalactam ranged from 0.01 to 0.2 micrograms/ml against Salmonella and Escherichia coli strains and from 0.005 to 6.25 micrograms/ml against Pasteurella multocida strains.  相似文献   

19.
The pharmacokinetics and pharmacodynamics of dexamethasone were evaluated in healthy camels after single intravenous bolus doses of 0.05, 0.1 and 0.2 mg/kg body weight. Dexamethasone showed dose-independent pharmacokinetics. The pharmacokinetic parameters of the two-compartment pharmacokinetic model for the lowest intravenous dose (mean+/-SD) were as follows: terminal elimination half-life 8.17 +/- 1.79 h; total body clearance 100.7 +/- 52.1 (ml/h)/kg; volume of distribution at steady state 0.95 +/- 0.23 L/kg; and volume of the central compartment 0.22 +/- 0.07 L/kg. The extent of plasma protein binding was linear over the concentration range 5-100 ng/ml and averaged 75% +/- 2%. Pharmacodynamic effects were evaluated by measuring endogenous plasma cortisol concentrations, numbers of circulating lymphocytes and neutrophils and plasma glucose concentrations and were analysed using indirect pharmacokinetic/pharmacodynamic models. The cumulative systemic effect increased with dose for markers of pharmacodynamic activity. The estimated IC50 of dexamethasone for cortisol and lymphocytes for the lowest dose were 3.74 +/- 2.44 and 5.58 +/- 8.37 ng/ml, respectively and the EC50 values for neutrophils and glucose were 45.8 +/- 36.9 and 1.17 +/- 0.71 ng/ml, respectively.  相似文献   

20.
Gentamicin sulfate (2.2 mg/kg of body weight, IV) was given to anesthetized horses. Jejunal and large colon tissue samples (1 g), serum, and urine were collected over a 4-hour period. Maximum gentamicin concentrations in serum (10.06 +/- 2.85 micrograms/ml) occurred at 0.25 hours after injection. Maximum gentamicin concentrations in the large colon (4.13 +/- 1.80 micrograms/ml) and jejunum (2.26 +/- 1.35 micrograms/ml) occurred in horses at 0.5 and 0.33 hours, respectively. Tissue concentrations decreased in parallel with serum concentrations and were still detectable at the end of the 4-hour period. During the time that samples were collected, the total amount of gentamicin excreted in the urine ranged from 7.21 +/- 3.11 mg to 11.91 +/- 7.12 mg, with a mean urinary concentration of 57.01 +/- 5.37 micrograms/ml. Over the 4-hour collection period, the fraction of dose that was excreted unchanged in the urine was 4.8 +/- 1.9%. Pharmacokinetic analyses of the serum concentration-time data gave a serum half-life of 2.52 +/- 1.29 hours, volume of distribution of 227 +/- 83 ml/kg, and body clearance of 1.12 +/- 0.26 ml/min/kg. The half-lives of the antibiotic in the jejunum and large colon were 1.32 and 1.33 hours, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号