首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Hoof wall defects in horses are common occurrences, and, fortunately, many of those detected present little or no danger to the individual horse. Those defects that are either presently a problem or have a great likelihood of being a problem do often require specialized consideration. Horse shoeing and farriery are ancient practices; over the years, a multitude of methods, theories, and management schemes have been proposed. It is unfortunate to note that few studies are available to provide an accurate incidence rate, a better understanding of the various causes, and, lastly, a comparative appreciation of the possible modes of treatment and management. This discussion reflects the thinking and experience of the author and, as such, should be read and viewed with an open and critical mind set.  相似文献   

10.
Good cooperation between farrier, veterinarian and horse owner is an important prerequisite for optimal support of the horse with regards to shoeing and hoof health. The introduction of a joint educational aid aims to improve the level of education of both veterinarians and farriers. The interactive, multimedia approach represents an innovative new dimension in instruction techniques, predominantly provided through images and videos. The contents of the new teaching aid will focus on detailed anatomy of the foot and distal limb, as well as currently accepted shoeing practices and techniques and pathologic conditions of the hoof and foot.  相似文献   

11.
The aim of this study was to determine which of the two species, Fusobacterium necrophorum or Dichelobacter nodosus, are associated with hoof thrush in horses. Fourteen hoof samples, collected from eight horses with thrush and 14 samples collected from eight horses with healthy hooves, were examined for the presence of F. necrophorum, Fusobacterium equinum and D. nodosus. Only isolates with phenotypic characteristics representing Fusobacterium could be cultured. Total DNA extracted from the 28 hoof samples was amplified by using DNA primers designed from gene lktA, present in F. necrophorum subsp. necrophorum, F. necrophorum subsp. funduliforme and F. equinum, and gene fimA, present in D. nodosus. The lktA gene was amplified from five of the 14 infected hoof samples and from one hoof sample without thrush. The DNA sequence of the amplified ltkA gene was identical to the lktA gene of the type strain of F. necrophorum (GenBank accession number AF312861). The isolates were phenotypically differentiated from F. equinum. No DNA was amplified using the fimA primer set, suggesting that F. necrophorum, and not D. nodosus, is associated with equine hoof thrush. Hoof thrush in horses is thus caused by F. necrophorum in the absence D. nodosus. This is different from footrot in sheep, goats, cattle and pigs, which is caused by the synergistic action of F. necrophorum and D. nodosus.  相似文献   

12.
13.
14.
15.
16.
17.
Reasons for performing study: In the treatment of laminitis it is believed that reducing tension in the deep digital flexor tendon by raising the palmar angle of the hoof can reduce the load on the dorsal lamellae, allowing them to heal or prevent further damage. Objective: To determine the effect of alterations in hoof angle on the load in the dorsal laminar junction. Methods: Biomechanical finite element models of equine hooves were created with palmar angles of the distal phalanx varying from 0–15°. Tissue material relations accounting for anisotropy and the effect of moisture were used. Loading conditions simulating the stages in the stance where the vertical ground reaction force, midstance joint moment and breakover joint moment were maximal, were applied to the models. The loads were adjusted to account for the reduction in joint moment caused by increasing the palmar angle. Models were compared using the stored elastic energy, an indication of load, which was sampled in the dorsal laminar junction. Results: For all loading cases, increasing the palmar angle increased the stored elastic energy in the dorsal laminar junction. The stored elastic energy near the proximal laminar junction border for a palmar angle of 15° was between 1.3 and 3.8 times that for a palmar angle of 0°. Stored elastic energy at the distal laminar junction border was small in all cases. For the breakover case, stored elastic energy at the proximal border also increased with increasing palmar angle. Conclusions and potential relevance: The models in this study predict that raising the palmar angle increases the load on the dorsal laminar junction. Therefore, hoof care interventions that raise the palmar angle in order to reduce the dorsal lamellae load may not achieve this outcome. See also correspondence by Redden See also correspondence by Curtis  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号