首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight isolipidic diets containing 0, 20, 40, and 60 g/kg oxidized fish oil (OFO) or oxidized soybean oil (OSO) were fed to triplicate groups of channel catfish, Ictalurus punctatus, for 8 weeks to investigate the effects of oxidized oils on growth, body color, and antioxidative capacity. Lower weight gain (WG) was observed in fish fed high levels of oxidized oils (40 and 60 g/kg) (p < .05). At the inclusion of 40 g/kg, OFO group showed lower WG than the OSO group (p < .05). With the increase of dietary oxidized oils, the serum levels of malondialdehyde, total bilirubin, direct bilirubin, and activity of alanine aminotransferase and aspartate aminotransferase significantly increased (p < .05), but the glutathione level decreased (p < .05). Serum superoxide dismutase and catalase activity showed the maximum values at 20 g/kg OFO group and 40 g/kg OSO group, respectively. Compared to the 0 g/kg oxidized oil groups, both dietary oxidized oils increased the b* value (yellowness) of dorsal skin and caudal skin at 40 and 60 g/kg inclusion (p < .05). In conclusion, dietary oxidized oil (≥40 g/kg) decreased the growth and the antioxidative capacity and increased the yellowness of skin. OFO caused more negative effects on channel catfish than OSO at the inclusion of 40 g/kg.  相似文献   

2.
To evaluate protein and lipid requirement of South American catfish surubim (Pseudoplatystoma sp.) juveniles, nine semi‐purified diets containing three levels of protein (40%, 45% and 50%) and three levels of lipid (12%, 16% and 20%) were tested. After 8‐week feeding trial, body weight increase averaged 2124.3 ± 295.7%. Growth performance was significantly affected by dietary level of protein (P < 0.05). At the 40% protein level, increasing level of dietary lipid had a positive effect on final individual mean weight (protein sparing effect). Whole body protein and moisture contents were affected by the dietary level of lipid (P < 0.05). Whole body lipid content positively correlated with the level of dietary lipid (P < 0.05). Cannibalism related mortality was observed despite rearing fish in 24 h dark. Fatty acid composition of fish was affected by the dietary lipid level (P < 0.05). Polyunsaturated fatty acids increased with the increasing level of dietary lipid while saturated fatty acids and monounsaturated fatty acids decreased. Trypsin activity in the digestive tract of surubim was influenced by dietary levels of protein and lipid (P < 0.05). Our preliminary results suggest that the optimum protein/lipid ratio might be close to 45/16% for surubim juveniles.  相似文献   

3.
甘草次酸对团头鲂生长、脂肪沉积与抗氧化功能的影响   总被引:3,自引:2,他引:1  
为探讨甘草次酸对团头鲂生长、脂肪沉积和抗氧化功能的影响,选取均体质量为(15.63±0.04)g的团头鲂幼鱼420尾,随机分在15个网箱中,分别以甘草次酸水平为0、0.15、0.30、0.45和0.60 g/kg的5种饲料投喂8周。结果发现,饲料添加甘草次酸对团头鲂增重率、特定生长率、饵料系数没有显著影响(P0.05)。甘草次酸可以显著降低实验鱼脏体比、肝体比、腹脂率及肝脏脂肪含量(P0.05),但对全鱼体组成和肌肉脂肪含量无显著影响(P0.05)。比对血浆脂肪代谢酶可见,0.30~0.60 g/kg甘草次酸添加组血浆总胆固醇含量较对照组显著下降(P0.05);而甘油三酯、游离脂肪酸和高密度脂蛋白胆固醇含量无显著变化(P0.05)。肝脏中脂蛋白酯酶、肝酯酶和总酯酶活性在添加甘草次酸后显著降低(P0.05);0.30~0.60 g/kg甘草次酸添加组脂肪酶活性显著高于其他各组(P0.05)。饲料添加甘草次酸可以显著提高肝脏超氧化物歧化酶活性和还原型谷胱甘肽含量,降低丙二醛含量(P0.05)。研究表明,饲料中添加0.30~0.45 g/kg甘草次酸时,显著降低了团头鲂内脏团的脂肪沉积,改善了鱼体脂肪分布,这可能是由于甘草次酸加强脂解作用,提高脂肪代谢酶活性导致的;饲料中添加甘草次酸也可显著提高团头鲂的抗氧化能力。  相似文献   

4.
Two experiments were conducted to determine the optimum level of dietary available phosphorus from monocalcium phosphate for juvenile Ussuri catfish Pseudobagrus ussuriensis. Experiment 1 was conducted to estimate phosphorus digestibility from monocalcium phosphate for juvenile Ussuri catfish. The apparent digestibility coefficient of phosphorus from monocalcium phosphate was 86.3%. In the experiment 2, triplicate groups of juvenile Ussuri catfish were fed diets containing graded levels of monocalcium phosphate (MCP: 0 g/kg, 8.2 g/kg, 16.4 g/kg, 24.6 g/kg, 32.8 g/kg and 41.0 g/kg) for 8 weeks. Fish fed the diet containing 16.4 g/kg MCP with available phosphorus of 4.8 g/kg showed the best weight gain (171.5%), feed conversion ratio (1.08) and protein efficiency ratio (2.06). No significant difference was observed in fish survival among the treatments. The best result in terms of phosphorus retention efficiency (46.10%) was observed in fish fed the diet containing 8.2 g/kg MCP with available phosphorus of 3.0 g/kg, which was not different (> .05) from those fed the diet containing up to 24.6 g/kg MCP, and the highest vertebrae phosphorus content (58.2 g/kg) was observed in fish fed the diet containing 24.6 g/kg MCP with available P of 6.6 g/kg. The whole‐body lipid and protein, as well as phosphorus contents, were significantly affected by dietary available phosphorus (< .05). Viscerosomatic index (VSI) and condition factor (CF) were inversely correlated with dietary phosphorus levels (< .05). Quadratic regression analysis based on specific growth rate (SGR) against dietary available phosphorus levels indicated that the optimum available phosphorus requirement for the maximal growth of juvenile Ussuri catfish was 5.9 g/kg, and broken‐line analysis based on vertebrae phosphorus content against dietary available phosphorus levels indicated that a dietary level of 6.0 g/kg available phosphorus will provide optimum vertebrae phosphorus content.  相似文献   

5.
为了探讨高脂肪条件下不同的蛋白和能量水平对斑点叉尾鮰生长及体组成的影响,试验设2个蛋白水平(22%,28%),2个脂肪水平(10.0%,14.0%),2个消化能水平(12.56 kJ/g,14.23 kJ/g),共8组,分别为P28L10E14.23,P28L14E14.23,P22L10E14.23,P22L14E14.23,P28L10E12.56,P28L14E12.56,P22L10E12.56和P22L14E12.56。试验饲料配方使用鱼粉和豆粕调节蛋白含量,混合油脂(鱼油∶玉米油=1∶1)调节脂肪含量,α-淀粉、次粉和麸皮调节消化能含量,并以微晶纤维素为填充物,每组3个重复,每个重复20尾鱼(141.5?1.0) g。饲养60 d后,进行生产性能测定,并采集组织样本,测定相关指标。结果表明,鱼体末重(FW)、增重率(WG)、特定生长率(SGR)和饵料系数(FCR)不受饲料蛋白、脂肪和消化能单一营养水平影响(P>0.05);但与饲料蛋白、脂肪和消化能三者的交互作用(P<0.01)有关。胴体蛋白、脂肪含量与饲料脂肪和消化能水平相关(P<0.05)。由此可见,饲料过高脂肪和消化能对斑点叉尾鮰没有额外的促生长作用;饲料蛋白水平达到22%时,即可满足140~300 g斑点叉尾鮰的营养需要;饲料中22%的蛋白、10%的脂肪、12.56 kJ/g的消化能即可满足斑点叉尾鮰仔鱼的生长需要,同时又能保证其正常生理机能,建议可在实际生产配方中作参考值。  相似文献   

6.
Cachara, Pseudoplatystoma reticulatum, is a high commercial value carnivorous catfish in Brazil, but whose dietary protein requirement is still unknown. Aiming to determine this requirement, groups of 15 juveniles (16.08 ± 1.13 g) were fed isoenergetic diets (4600 kcal/kg gross energy) with increasing levels of crude protein (30, 35, 40, 45, 50, and 55%). After 60 d, regression analysis revealed a quadratic effect (P < 0.05) of increasing dietary crude protein concentration on growth variables. The highest weight gain and specific growth rate as well as the best feed conversion were shown by fish fed the 50% crude‐protein diet. Similarly, protease activities were significantly higher (P < 0.05) in fish fed 50% crude protein. However, the highest protein retention was observed in fish fed the 45% crude‐protein diet. Protein and dry matter digestibilities did not differ (P > 0.05) for diets containing 40, 45, or 50% crude protein. Therefore, based on weight gain and at a dietary energy concentration of 4600 kcal/kg, the estimated protein requirement for juvenile cachara between 16 and 85 g is 49.25% crude protein. This is equivalent to 44.79% digestible protein and a gross energy to digestible protein ratio of 10.27 kcal/g.  相似文献   

7.
The present study was conducted to investigate the effect of dietary cadmium (Cd) level on the growth, body composition and several enzymatic activities of juvenile yellow catfish, Pelteobagrus fulvidraco. The experimental diets were formulated with CdCl2·2.5H2O at levels of 0, 0.01, 0.1 and 1.0 g kg?1 diet, resulting in four dietary Cd levels of 0.25 (control), 4.92, 48.57 and 474.7 mg Cd kg?1 diet respectively. They were fed to juvenile yellow catfish (mean initial weight: 3.26±0.07 g, mean±SD) for 4 weeks. Weight gain, specific growth rate, feed intake and protein efficiency ratio tended to decline with increasing dietary Cd levels (P<0.05). In contrast, the feed conversion ratio was the lowest when the dietary Cd level was 0.25 mg Cd kg?1 diet. Dietary Cd levels significantly influenced body composition and Cd accumulation. Whole body and vertebrae Cd content generally increased as the dietary Cd levels increased (P<0.05). However, muscle Cd content was detected only in fish fed the diets containing the highest Cd level of the diet (P>0.05). Hepatic alkaline phosphatase, glutathione peroxidase and lactate dehydrogenase activities increased (P<0.05) with increasing dietary Cd level. Succinate dehydrogenase was very variant and not related to dietary treatments. Malic dehydrogenase activity showed no significant differences among the treatments (P>0.05). The present study provided for the first time the toxic assessment of dietborne Cd in yellow catfish, based on growth performance and the changes in hepatic enzymatic activities for the fish species.  相似文献   

8.
A 9‐wk study was conducted to evaluate the effect of dietary protein and energy on growth performance of juvenile permit, Trachinotus falcatus, growing from approximately 30 to 150 g. Nine experimental diets were formulated to contain three levels of crude protein (400, 450, and 500 g/kg dry matter [DM]); and three levels of crude lipid (100, 200, and 300 g/kg DM) in a 3 × 3 factorial design. Growth rate and feed efficiency were significantly improved with increasing dietary protein levels from 400 to 500 g/kg and with dietary lipid levels from 100 to 200 g/kg. Fish body protein content was positively correlated with dietary ratio of digestible protein (DP) to digestible energy (DE) (P < 0.01, R2 = 0.83), while body lipid was negatively correlated with dietary DP/DE (R2 = 0.55, P < 0.05) but positively correlated with dietary DE levels (R2 = 0.66, P < 0.01). Results showed a protein‐sparing effect, as protein retention was significantly increased by increasing dietary lipid level. In conclusion, the diet containing DP of 392.7 g/kg and DE of 18.8 MJ/kg (DM), corresponding to a DP/DE of 20.9 g/MJ, is suggested as an optimal feed for growth and feed efficiency in juvenile permit.  相似文献   

9.
A feeding trial was conducted to evaluate the potential of dietary supplementation of autolysed brewer's yeast (AY) on African catfish. The catfish (22.5 ± 1.15 g/fish, 20 fish 33 L/tank) were fed with either of diets (390 g/kg crude protein, 140 g/kg lipid) supplemented with 0, 3, 6 or 10 g/kg AY (n = 3). After 49 days of feeding, the final body weight and metabolic growth rate of the catfish fed 3 g/kg AY (3‐AY) diet were higher than those fed the control diet (p < .05). The lowest level (p < .05) of alanine transaminase was detected in the blood of the catfish fed 3‐AY diet. The mid‐intestinal histology of the catfish revealed no significant difference (p > .05) in intestinal perimeter ratio. However, an elevated (p < .05) abundance of goblet cells and intraepithelial leucocytes were found in the intestine of catfish fed 3, 6 and 10 g/kg AY diets, with the highest level of abundance recorded in the mid‐intestine of the catfish fed 3‐AY diet. The results suggest that dietary 3 g/kg autolysed brewer's yeast supplementation improves growth performance of African catfish without deleterious effect on liver functionality and gut morphology.  相似文献   

10.
A 12‐wk experiment was conducted to determine the dietary biotin requirement of the fingerling Catla catla (7.9 ± 0.37 cm; 3.5 ± 0.12 g). Eight diets (35% crude protein, 16.72 kJ/g gross energy) with different levels of biotin (0, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, and 2.5 mg/kg diet) were fed to triplicate groups of fish to apparent satiation. Highest percent weight gain, protein retention efficiency, and best feed conversion ratio were observed in fish fed 0.5 mg biotin per kg diet. However, fish fed diets containing dietary biotin of 1.0, 1.5, 2.0, and 2.5 mg/kg did not show significant (P > 0.05) differences compared to those fed on dietary biotin of 0.5 mg/kg. Hematological indices, including hematocrit value, hemoglobin content, and red blood cell counts were found to be directly proportional (P < 0.05) to the dietary biotin levels up to 0.5 mg/kg, beyond which a plateau was recorded. Pyruvate carboxylase activity (PCA) was also found to increase with the incremental levels of dietary biotin up to 0.5 mg/kg and further increasing dietary biotin concentration led to stagnation in PCA of fish. Liver biotin concentrations responded positively (P < 0.05) until saturation, which occurred at 1.0 mg/kg diet. Broken‐line analysis of percent weight gain, protein retention efficiency, PCA, and liver biotin concentrations demonstrated that fingerling C. catla require biotin in the range of 0.41–0.87 mg/kg diet.  相似文献   

11.
An eight-week feeding experiment was conducted to quantify the dietary threonine requirement of young catfish, Heteropneustes fossilis (9.20 ± 0.85 cm, 3.60 ± 0.45 g) using isonitrogenous and isoenergetic diets [40% crude protein (CP); 4.28 kcal g/100 g, gross energy (GE)] containing casein, gelatin and l-crystalline amino acids. Six dietary treatments supplemented with graded levels of l-threonine (0.50, 0.75, 1.00, 1.25, 1.50 and 1.75 g per 100 g, dry diet), in gradations of 0.25 g per 100 g dry diet were formulated. Fish were randomly stocked, in triplicate groups, in 55-l indoor polyvinyl flow-through circular tanks and fed experimental diets at 4% of their body weight divided over two equal feedings at 08:00 and 16:00 hours. Feeding schedule and ration size were worked out prior to the start of the feeding trial. Live weight gain (263%), feed conversion ratio (FCR) (1.35) and protein efficiency ratio (PER) (1.85) were significantly higher (P < 0.05) in fish fed a diet containing 1.25% dietary threonine. However, second-degree polynomial regression analysis of live weight gain, FCR, PER and body protein deposition data indicated the dietary threonine requirement to be 1.37, 1.26, 1.23 and 1.24 g per 100 g of dry diet, respectively. Whole-body moisture decreased significantly (P < 0.05) with the increase of dietary concentration up to 1.25%. A significantly (P < 0.05) higher protein content was evident in fish fed a diet containing 1.25% threonine. Body fat increased significantly (P < 0.05) with the increase of dietary concentration and was found to be highest at a 1.75% threonine concentration. A significantly (P < 0.05) higher ash content was reported at the 0.50 and 0.75% threonine levels. Body protein deposition was also found to be significantly (P < 0.05) higher at the 1.25% threonine level, followed by the 1.50% threonine level. Based on these results, it is recommended that the diet for fingerling H. fossilis should contain threonine at a level of 1.27 g per 100 g of dry diet, corresponding to 3.17 g per 100 g of dietary protein for optimum growth and efficient feed utilization. No mortality was observed during the experiment.  相似文献   

12.
The present experiment was conducted to determine the dietary total phosphorus requirement of juvenile yellow catfish Pelteobagrus fulvidraco. Six diets with increasing dietary phosphorus concentration (0.43, 0.55, 0.78, 0.90, 1.05 and 1.18% of dry matter, respectively) were fed to triplicate groups of 20 fish each (mean initial body weight, 2.68 ± 0.08 g, mean ± SD) to apparent satiation for 7 weeks. Weight gain and specific growth rate (SGR) increased with increasing dietary phosphorus level from 0.43 to 0.90% and then declined over dietary phosphorus level of 0.90% (P < 0.05). Phosphorus retention increased with increasing dietary phosphorus level from 0.43 to 0.55% and then declined over dietary phosphorus level of 0.55% (P < 0.05). Dietary phosphorus levels significantly influenced whole body crude protein and ash contents (P < 0.05), but not whole body lipid content (P > 0.05). Vertebrae phosphorus content increased with dietary phosphorus level from 0.43 to 0.78% (P < 0.05) and then plateau over the level of 0.78% (P > 0.05). Dietary phosphorus level significantly influenced condition factor, viscerosomatic index and hepatosomatic index (P < 0.05). The relationship between SGR and whole body ash content against dietary phosphorus levels could be expressed as a second-order polynomial equation and the points of 0.89 and 0.85% were considered to be the optimal dietary total phosphorus level, respectively. Based on broken-line analysis of vertebrae phosphorus content, the minimal dietary total phosphorus requirements for maintaining maximum phosphorus storages were estimated to be 0.76% phosphorus.  相似文献   

13.
A feeding trial was conducted to quantify the effects of phytase at levels of 0, 500, 1,000, 2,000, 4,000, and 8,000 units (U) per kg diet on utilization of dietary protein and minerals by fingerling (12 g) channel catfish Ictalurus punctatus fed an all‐plant‐protein diet composed of soybean meal, corn, and wheat middlings. The effects of phytase on dephosphorylation of phytic acid (phytate) in the alimentary tract of catfish also were determined. After 14 wk, mean weight gains (30.2–43.9 g/fish), feed conversion ratios (2.27–2.40 g feed consumed/g weight gain), protein efficiency ratios (1.47–1.61 g weight gaid/g protein consumed), and dietary protein retentions (23.8–26.7%) did not differ significantly (P > 0.05) among treatment groups. A digestibility trial conducted after the feeding trial showed no difference (P > 0.05) in mean digestibility of diet dry matter (49.0–58.3%) or crude protein (85.4‐88.5%) among treatment groups. Concentrations of ash (46.7–48.6%), calcium (Ca, 17.9–18.5%), phosphorus (P, 9.1–9.5%), and manganese (Mn, 65.5–74.1 mg/kg) were significantly higher (P ≤ 0.05) in bone of fish fed ≥ 500 U/kg than in bone of fish fed 0 U/kg (ash, 43.5%; Ca, 16.4%; P, 8.4%; and Mn, 49.0 ma/kg), but concentrations of these minerals did not differ (P > 0.05) in bone of fish fed ≥ 500 Uk/g. The magnesium (Mg) content of bone did not differ (P > 0.05) between fish fed 0 U/kg (0.29%) or 500 U/kg (0.34%), but was significantly lower in fish fed 0 U/kg than in fish fed ≥ 1,000 U/kg (0.35–37%). Bone Mg levels did not differ (P > 0.05) among fish fed ≥ 500 U/kg. The amount of zinc (Zn) in bone of fish fed 8,000 U/kg (153.3 mg/kg) was significantly higher than that in fish fed 0 U/kg (115.7 mg/kg) or 500 U/kg (130.3 mg/ kg), but did not differ from Zn levels in bone of fish fed 1,000–4,000 U/kg (134.5–135.8 mg/ kg). Dephosphorylation of phytate occurred primarily in the stomach within 2–8 h after diet ingestion, depending on the level of phytase supplementation. Initial levels of total phytate in the diet decreased 32–94% in stomach contents of fish fed l,000–8,000 U/kg within 2 h after feeding. Eight hours after feeding, stomach contents of fish fed ≥ 1,000 U/kg contained less than 6% of initial total dietary phytate. Stomach contents of fish fed 500 U/kg retained 92% of initial total dietary phytate 2 h after feeding and 15% of total dietary phytate 8 h after feeding. Results of this study indicate that phytase supplementation at levels up to 8,000 U/kg diet did not increase weight gain or improve dietary protein utilization of channel catfish fed an all‐plant‐protein diet. Addition of phytase at a level of 1,000 U/kg diet was sufficient to significantly increase the Ca, P, Mg, and Mn content of bone, relative to fish fed an unsupplemented diet, and significantly decrease the quantity of total phytate in feces. A phytase level of 8,000 U/kg diet significantly increased the bioavailability of naturally occurring Zn in feed ingredients and increased the rate of phytate dephosphorylation in the stomach, compared with a diet containing no added phytase. Increased utilization of naturally occurring minerals in feed ingredients reduces the need for mineral supplements in diets and results in decreased elimination of minerals in feces. Thus, use of phytase in catfish feeds can be expected to provide both economic and environmental benefits.  相似文献   

14.
A 83‐d feeding experiment was undertaken to evaluate the effects of dietary protein and lipid levels on growth and body composition of spotted halibut, Verasper variegatus (initial average weight of 93.0 ± 1.0 g). Nine diets were formulated to contain three protein levels (40, 45, and 50%), each with three lipid levels (8, 12% and 16%). Each diet was randomly fed to triplicate groups of 20 fish per tank in the indoor culture system. Results showed that the survival rate of fish was not significantly affected by protein and lipid levels (P > 0.05). Weight gain, specific growth rate (SGR), and feed intake (FI) significantly decreased with the increasing dietary lipid levels (P < 0.05). Feed efficiency significantly increased while the feed conversion ration significantly decreased with increasing dietary protein levels (P < 0.05). Weight gain, SGR, FI, and feed efficiency of fish fed 50% protein and 8% lipid were significantly higher than that of the other groups. For each level of dietary lipid, the increase in dietary protein resulted in significant increases in whole‐body crude protein (CP) contents (P < 0.05); the increase in dietary lipid caused significant increases in whole‐body crude lipid content and gross energy at each protein level (P < 0.05). The muscle CP, lipid, and gross energy had the same tendency. The results of this study indicated that increasing dietary lipid levels did not result in a protein‐sparing effect. It could be recommended that the proper dietary protein and lipid levels of spotted halibut were 50 and 8%, respectively.  相似文献   

15.
A 30‐day feeding trial was conducted to evaluate dried fish and chicken viscera, and a combination of oil cakes as complete substitutes for fish meal in the diet of catfsh Clarias batrachus (Linn.) fingerlings. Triplicate groups of fingerlings with a mean initial body weight of 2.0 g were each fed four isonitrogenous diets at 4% of wet body weight. Performance of the diets was judged on the basis of feed acceptability, body weight gain, feed conversion ratio and protein efficiency ratio. A significant increase (P < 0.05) in body weight gain, protein efficiency ratio and a decreased feed conversion ratio (P < 0.05) was observed in fish fed on fish meal, followed by fish viscera, chicken viscera and only plant protein incorporated diets. Although inferior to fish meal and dried fish viscera, growth and feed utilization responses of fingerlings fed on dried chicken viscera and plant protein diets were similar. The fish accumulated a significantly greater (P < 0.05) amount of fat (18.3%) in the body carcass when fish viscera was incorporated in the diet. The study revealed that satisfactory growth and feed utilization responses could be achieved through replacement of fish meal by dried fish and chicken viscera in the diet of catfish fingerlings.  相似文献   

16.
This study was conducted to investigate the effects of dietary geniposidic acid (GA) on growth performance, flesh quality and collagen gene expression of grass carp (Ctenopharyngodon idella). The fish with an initial body weight of 47.1 ± 0.8 g were fed one of the seven diets, including control diet, Eucommia ulmoides (EU)‐supplemented diet (20 g/kg) and GA‐supplemented diets (200, 400, 600, 800 and 1,000 mg/kg GA) for 75 days. The growth performance and muscle proximate composition showed no difference among groups (> .05). Dietary GA (200–1,000 mg/kg) increased the contents of total collagen and alkaline‐insoluble collagen in skin (p < .05), and high supplementation of GA (600–1,000 mg/kg GA) and EU increased the contents of total collagen, alkaline‐insoluble collagen and total amino acids (p < .05), but reduced the lipid level in muscle (p < .05). In collagen gene expression, EU and 200–1,000 mg/kg GA increased COL1A1 expression in muscle and skin (p < .05), but the expression of COL1A2 was increased only by high supplementation of GA (1,000 mg/kg, or 800–1,000 mg/kg) (p < .05). In conclusion, dietary GA improved the flesh quality of grass carp, and the supplementation level was estimated to be 600 mg/kg diet.  相似文献   

17.
The aim of our experiment was to determine the dietary niacin requirement of genetically improved farmed tilapia (GIFT) tilapia, Oreochromis niloticus, reared in freshwater. Six semi‐purified diets were formulated to contain graded levels of niacin (6.4 [basal diet], 16.8, 36.8, 68.5, 143.8, and 297.8 mg/kg). Each diet was fed to triplicate groups of 30 fish (initial average weight 87.2 ± 3.3 g) for 12 wk in 5.6‐m3 aquaria (r = 1.5 m, h = 0.8 m). Results showed that the weight gain rate (WGR) of the fish increased linearly with dietary niacin levels increasing, but there were no further benefits above 36.8 mg/kg. The niacin concentrations in fish livers were positively correlated with dietary levels of niacin and plateaued when niacin in diet exceeded 84.6 mg/kg. With increasing dietary niacin level, serum high density lipoprotein cholesterol (HDLC) content significantly increased, while serum triacylglycerol (TG) content significantly decreased (P < 0.05). There were no significant differences in serum glucose (GLU) and total cholesterol (T‐CHO) contents in the separate fish groups (P > 0.05). Broken‐line regression analysis showed that GIFT tilapia (87–376 g) require a minimum of 20.4 mg/kg niacin in the diet for maximal growth, and 84.6 mg/kg for the highest liver niacin accumulation.  相似文献   

18.
Huang  Zhangfan  Ye  Youling  Xu  Anle  Li  Zhongbao  Wang  Zhen 《Aquaculture International》2022,30(1):19-32

This experiment was conducted to explore the influences of dietary supplementation with an acidifier blend (AB, contains citric, lactic, and phosphoric acids) on growth, digestive enzymes, and blood chemistry of juvenile Japanese sea-bass, Lateolabrax japonicus. A basal diet was used as a control that contains about 48% protein and 8.6% lipid. Five other diets were supplemented with different levels of AB (0, 1, 2, 3, 4, and 5 g/kg). Each diet was assigned to triplicate groups of fish in 200l experimental tanks, and each tank was stocked with 20 fish (initial weight (27.09±0.08) g). The rearing process lasted for 28 days. After rearing process, total number and average body weight of fish in each tank were measured, and 6 fish per tank were sampled. The results showed diets supplementation with 2 and 4 g/kg AB enhanced weight gain (WG) (from 106.82 to 125.40% and 124.80%) and specific growth rate (SGR) (from 2.59 to 2.90 and 2.89%/day) of fish (P<0.05). Hepatic lipase (LPS) activity was increased (from 35.02 to 46.53 and 47.12 U/g prot) by the 2 and 4 g/kg AB supplementation (P<0.05). Meanwhile, enteric LPS activity was enhanced (from 55.37 to 75.39 and 75.19 U/g prot) by the 3 and 4 g/kg AB supplementation (P<0.05). Hepatic trypsin (TRS) activity and enteric TRS activity were significantly increased by the 2 and 5 g/kg AB supplementation, while they were maximized in fish fed 5 g/kg AB (from 441.04 and 1515.87, respectively, to 647.50 and 1515.87 U/mg prot, respectively). Fish fed with 2, 3, and 5 g/kg AB showed higher serum superoxide dismutase (SOD) activity (375.60, 383.11, and 372.79 U/ml) compared with the control (334.29 U/ml) (P<0.05). Meanwhile, serum malondialdehyde (MDA) content was significantly decreased (from 34.97 to 27.19 and 27.25 nmol/ml) by the 2 and 3 g/kg AB supplementation. In order to evaluate the optimal supplemented levels of AB, the WG, SGR, LPS activity (in liver and intestine), and TRS activity (in liver and intestine) were analyzed using polynomial regression. Regression results showed that 2.90, 2.89, 3.38, 3.77, 3.24, and 3.36 g/kg AB are the optimal dosage for those parameters, respectively. In conclusion, dietary AB could improve the growth, digestion, antioxidant capacity, and non-specific immunity of Japanese sea-bass, and the recommended AB supplementation for Japanese sea-bass is about 3 g/kg.

  相似文献   

19.
An 8‐wk experiment was conducted to evaluate the effects of dietary protein on the growth performance, body composition, and serum biochemical indices of large male genetically improved farmed tilapia (GIFT), Oreochromis niloticus, reared in fertilized freshwater cages. Six semi‐purified diets were formulated, containing 18.05, 22.39, 25.97, 31.62, 35.97, and 39.89% protein (designated as P18, P22, P26, P30, P34, and P38, respectively). Each diet was fed to randomly selected fish (initial mean weight 216.7 g) in four cages. At the end of the experiment, the final body weights varied significantly (P < 0.05), ranging from 520 to 580 g. Fish receiving the P30 diet had the highest final weight value (580.5 ± 5.4 g). Weight gains of fish fed the P26 and P30 diets were significantly higher (P < 0.05) than those fed the P18 and P38 diets. The apparent feed efficiency of fish fed the P18 diet was significantly lower (P < 0.05) than that of fish in the other groups except the P22 group (P > 0.05). The apparent protein efficiency ratio decreased gradually with increasing dietary protein. Whole‐body moisture and ash showed no significant difference (P > 0.05), but protein and fat content were significantly affected by dietary protein level (P < 0.05). No significant differences were found for serum total protein, triglyceride, total cholesterol, glutamic‐oxaloacetic transaminase, and glutamic‐pyruvic transaminase levels among different diets (P > 0.05); only serum glucose level was affected by dietary protein levels (P < 0.05). Second‐order polynomial regression of weight gain suggested 29.3% dietary protein is adequate content for maximum growth of large male GIFT, O. niloticus.  相似文献   

20.
Hormone‐induced spawning of channel catfish held communally in tanks is a reliable method to produce channel catfish, Ictalurus punctatus ♀ × blue catfish, Ictalurus furcatus ♂, F1 hybrid catfish fry. However, mature catfish are crowded, and repeatedly handled during the process of induced ovulation. Repeated handling of gravid females is stressful and may impair ovulation, egg quality, and reproductive performance. Three trials were conducted to evaluate the effects of two methods of confining post‐hormone‐injected female channel catfish on stress response (cortisol concentrations) and reproductive performance: fish were either held individually while suspended in soft, nylon‐mesh bags or communally in a concrete tank. Percent of females ovulated to hormone treatment, relative fecundity, percent egg viability, and latency of channel catfish did not differ for fish in the two treatments. However, percent hatch and fry/kg of females was higher (P < 0.05) for fish held in bags that for fish held communally in tanks. Mean plasma cortisol response immediately prior to the first hormone injection (0 h) did not differ among fish groups in the two treatments. However, mean plasma cortisol concentrations were significantly lower (P < 0.05) for fish in the bag treatment at 16 and 36 h compared to fish held communally in tanks. Plasma estradiol levels (measure of oocyte maturation) were assessed at 0, 16, and 36 h after hormone injection; concentrations were (P < 0.05) higher at 16 h compared to 0 and 36 h; however, estradiol concentrations did not differ for fish held in the two treatments (P > 0.05). Suspending hormone‐injected broodfish individually in soft bags reduced stress response, improved egg hatching rate, and increased hybrid fry produced per kg weight of female broodfish. Using this simple technology, farmers can improve the efficiency of hatcheries producing hybrid catfish fry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号