首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study was conducted to evaluate low‐protein traditional or alternative diets for pond‐raised hybrid catfish, Ictalurus punctatus × Ictalurus furcatus. Three 24% protein diets containing decreasing levels of soybean meal (30, 20, and 15%) and increasing levels of cottonseed meal and corn germ meal were compared with a 28% protein control diet. Hybrid catfish fingerlings (mean initial weight = 71 g/fish) were stocked into 20 earthen ponds (0.04 ha) at a density of 14,826 fish/ha with five ponds per dietary treatment. Fish were fed once daily to apparent satiation for a 191‐d growing season. There were no significant differences in total diet fed, net yield, weight gain, feed conversion ratio (FCR), survival, or fillet proximate nutrient composition among dietary treatments (P ≥ 0.10). However, regression analysis showed for fish fed 24% protein diets there was a linear increase in FCR as soybean meal levels decreased (P = 0.06). Compared with fish fed the 28% protein control diet, fish fed 24% protein diets had lower carcass and fillet yield. Results demonstrate a 24% protein alternative diet containing 20% soybean meal may be substituted for 28% protein diets for hybrid catfish during food fish production.  相似文献   

2.
Corn germ meal (CGM) is a by‐product of corn milling. On the basis of its nutrient composition and digestibility values, it appears to be a suitable ingredient for use in channel catfish, Ictalurus punctatus, diets. A study was conducted to examine the use of various levels of CGM in diets for pond‐raised channel catfish. Four 28% protein diets containing 0, 15, 25, and 35% CGM were evaluated. Fingerling channel catfish (mean initial weight: 71 g/fish) were stocked into 24, 0.04‐ha ponds at a rate of 14,826 fish/ha. Fish were fed once daily to apparent satiation for a 167‐d growing season. No significant differences were observed in total amount of diet fed, diet consumption per fish, net yield, weight gain, feed conversion ratio, survival, fillet yield, and fillet protein, fat, and moisture concentrations among fish fed diets containing various levels of CGM. Carcass yield decreased linearly as dietary CGM levels increased. Depending on prices, CGM can be used interchangeably with corn gluten feed in channel catfish diets as replacements for corn, wheat middlings, and soybean meal to reduce feed cost.  相似文献   

3.
The present study investigated the replacement of soybean meal with combinations of two or three alternative protein sources in diets for pond‐raised hybrid catfish, ♀ Ictalurus punctatus × ♂ Ictalurus furcatus. Alternative protein sources evaluated included cottonseed meal, distillers dried grains with solubles (DDGS), peanut meal, and porcine meat and bone meal (PMBM). Hybrid catfish fingerlings with a mean initial weight of 35 g/fish were stocked into 25 earthen ponds (0.04 ha) at a density of 14,826 fish/ha. Fish were fed once daily to apparent satiation for 166 d. No significant differences were observed for total diet fed, net yield, weight gain, survival, carcass yield, fillet yield, or fillet proximate composition among dietary treatments. Results show soybean meal may be completely replaced by combinations of cottonseed meal and one or two other alternative protein sources including DDGS, peanut meal, and PMBM in the diet without markedly affecting production and processing characteristics and fillet proximate composition of pond‐raised hybrid catfish. These alternative diets may be used during foodfish production when prices are favorable.  相似文献   

4.
Abstract.— This study was conducted to evaluate corn gluten feed as an alternative feedstuff in the diet of pond-raised channel catfish Ictalurus punctatus . Three 32%-protein diets containing 0%, 25%, or 50% corn gluten feed were tested. Channel catfish fingerlings (average weight: 57 g/fish) were stocked into 15 0.04-ha ponds at a rate of 18,530 fish/ha. Five ponds were used for each dietary treatment. Fish were fed to satiation once daily for a 147-d growing period. No differences were observed in feed consumption, weight gain, feed conversion ratio, survival, or fillet protein concentration among fish fed the test diets. Fish fed diets containing 25% and 50% corn gluten feed exhibited a lower level of visceral fat and a higher carcass yield than fish fed the control diet without corn gluten feed. The diet containing 50% corn gluten feed resulted in a lower level of fillet fat and a higher level of moisture than the control diet. There were no visible differences in the coloration of skin or fillet of channel catfish fed diets with and without corn gluten feed. Results from this study indicated that channel catfish can efficiently utilize corn gluten feed at levels up to 50%n without adverse effect on feed palatability, weight gain, or feed efficiency. Corn gluten feed may be beneficial in reducing fattiness of channel catfish and improving carcass yield by reducing the digestible energy to protein ratio of the diet.  相似文献   

5.
Juvenile channel catfish, Ictalurus punctatus (Rafinesque), blue catfish, I. furcatus (Lesueur), and their reciprocal Fl hybrids were fed practical diets containing 25% and 45% protein during a 10-week trial to determine the effects of genotype, dietary protein level and genotype X diet interactions on growth, feed conversion ratio (FCR), fillet proximate composition and resistance to the bacterium Edwardsiella ictaluri. Rankings of genotypes (best to worst) for absolute weight gain, percentage weight gain and FCR were: channel, channel female X blue male, blue, and blue female X channel male for the 25% protein diet; and channel, channel X blue, blue X channel, and blue for the 45% diet. Diet did not affect growth or FCR of channel catfish, but growth and FCR were better for blue catfish and both hybrids fed the 25% diet compared to those fed the 45% diet. Channel catfish additive genetic and maternal effects were favourable, and heterosis was negative for growth and FCR. After adjusting for effects of fish size, genotype had no effect on fillet composition. Fillet protein was higher for all genotypes, and fillet lipid was lower for blue catfish and hybrids fed the 45% diet than for fish fed the 25% diet. Genotype X diet interactions observed for growth, FCR and fillet lipid appeared to be a result of poor palatability of the 45% diet to blue catfish and hybrids. Survival (76-93%) and antibody levels (0.10-0.24 OD) after exposure to E. ictaluri at the end of the feeding trial were not affected by genotype or diet. Hybridization of blue catfish and channel catfish would not be an effective method for improving the traits measured for the fish strains and diets used in this study.  相似文献   

6.
A study was conducted to examine the efficacy of crystalline lysine in alternative diets for pond‐raised hybrid catfish, ♀ Ictalurus punctatus × ♂ Ictalurus furcatus. Two 28% protein alternative diets supplemented with l ‐lysine HCl at the required level based on 62% (previously published value) or 100% lysine availability were compared with a traditional 28% protein control diet. Hybrid catfish fingerlings (mean initial weight = 43 g/fish) were stocked into 15 earthen ponds (0.04 ha) at a density of 14,826 fish/ha with five ponds per treatment. Fish were fed once daily to apparent satiation for a 173‐d growing season. There were no significant differences in total diet fed, net yield, weight gain, and survival among dietary treatments. There were also no significant differences in carcass yield, fillet yield, and fillet proximate composition and fillet lysine concentration among treatments. Fish fed the traditional control diet had slightly, but significantly, lower feed conversion ratio than fish fed alternative diets, which is likely related to higher dietary fiber levels in the alternative diets. Results from this study show that crystalline lysine can be considered 100% available when used to supplement lysine‐deficient diets for pond‐raised hybrid catfish.  相似文献   

7.
A feeding trial was conducted to evaluate the potential of replacing fishmeal with poultry byproduct meal (PBM) and soybean meal in diets for largemouth bass, Micropterus salmoides. A reference diet (C) contained 400 g/kg fishmeal, and 40 or 60% of the fishmeal was replaced with a blend of pet‐food‐grade PBM and soybean meal (diets PP1 and PP2) or a blend of feed‐grade PBM and soybean meal (diets PF1 and PF2). No significant differences were found in weight gain, nitrogen retention efficiency (NRE), condition factor, and body composition among fish fed diets PP1, PP2, PF1, and PF2. Feed intake and feed conversion ratio (FCR) were higher in fish fed diet PF1 than in fish fed diet PP1. No significant differences were found in weight gain, NRE, condition factor, and body composition between fish fed diet C and diets PP1, PP2, PF1, and PF2. The feed intake and FCR were lower in fish fed diet C than in fish fed diets PP2, PF1, and PF2. This study reveals that dietary fishmeal level for largemouth bass could be reduced to 160 g/kg by inclusion of PBM and soybean meal in combination.  相似文献   

8.
Two experiments were conducted in earthen ponds to evaluate the effect of dietary protein concentration and feeding rate on weight gain, feed efficiency, and body composition of channel catfish. In Experiment 1, two dietary protein concentrations (28% or 32%) and four feeding rates (≤ 90. ≤ 112, ≤ 135 kg/ha per d, or satiation) were used in a factorial arrangement. Channel catfish Ictalurus punctatus fingerlings (average size: 27 g/fish) were stocked into 0.04-ha ponds at a rate of 24,700 fish/ha. Fish were fed once daily at the predetermined maximum feeding rates for 282 d (two growing seasons). In Experiment 2, three dietary protein concentrations (24, 28, or 32%) and two feeding rates (≤ 135 kg/ha per d or satiation) were used. Channel catfish (average size: 373 g/fish) were stocked into 0.04-ha ponds at a rate of 17,300 fish/ha. Fish were fed once daily for 155 d. In both experiments, five ponds were used for each dietary treatment. Results from Experiment 1 showed no differences in total feed fed, feed consumption per fish, weight gain, feed conversion ratio (FCR), or survival between fish fed diets containing 28% and 32% protein diets. As maximum feeding rate increased, total feed fed, feed consumption per fish, and weight gain increased. There were no differences in total feed fed, feed consumption per fish, or weight gain between fish fed at ≤ 135 kg/ha per d and those fed to satiation. Fish fed the 28% protein diet had a lower percentage carcass dressout and higher percentage visceral fat than fish fed the 32% protein diet. Dietary protein concentrations of 28% or 32% had no effect on fillet protein, fat, moisture, and ash. Feeding rate did not affect FCR, survival, percentage carcass dressout, or fillet composition, except fillet fat. As feeding rate increased, percentage visceral fat increased. Fish fed at ≤ 90 kg/ha per d had a lower percentage fillet fat than fish fed at higher feeding rates. In Experiment 2, dietary protein concentration or maximum feeding rate did not affect total feed fed, feed consumption per fish, weight gain, FCR, or survival of channel catfish. Feeding rate had no effect on percentage carcass dressout and visceral fat, or fillet composition. This was due to the similar feed consumption by the fish fed at the two feeding rates. Fish fed the 24% protein diet had lower carcass dressout, higher visceral fat and fillet fat than those fed the 28% or 32% protein diet. Results from the present study indicate that both 28% and 32% protein diets provide satisfactory fish production, dressed yield, and body composition characteristics for pond-raised channel catfish fed a maximum rate of 90 kg/ha per d or ahove.  相似文献   

9.
Two pond experiments were conducted to evaluate cottonseed meal (CSM), distiller's dried grains with solubles (DDGS), and supplemental lysine as replacements for soybean meal (SBM) in channel catfish diets. In Experiment 1, fish fed diets in which SBM was totally replaced with CSM gained similar weight as fish fed control diet, but fish fed CSM diet in Experiment 2 had 9.5% lower weight gain than fish fed control diet. In both experiments, feed conversion increased significantly for fish fed CSM diet. There were no consistent trends in body composition of fish fed CSM diet versus control diet. Fish fed the DDGS + SMB diet had higher (Experiment 1) or similar (Experiment 2) weight gain than fish fed control diet. Feed conversion ratio was significantly lower in both experiments for fish fed SBM + DDGS diet than that of fish fed control diet. Body fat tended to be higher in fish fed SBM + DDGS diet compared to fish fed control diet. It appears that about 50% of SBM can be replaced with CSM + lysine in catfish diets without negatively affecting fish performance. Further, DDGS can be used up to at least 30% when the diet is supplemented with lysine.  相似文献   

10.
ABSTRACT

Animal protein, generally fish meal, has traditionally been used in the diet of channel catfish. However, our previous research indicates that animal protein is not needed for growing stocker-size catfish to food fish when the fish are stocked at densities typical of those used in commercial catfish culture. Whether this holds when fish are stocked at high densities is not known; thus, we conducted an experiment to evaluate the effect of feeding diets with and without fish meal to channel catfish stocked in earthen ponds at different densities. Two 32% protein-practical diets containing 0% or 6% menhaden fish meal were compared for pond-raised channel catfish, Ictalurus punctatus, stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48 g/fish were stocked into 30 0.04-ha ponds. Five ponds were randomly allotted for each fish meal level?×?stocking density combination. Fish were fed once daily to satiation for two growing seasons. There was a significant interaction between stocking density and fish meal for net production; net production increased in fish fed a diet containing fish meal compared with those fed an all-plant diet at the highest stocking density, but not at the two lower stocking densities. Net production of fish fed diets with and without fish meal increased as stocking density increased. Viewing the main effect means, weight gain decreased and feed conversion ratio increased for fish stocked at the two highest densities, and survival was significantly lower at the highest stocking density. Visceral fat decreased in fish at the two highest stocking densities. Body composition data were largely unaffected by experimental treatment except for a reduction in percentage filet fat in fish at the highest stocking density, and fish that were fed diets containing fish meal had a lower percentage fillet protein and a higher percentage fillet fat. It appears that at stocking densities two to three times higher than generally used, animal protein (fish meal) may be beneficial in the diet of channel catfish. In regard to stocking densities, high stocking results in higher overall production, but the average fish size decreased as stocking density increased.  相似文献   

11.
In this experimentation, corn gluten (CG) and pea meal (PM) were tested as potential protein sources in hybrid sturgeon ‘AL’. One hundred and twenty‐eight hybrid sturgeons ‘AL’ (Acipenser naccarii × Acipenser baeri) (initial body weight 364.8 ± 4.5 g) were utilized with four experimental diets and four replicates each; the experimental design was 4 × 4. Four isonitrogenous [crude protein=40% dry matter (DM)] and isoenergetic (gross energy=20 MJ kg?1 DM) diets were formulated containing different levels of CG with or without PM and tested against a control diet that was fish meal (FM) based. Diets were as follows: CG55 contained 55% of corn gluten; diet CG55PM25 contained 55% CG and 25% PM; diet CG45PM25 contained 45% of corn meal and 25% of PM; and diet FM was control, based on FM. Fish fed with the PM diet showed lower values of feed conversion ratio (FCR) and specific growth rate (SGR) (FCR=4.53 ± 2.51 in the CG55PM25 diet; FCR=4.09 ± 1.45 in the CG45PM25 diet; SGR=0.20 ± 0.07 in the CG55PM25 diet; SGR=0.19 ± 0.11 in the CG55PM25 diet). The results of tissue proximate composition confirmed the results obtained from productive traits. This study indicates that CG meal but not PM could be utilized as a substitute of FM in hybrid sturgeon ‘AL’ nutrition.  相似文献   

12.
Abstract.— This study was conducted to evaluate the effect of dietary protein concentration and an all‐plant diet on growth and processing yield of pond‐raised channel catfish Ictalurus punctatus. Four diets were formulated using plant and animal proteins to contain 24%n, 28%, 32%, or 36% crude protein with digestible energy to protein (DE/P) ratios of 11.7, 10.2, 9.0, and 8.1 kcal/g, respectively. An all‐plant diet containing 28% protein with a DE/P ratio of 10.2 kcal/g was also included. Channel catfish fingerlings averaging 40 g/fish were stocked into 24, 0.04‐ha ponds at a density of 18,530 fish/ha. Five ponds were used for each dietary treatment except for the all‐plant diet which had four replicates. The fish were fed once daily to apparent satiation for 160 d. No differences were observed in feed consumption, weight gain, survival, carcass and nugget yield, or fillet moisture and protein concentrations among treatments. Fish fed the 28% protein diet had a lower feed conversion ratio (FCR) than fish fed diets containing 24% and 32% protein, but had a FCR similar to fish fed the 36% protein diet. Fillet yield was higher for fish fed the 36% protein diet than fish fed the 24% protein diet. Visceral fat was lower in fish fed the 36% protein diet than fish fed other diets. Fish fed the 32% and 36% protein diets exhibited a lower level of fillet fat than fish fed the 24% protein diet. The 36% protein diet resulted in a lower level of fillet fat than fish fed the 28% protein diet. There was a positive linear regression in fillet yield and fillet moisture concentration and a negative linear regression in visceral fat and fillet fat against dietary protein concentration. No differences in any variables were noted between the 28% protein diets with and without animal protein except that fish fed the 28% protein diet without animal protein had a higher FCR than fish fed the 28% protein diet with animal protein. This observation did not appear to be diet related since FCR of fish fed the 32% protein diet containing animal protein was not different from that of fish fed the 28% all‐plant protein diet. Data from the present study indicate that dietary protein concentrations ranging from 24% to 36% provided for similar feed consumption, growth, feed efficiency, and carcass yield. However, since there is a general increase in fattiness and a decrease in fillet yield as the dietary protein concentration decreases or DEP ratio increases, it is suggested that a minimum of 28% dietary protein with a maximum DEIP ratio of 10 kcal/g protein is optimal for channel catfish growout.  相似文献   

13.
A comparative study was conducted on growth and protein requirements of channel catfish, Ictalurus punctatus, and blue catfish, Ictalurus furcatus. Four diets containing 24, 28, 32, or 36% protein were fed to both channel (initial weight 6.9 g/fish) and blue (6.6 g/fish) catfish for two growing seasons. There were significant interactions between dietary protein and fish species for weight gain and feed conversion ratio (FCR). No significant differences were observed in weight gain of channel catfish fed various protein diets, whereas higher protein diets (32 and 36%) resulted in better weight gain in blue catfish than lower protein diets (24 and 28%). No consistent differences were observed in the FCR of channel catfish fed various levels of dietary protein, whereas significantly higher FCRs were noted in blue catfish fed the 24 and 28% protein diets compared with fish fed 32 and 36% protein diets. Regardless of dietary protein levels, blue catfish had higher carcass, nugget, and total meat yield, and higher fillet moisture and protein, but lower fillet yield and fillet fat. Regardless of fish species, fish fed the 36% protein diet had higher carcass, fillet, and total meat yield than fish fed the 28 and 32% protein diets, which in turn had higher yields than fish fed the 24% protein diet. It appears that blue catfish can be successfully cultured by feeding a 32% protein diet.  相似文献   

14.
Abstract— A 2 × 5 factorial experiment was conducted using practical-type extruded feeds containing 20, 24, 28, 32, or 36% crude protein with or without animal protein. The animal protein supplement consisted of 4% menhaden fish meal and 4% meat, bone and blood meal. Channel catfish fingerlings (average size: 26.3 g/fish) were stocked into 50 0.04-ha ponds at a rate of 24,700 fishha. Five ponds were used for each dietary treatment. Fish were fed once daily to satiation for 202 d. There were no differences in feed conversion ratio (FCR), percentage fillet moisture, and survival among treatments. In fish fed diets containing no animal protein, feed consumption, weight gain, and percentage dressout were lower for fish fed the 20% protein diet than those fed diets containing 28% and 32% protein. Fish fed 28, 32, or 36% protein diets without animal protein did not differ in respect to percentage dressout and percentage visceral fat; fish fed the 36% protein diet had higher percentage fillet protein and a lower percentage fillet fat than fish fed other diets with the exception of fish fed the 28% protein diet. In fish fed diets containing animal protein, feed consumption, weight gain, percentage fillet protein and ash, and percentage dressout were lower and visceral fat was higher for fish fed the 20% protein diet than those fed other diets. Fish fed diets containing 24% protein and above with animal protein were not different in respect to weight gain and feed consumption, but fish fed the 24% protein diet had a higher percentage fillet fat than fish fed a 32% or 36% protein diet. Fish fed the 32% protein diet had a lower visceral fat. Considering animal protein vs non-animal protein with the data pooled across all diets without regard to dietary protein level, weight gain and FCR of fish fed diets containing animal protein were higher than those fed diets containing no animal protein. However, weight gain of fish fed diets containing 20, 28, or 32% protein with or without animal protein did not differ. Dressout percentage and fillet protein were higher and fillet fat was lower for fish fed diets containing no animal protein than those fed diets containing animal protein. Data from this study indicated that animal protein may not be a necessary dietary ingredient for fish fed 28% or 32% protein diets typically used for grow out of pond-raised channel catfish under satiation feeding conditions. Whether animal protein should be included in catfish diets containing less than 28% protein is unclear, since fish fed the 24% protein diet benefited from animal protein but those fed the 20% protein diet did not benefit from animal protein. Additional studies to provide more information on low-protein, all-plant diets are currently being conducted.  相似文献   

15.
Two experiments were conducted to evaluate various ingredient combinations in a 28% or 32% protein diet for optimum performance of channel catfish Ictalurus punctatus. All diets contained soybean meal and corn, but with or without cottonseed meal, wheat middlings or fish meal (FM). Channel catfish fingerlings were stocked into 0.04 ha earthen ponds at 18 530 fish ha?1. Fish were fed one of eight diets once daily to apparent satiation for two growing seasons. Results demonstrated that the dietary ingredient composition used had significant effects on fish performance, but magnitude of differences was relatively small. Overall, diets containing FM resulted in greater weight gain (Experiments 1 and 2) and lower feed conversion ratio (Experiment 1) than fish fed all‐plant diets. However, certain combinations of plant ingredients provided the similar fish growth as some diets containing FM. There were no significant differences in weight gain between fish fed soybean meal–corn or soybean meal–corn–wheat middlings‐based diets with cottonseed meal or FM. The use of wheat middlings in the diet had no significant effects on fish production characteristics.  相似文献   

16.
Two 8‐wk feeding trials were conducted to examine the effect of replacing dietary fish meal with poultry by‐product meal (PBM) and soybean meal (SBM) on growth, feed utilization, body composition, and wastes output of juvenile golden pompano, Trachinotus ovatus (initial body weight 16.7 g), reared in net pens. A control diet (C) was formulated to contain 35% fish meal. In Trial I, dietary fish meal level was reduced to 21, 14, 7, and 0% by replacing 40, 60, 80, and 100% of the fish meal in diet C with PBM. The weight gain (WG), nitrogen retention efficiency (NRE), and energy retention efficiency (ERE) decreased, while the feed conversion ratio (FCR) and total waste output of nitrogen (TNW) increased, with the fish meal level reducing from 35 to 21%. No significant differences were found in the hepatosomatic index, viscersomatic index, and body composition between fish fed diet C and test diets. In Trial II, a 2 × 2 layout was established, and 40 and 60% of the fish meal in diet C was replaced by either PBM or SBM. At the same fish meal replacement level, the WG and NRE were higher and the FCR and TNW were lower in fish fed the diets with fish meal replaced by PBM than in fish fed the diets with fish meal replaced by SBM. The results of this study indicate that more than 21% fish meal must be retained in diets for golden pompano when PBM or SBM is used alone as a fish meal substitute.  相似文献   

17.
A laboratory study was conducted to compare different animal protein sources in diets containing 32% protein for channel catfish Ictalurus punrtatus . The experimental diets were practical-type diets and formulated to meet or exceed all known nutrient requirements for channel catfish. Twenty juvenile channel catfish (initial weight: 6.4 g/fish) were stocked into each of 25 110-L flow-through aquaria (five aquaria/treatment). Fish were fed twice daily to approximate satiation for 9 wk. Fish in each aquarium were counted and weighed collectively every 3 wk. No significant differences were observed in feed consumption, weight gain, feed efficiency, survival, percentages visceral fat and fillet yield, or proximate composition of fillets among channel catfish fed diets containing either 5% menhaden fish meal, meat and bone/blood meal, catfish by-product meal, poultry by-product meal, or hydrolyzed feather meal with supplemental lysine. The data indicate that these animal protein sources can be used interchangeably in diets for channel catfish without affecting fish growth, feed efficiency, or body composition.  相似文献   

18.
High oleic corn is a genetic variant that contains more protein, lipid, and oleic acid and less linoleic acid than regular corn. A study was conducted to compare weight gain and feed conversion of year-1 and year-3 channel catfish Ietalurus punctatus , and processing yield, body composition and frozen storage stability of year-3 channel catfish fed high oleic corn and number 2 yellow (regular) corn in extruded production diets. A commercial-type diet formulated to contain 30% protein and made with regular corn served as a control. A second diet contained high oleic corn in place of regular corn on an equal (air-dry) weight basis. A third diet contained high oleic corn in substitution for regular corn and part of the soybean meal to limit protein content to 28%, which was equal to that of the control diet. The experimental diets were fed to year-1 channel catfish (average initial weight 5.1 g) in aquaria for 10 wk and to year-3 channel catfish (average initial weight 1.07 kg) in 0.04–ha ponds for 14 wk. Substitution of high oleic corn for regular corn on an equal (air-dry) weight basis provided significant gain ( P < 0.01) of year-1 channel catfish but not of year-3 fish. Use of high oleic corn diets designed to be equal in protein content did not affect weight gain of either group of fish. Replacement of regular corn with high oleic corn caused a significant ( P < 0.01) reduction in linoleic acid but no significant ( P > 0.20) increase in oleic acid in the flesh of fish. Proximate body composition, dressing yield, fillet yield, visceral fat, and liver weight were not significantly different among treatments. Sensory scores of fillets frozen for 3 and 6 mo were not significantly different among treatments. Peroxide value, thiobarbituric acid number and free fatty acids increased with frozen storage time but were not different among treatments.  相似文献   

19.
Development of efficient cost‐effective diets is a critical component in the refinement of production technologies for the largemouth bass, Micropterus salmoides (LMB). One of the first steps in reducing feed costs can be to decrease the amount of fish meal in the diet. The objective of this study was to evaluate reduced levels of fish meal, and a least‐cost formulation diet, for second year growout of LMB under practical pond conditions. Twelve 0.04‐ha ponds were stocked with juvenile LMB (210.1 ± 3.3 g) at a stocking density of 8650 fish/ha (350 fish/pond). Each pond was randomly assigned one of the four dietary treatments with three replicate ponds per treatment. The three experimental diets contained varying levels of fish meal. Diets FM‐45, FM‐24, and FM‐8 contained 45, 23.5, and 8% fish meal, respectively. In diets FM‐24 and FM‐8, fish meal was replaced by varying levels of poultry by‐product meal, soybean meal, and blood meal. The fourth diet was a commercial salmonid diet widely used as a LMB growout feed (Nelson and Sons, Inc., Silvercup TM , Steelhead, Murray, UT, USA). This diet served as a commercial control (CC) and contained 46% crude protein. The experimental diets were formulated to be isonitrogenous and isocaloric with the CC diet and were fed once daily to apparent satiation for 180 d. At harvest, there were no significant differences between treatments ( P > 0.05 ) in terms of survival, which averaged 95% overall. Mean weights of fish fed the three experimental diets FM‐45, FM‐24 and FM‐8 were not significantly different ( P > 0.05 ) and averaged 518, 546, and 529 g, respectively, but were all significantly greater ( P≤ 0.05 ) than those fed the CC (488 g). Feed conversion ratio (FCR) of fish fed the FM‐45 and FM‐8 diets (1.43 and 1.46, respectively) was significantly greater ( P≤ 0.05 ) than those fed the FM‐24 diet (1.34). The FCR of fish fed the CC diet (1.39) was not significantly different ( P > 0.05 ) from fish fed other diets. Feed cost per unit of weight gain ($US/kg) was significantly lower ( P≤ 0.05 ) in fish fed the FM‐24 and FM‐8 diets ($0.73 and $0.72/kg, respectively) than in fish fed other diets. Feed cost per unit gain of fish fed the FM‐45 diet ($0.83/kg) was significantly lower ( P≤ 0.05 ) than those fed the CC diet ($1.04/kg). There were no significant differences ( P > 0.05 ) in dress‐out percentages or proximate composition among fish fed the four diets. This study indicates that fish meal levels in feeds used for the second year growout of LMB can be reduced to ≥ 8% of the formulation without reducing survival or growth and without negatively impacting body composition.  相似文献   

20.
This study examined four experimental diets with different protein concentrations and sources for pond‐raised fingerling hybrid catfish, ♀ Ictalurus punctatus × ♂ Ictalurus furcatus. A 35% protein diet with fishmeal was used as the control diet. Test diets were 32 and 28% all‐plant‐protein diets and a 28% protein diet with porcine meat, bone, and blood meal. Small fingerlings with a mean initial weight of 2.9 g/fish were stocked into 20 earthen ponds (0.04 ha) at a density of 172,970 fish/ha. They were fed once daily to apparent satiation for 107 d. No significant differences were observed for total diet fed, gross yield, final weight, survival, or condition factor among dietary treatments. However, fish fed the 28 and 32% all‐plant‐protein diets had a significantly higher feed conversion ratio than fish fed the 35% protein diet with fishmeal. There were no significant differences in chlorophyll a and nitrite concentrations in the pond water, but ponds receiving the 35% protein diet had significantly higher ammonia than those receiving 28% protein diets. Economic analysis suggested potential cost savings by using low‐protein and all‐plant‐protein diets for hybrid catfish fingerling production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号