首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cocoa cultivation is generally considered to foster deforestation. Contrary to this view, in the forest–savannah interface area in Cameroon, farmers have planted cocoa agroforestry systems on Imperata cylindrica grasslands, a soil-climate zone generally considered unsuitable for cocoa cultivation. We undertook a survey to understand the agricultural and ecological bases of this innovation. Age, cropping history and marketable cocoa yield were assessed in a sample of 157 cocoa plantations established on grasslands and 182 cocoa plantations established in gallery forests. In a sub-sample of 47 grassland cocoa plantations, we inventoried tree species associated with cocoa trees and measured soil organic matter levels. Marketable cocoa yields were similar for the two types of cocoa plantations, regardless of their age: 321?kg?ha?1 in cocoa plantations on grasslands and 354?kg?ha?1 in cocoa plantations in gallery forests. Two strategies were used by farmers to eliminate I. cylindrica prior to the establishment of cocoa plantations, i.e., cropping oil palms in dense stands and planting annual crops. Farmers then planted cocoa trees and fruit tree species, while preserving specific forest trees. The fruit tree and forest tree densities respectively averaged 223 and 68 trees?ha?1 in plantations under 10?years old, and 44 and 27 trees?ha?1 in plantations over 40?years old, whereas the cocoa tree density remained stable at 1,315 trees?ha?1. The Shannon–Weaver index increased from 1.97 to 2.26 over the same period although the difference was not statistically significant. The soil organic matter level was 3.13?% in old cocoa plantations, as compared to 1.7?% in grasslands. In conclusion, our results show that the occupation of grasslands by cocoa agroforestry systems is both an important example of ecological intensification and a significant farmer innovation in the history of cocoa growing.  相似文献   

2.
In Cameroon, cocoa trees are mostly grown in forests and without fertilization. Our aim was to learn more about the temporal dynamics of soils in cocoa agroforests by comparing young (1–4 years old) and old (over 25 years old) cocoa agroforests. Short fallow and secondary forest were used as treeless and forest references. The numbers and diversities of soil vesicular arbuscular mycorrhizal (VAM) fungi on 60 cocoa producing farms in the Central province of Cameroon were assessed based on the classical morphotyping of spore morphology. We also observed the soil organic matter, nitrogen and major soil nutrients. VAM spore density was significantly lower in the young cocoa agroforests (16 spores g−1 dry soil) than in the old cocoa agroforests (36 spores g−1 dry soil). Levels in the nearby secondary forest (46 spores g−1 dry soil) were not significantly different from old cocoa. The spore density was significantly highest in the short fallow (98 spores g−1 dry soil). The Shannon–Weaver index also showed significantly lower biodiversity in young cocoa (0.39) than in old cocoa agroforests (0.48), secondary forest (0.49) and short fallow (0.47). These observations were supported by significant differences in the C:N ratio, Ca, Mg, and cation exchange capacity between young and old cocoa agroforests. We concluded that unfertilized cocoa agroforests could be sustainable, despite a decrease in some soil characteristics at a young stage, due to traditional land-conversion practices based on selective clearing and burning of secondary forest.  相似文献   

3.
Thinning experiments were conducted in larch (Larix olgensis) plantations to assess the feasibility of converting even-aged plantation stands to uneven-aged forests with more complex stand structures. Stands established in 1965 and 1960 were thinned in 2004 (Regime A, for determining the effect of recent thinning on emergence of seedlings) and 1994 (Regime B, for examining the effects of the past thinning on establishments of recruitments), respectively, at two intensities each. Natural regeneration, together with litter depth, canopy openness and vegetation cover, was surveyed in the thinned plots. Results indicated that larch seedlings started to emerge in May, reached a peak in June, decreased from June through September, and then disappeared in October. No larch seedlings exceeded 1 year old in the thinned plots because of the low levels of light and dense litter and vegetation cover. However, there were many naturally regenerated seedlings (5–50 cm in height) and saplings (50–500 cm in height) of broadleaved tree species such as Acer spp., Fraxinus spp., Cornus controversa, Quercus mongolica, and even the climax tree species, Pinus koraiensis, in the thinned plots. The mean density of regenerated seedlings reached 6.7 and 4.5 stems m−2 in Regimes A and B, respectively, whilst the mean density of regenerated saplings reached 4,595 stems ha−1 in Regime B. These results suggest that it is impractical to turn even-aged larch plantations to uneven-aged larch forests, but it may be feasible to develop uneven-aged larch-broadleaved forests from even-aged larch plantations through thinning.  相似文献   

4.
We measured the aboveground biomass, biomass increment and litterfall production of a 140-year-old, abandoned Cryptomeria japonica plantation in order to infer the effects of topography on biomass production. The plantation was unsuccessful and the naturally regenerated broad-leaved trees contributed 93.4% (374.2 Mg ha−1) of the total aboveground biomass (400.2 Mg ha−1). Comparing between different slope positions, aboveground biomass decreased downslope corresponding to the decrease in broad-leaved tree biomass. The biomass of C. japonica did not vary with slope position. Biomass increment and litterfall production of the broad-leaved trees also decreased downslope. However, litterfall production per unit biomass and aboveground net primary production per unit biomass increased downslope. Results of a path analysis showed that biomass increment of C. japonica decreased with increasing topographical convexity, whereas biomass and litterfall production of broad-leaved tree increased. Litterfall production of broad-leaved tree decreased with increasing biomass of C. japonica, suggesting that, despite their small biomass, the presence of residual C. japonica may have negative effects on the distribution and productivity of the broad-leaved trees. Our results indicated that total aboveground biomass of the study site was comparable to that of old-growth C. japonica plantations. We inferred that the variation in aboveground biomass of the broad-leaved trees was largely determined by the topography, while their productivity was affected by interactions with planted C. japonica.  相似文献   

5.
Further study is needed on loblolly pine (Pinus taeda L.) growth in a systematic array of plantation designs or stocking rates commonly used in temperate forestry and agroforestry practices. Our objective was to determine loblolly pine growth responses and agroforestry implications of 13 plantation designs (i.e., stocking rates in trees ha−1 [TPH]) at mid-rotation (14 years old). Survival, diameter at 1.3 m above soil surface (dbh), height, basal area (BA), and volume (V) were measured in unthinned plantations ranging from 490 to 2,300 TPH. Stocking rate was positively correlated with BA (r ≥ 0.67) and V (r ≥ 0.55) and negatively correlated with survival (r ≤ −0.83) and dbh (r ≤ −0.83). Plantations with ≥2,000 TPH had closed canopies and excessively high BA and V at mid-rotation. The 4- and 5-row plantations (≥12 m alley spacing) had small dbh (≤17.5 cm). Single-row plantations with ≥3.6 m within row spacing and ≤700 TPH, and the 3-row multiple-row plantations (1,200 TPH), had acceptable BA (29.4–33.2 mha−1) and V (127–136 mha−1). Basal area was ≥30 mha−1 in most plantations indicating thinning is needed to optimize individual tree growth. Besides timber, an array of design-dependent agroforestry and forestry products should drive the selection of any one of these plantation designs: pine straw or biomass production at ≥1,800 TPH, and alley cropping or silvopasture in single-row (≤1,000 TPH) and multiple-row plantations (<1,400 TPH).  相似文献   

6.
In Africa’s main cocoa producing countries, rehabilitation of old cocoa orchards is increasingly debated but rarely adopted. In Central Cameroon, rehabilitation practices are regularly set up in old cocoa-based agroforestry systems (cAFS). To better understand the impact of such practices we built a chronosequence of 40 cAFS. We carried out specific surveys with farmers on each plot in order to check for rehabilitation effects on cocoa stands and associated woody species (AWS). We found that cocoa trees represented on average 88.2% of woody individuals and increased with age (from 84.7 to 91.5%). The cocoa stand basal area (BA) share significantly increased with age and reached up to 40.2% in the oldest systems. Cocoa, fruit and forest trees mean BA increased with aging. They were on average of 6.5, 5.7 and 10.7 m2 ha?1 respectively. Six different architectural types, different from the theoretical architectural evolution of cocoa trees over time, were identified. Among them, type 4 characterized by several orthotropic suckers of differing ages, was found typical of farmers’ cutting back practices. Type 4 cocoa trees density increased over time and its BA represented on average 60% of cocoa stand BA in the oldest systems. Concomitantly, farmer’s management of AWS led to continuous evolution of the systems both in terms of density and species composition. Our results show that (i) permanent densification and cutting back practices (type 4) allow the rejuvenation of cocoa stands while increasing cocoa stands BA share; (ii) the continuous management of AWS by farmers is undertaken to favour cocoa trees share over time by limiting inter-specific competition and promoting complementarity between cocoa trees and AWS. We argue that such practices explain a fair part of the long-term sustainability observed in cAFS from Central Cameroon and represent a model from which new rehabilitation schemes could be inspired.  相似文献   

7.
The influence of stand density on Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] is conceptually understood, but for wide spacings not well quantified, particularly in Europe. This study used 41 trees from 7 different locations in south-western Germany to compare important tree- and branch-level attributes across three different densities, namely 100, 200, and 1,200 stems ha−1. In general, there were only a few tree and branch attributes that were significantly different between the 100 and 200 ha−1 densities. Crown projection area and diameter of the thickest branches were the most important differences between the 100 and 200 ha−1 densities. The most obvious and significant differences in this study were between 100 and 1,200 ha−1 densities, where nearly every examined tree and branch attributes were statistically significant. However, relative sapwood area, the number of branches, branch angle, and the occurrence of spike knots were insensitive to stand density. Although the two lowest stand densities in this study represent rather extremely wide spacings, these results still have important implications for the development of effective thinning regimes for Douglas-fir in south-western Germany. Important management recommendations from this study include thinned stands should be maintained to at least 200 stems ha−1 to maintain high log quality and stand stability. Furthermore, even at stand densities exceeding more than 1,200 trees ha−1 planted trees, artificial pruning may even be necessary to produce high quality logs.  相似文献   

8.
Tree based land use systems make a valuable contribution to sequester carbon and improve productivity and nutrient cycling within the systems. This study was conducted to determine biomass production, C-sequestration and nitrogen allocation in Gmelina arborea planted as sole and agrisilviculture system on abandoned agricultural land. At 5 years, total stand biomass in agrisilviculture system was 14.1 Mg ha−1. Plantations had 35% higher biomass than agrisilviculture system. At 5 years, leaves, stem, branches and roots contributed 4.1, 65.2, 10.0 and 20.7%, respectively to total standing biomass (17.9 Mg ha−1). Over the 5 years of study, trees had 3.5 Mg ha−1 more C and 36 kg ha−1 more N in plantation than agrisilviculture system. Biomass and C storage followed differential allocation. Relatively more C was allocated in above ground components in plantations compared to agrisilviculture system. C:N ratios for tree components were higher in stem wood (135–142) followed by roots (134–139), branches (123–128) and leaves (20–21). In agrisilviculture system crops recommended are: soybean and cowpea in rainy season; wheat and mustard in winter season. After 5 years, soil organic C increased by 51.2 and 15.1% and N by 38.4 and 9.3% in plantation and agrisilviculture system, respectively. Total C storage in abandoned agricultural land before planting was 26.3 Mg ha−1, which increased to 33.7 and 45.8 Mg ha−1 after 5 years in plantation and agrisilviculture system, respectively. Net C storage (soil + tree) was 7.4 Mg ha−1 in agrisilviculture system compared to 19.5 Mg ha−1 in G. arborea monoculture stands. The studies suggest that competitive interactions played a significant role in agrisilviculture system. Plantations were more efficient in accreting C than agrisilviculture system on abandoned agricultural land.  相似文献   

9.
The distribution and composition of the tree component inside cocoa agroforests plays an important role in the economic and ecological services offered by these plantations. The presence of these plant components appears to be influenced by several factors controlling the introduction and management of associated plants inside cocoa agroforests. To date, few studies have tried to evaluate the horizontal and vertical distribution of plants inside cocoa plantations in Cameroon. This study determines the structure of cocoa plantations in Southern Cameroon. Field data were collected in 60 cocoa plantations belonging to 12 villages located along a contiguous gradient of market access, population density and resource use intensity in the humid forest zone of southern Cameroon. This study area comprises (i) the sub-region of Yaoundé, (ii) the sub-region of Mbalmayo, and (iii) the sub-region of Ebolowa. Market access, population density and resource use intensity all decreased from the first to the third sub-region. For cocoa and associated plants, we quantified (1) the density (2) the individual number, the species composition and the group uses of plants (edible, timber, medicinal, etc…) distribution across strata, and (3) the basal area in the 60 cocoa plantations located in the three main sub-regions. Results are presented for each sub-region and the whole study area. The paper develops cocoa agroforest typologies and discusses possible implications of cocoa agroforest structure diversity in the achievement of economic and ecological services.  相似文献   

10.
Pastures store over 90% of their carbon and nitrogen below-ground as soil organic matter. In contrast, temperate conifer forests often store large amounts of organic matter above-ground in woody plant tissue and fibrous litter. Silvopastures, which combine managed pastures with forest trees, should accrete more carbon and nitrogen than pastures or timber plantations because they may produce more total annual biomass and have both forest and grassland nutrient cycling patterns active. This hypothesis was investigated by conducting carbon and nitrogen inventories on three replications of 11 year-old Douglas-fir (Pseudotsuga menziesii)/perennial ryegrass (Lolium perenne)/subclover (Trifolium subterraneum) agroforests, ryegrasss/subclover pastures, and Douglas-fir timber plantations near Corvallis, Oregon in August 2000. Over the 11 years since planting, agroforests accumulated approximately 740 kg ha–1 year –1 more C than forests and 520 kg ha–1 year–1 more C than pastures. Agroforests stored approximately 12% of C and 2% of N aboveground compared to 9% of C and 1% of N above ground in plantations and less than 1% of N and C aboveground in pastures. Total N content of agroforests and pastures, both of which included a nitrogen-fixing legume, were approximately 530 and 1200 kg ha–1 greater than plantations, respectively. These results support the proposition that agroforests, such as silvopastures, may be more efficient at accreting C than plantations or pasture monocultures. However, pastures may accrete more N than agroforests or plantations. This apparent separation of response in obviously interrelated agroecosystem processes, points out the difficulty in using forest plantation or pasture research results to predict outcomes for mixed systems such as agroforests. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
In Central Cameroon cocoa is mainly produced by household farming systems based on complex associations between cocoa and companion trees. Setup either on native/remnant forest or savannah, these agroforestry systems (AFS) are managed according their geographical position and local pedoclimatic conditions. In this paper, we investigated the effects of local management strategies on carbon (C) storage of live trees in three different cocoa production zones of Central Cameroon. In the 58 fields studied, 8,996 cocoa trees and 1,258 companions were surveyed. Tree sampling was non-destructive and to estimate C storage we used allometric models for above- and belowground biomasses. We measured abundance, height, diameter at breast height and determined species of companion trees. We distinguished between four cocoa plantation age categories (immature, young, mature and senescent) and three preceding systems (forest, forest gallery and savannah). We surveyed farmers’ use of each associated tree, allocated it to a functional category and asked if it had been introduced or conserved. Total C content of live trees was on average close to 70 t ha?1. We found that it mostly relied on associated trees—cocoa trees contribution being ac. 2–12 % of live trees total C. The level of contribution to C storage of companions from different use categories differed between sites—trees producing food had contributed most in Bokito and Obala while trees used for shading or fertility contributed most in Ngomedzap. Dynamics of C storage in live trees was found to be independent from cocoa trees growth and age. When aging, AFS continuously lost companion trees and especially conserved ones putatively because of farmers’ selective logging. Yet, AFS apparently maintained equivalent C storage abilities with time. Hence, even if cocoa do not contribute significantly to C storage in our study, the systems into which they are included are able to significantly store C and may also contribute to other ecological services such as conservation.  相似文献   

12.
We have studied the percentage of radiation transmitted through the tree canopy to the underlying pasture and crops in dehesas of Southwest Spain by means of fish-eye photographs taken at different distances from the tree. Thirty-six trees were studied covering all the diametric classes (0.1–14 m canopy width) of two stands, with mean density of 19 mature trees ha−1. Intercepted light decreased with distance following an logistic curve, indicating a rapid increase in the light availability with distance from the tree. For mature trees, radiation was constant beyond 20 m. Applying a multivariable regression light equation, distance, stem diameter and canopy width explained more than 88% of the light variability for each orientation studied. A simple model was built up from light equations, tree growth curves and allometric relationships. From this model, we have estimated that radiation available for crops and pasture decreased up to 21% due to the presence of trees in a standard dehesa with 24 mature trees ha−1 and 13% of canopy cover. In addition, we have generated different radiation maps of virtual dehesas differing in tree age, density and arrangement, which could be useful to determine optimal tree planting schemes and consequent pruning and thinning regimes.  相似文献   

13.
Homegardens are one of the oldest forms of managed land use systems characterised by high diversity and complexity of their species structure which in turn contribute to efficient nutrient cycling. Litterfall and decomposition are the two major processes that replenish the soil nutrient pools and endow sustainability to these agroforests. A study was carried out in the village Dargakona, Barak Valley, northeast India to understand the pattern of litter production and litter decomposition in the traditional homegardens. Annual litter production was 6.27 Mg ha−1 with a bimodal distribution pattern and the nitrogen input through litterfall accounted for 48.17 kg ha−1 year−1. Litter decomposition studies for ten multipurpose trees revealed Sapium baccatum and Toona ciliata to be the most labile litter species and the decay rate coefficients varied among the species with differing rates of nutrient release pattern. Such studies can provide information regarding the litter quality of indigenous tree species and help validate farmers planting and management of multiple species which allows for efficient nutrient cycling of the system.  相似文献   

14.
Due to the lack of knowledge about ponderosa pine performance under silvopastoral systems (SPS) conditions, the objective of this study was to determine the effect of stand density and pruning on the growth magnitude of ponderosa pines growing in NW Patagonia (SPS with 350 and 500 pines ha−1 vs. commercial densities of 1,300 trees ha−1, HPP). Individual growth rate was higher in SPS 350 trees than in SPS 500 trees, being both higher than in HPP plots, indicating a higher sensitivity of this drought resistance species to relative water availability. The higher individual growth compensated the lower amount of trees per land unit, being the whole stand growth similar or even higher in both SPS treatments than in the HPP stand. Pruning reduced diameter growth in both SPS treatments, at least until 2 years after pruning, with a more marked effect in the pruning treatment with the higher amount of extracted foliage. Carbon fixation reduction in addition to changes in carbon allocation within different plant parts after pruning could be the responsible of observed stem growth reductions. We suggest that higher growth rates in combination with frequent pruning in low density plantations can be applied to shorten the rotation period producing high quality timber in comparison with plantations managed under conventional conditions in Patagonia. Additional advantages could be associated to the lower environmental impact of low canopy cover plantations compared to high density stands.  相似文献   

15.
This long term experiment provides production data for evaluation of combined forestry and livestock systems. Five systems were established in Pinus radiata planted in 1981 (620 mm average annual rainfall). Sheep were introduced in 1984 and trees were pruned in several lifts. Adjusted tree stockings were (1) 60 widely spaced trees ha−1, (2) 200 widely spaced trees ha−1, (3) 200 trees ha−1 in five-row belts, (4) 1,090 trees ha−1 (unpruned) and 815 trees ha−1, and (5) no trees (open pasture). Tree growth, wool production, liveweight gain and pasture production were measured. At year 25, tree diameter under bark at 1.3 m (DBHUB) in Systems 1, 2, 3 and 4 (unpruned) was 46.0, 39.2, 33.5 and 24.1 cm, while volume of bark-free 6-m butt-logs was 49, 117, 86 and 233 m3 ha−1. Inner rows of System 3 belts contained smaller trees than outer rows. Pruned System 4 trees had slightly greater diameter than unpruned trees. Pasture production declined with tree stocking and time, due to shading and competition. Wool production (WP ha−1) and liveweight gain (LWG ha−1) declined linearly from year 9 to 17 with increasing disparity among systems. In 1998 (year 17) WP ha−1 in Systems 1, 2 and 3 was 64, 16 and 43% of that in open pasture. Further analysis is needed to evaluate the financial costs and returns of various systems under particular rotation lengths and market prices.  相似文献   

16.
The poplar based agroforestry system improves aggregation of soil through huge amounts of organic matter in the form of leaf biomass. The extent of improvement may be affected by the age of the poplar trees and the soil type. The surface and subsurface soil samples from agroforestry and adjoining non-agroforestry sites with different years of poplar plantation (1, 3 and 6 years) and varying soil textures (loamy sand and sandy clay) were analyzed for soil organic carbon, its sequestration and aggregate size distribution. The average soil organic carbon increased from 0.36 in sole crop to 0.66% in agroforestry soils. The increase was higher in loamy sand than sandy clay. The soil organic carbon increased with increase in tree age. The soils under agroforestry had 2.9–4.8 Mg ha−1 higher soil organic carbon than in sole crop. The poplar trees could sequester higher soil organic carbon in 0–30 cm profile during the first year of their plantation (6.07 Mg ha−1 year−1) than the subsequent years (1.95–2.63 Mg ha−1 year−1). The sandy clay could sequester higher carbon (2.85 Mg ha−1 year−1) than in loamy sand (2.32 Mg ha−1 year−1). The mean weight diameter (MWD) of soil aggregates increased by 3.2, 7.3 and 13.3 times in soils with 1, 3 and 6 years plantation, respectively from that in sole crop. The increase in MWD with agroforestry was higher in loamy sand than sandy clay soil. The water stable aggregates (WSA >0.25 mm) increased by 14.4, 32.6 and 56.9 times in soils with 1, 3 and 6 years plantation, respectively, from that in sole crop. The WSA >0.25 mm were 6.02 times higher in loamy sand and 2.2 times in sandy clay than in sole crop soils.  相似文献   

17.
The effects of stand density on increment and branch properties were studied in three spacing experiments of Norway spruce [Picea abies (L.) Karst.]. The stand densities ranged from 350 stems ha−1, regarded as open-grown trees, up to 1,600 stems ha−1, corresponding to the density recommended for forestry practice. Properties of all the branches were measured from the stem apex downwards. The study material included a total of 5,661 branches from 45 trees. Increasing stand density resulted in a decrease in radial increment as well as shorter and narrower crowns, but it had no effect on height increment. The average number of spike knots per tree was 0.87, 0.27, and 0.33 in densities of 350, 700 and 1,600 ha−1, respectively. Additionally, in the widely spaced stands of 350 stems ha−1, the fraction of trees having spike knots was high (over 50%). At a density of 1,600 ha−1, the sample trees had somewhat less branches in a whorl compared with the more widely spaced plots. The most pronounced effect of stand density was the increase in branch diameter with decreasing stand density. At a density of 350 ha−1, the maximum branch diameter of all the sample trees exceeded the diameter limit of quality class B in the European quality requirements for round wood. The results give some indication that trees subjected to severe competition would produce smaller branches per unit of crown projection area. However, the possibilities for reducing branch dimensions relative to stem and crown size through competition appear quite restricted.  相似文献   

18.
We analyzed the growth patterns of Thujopsis dolabrata var. hondai trees in an old plantation (161 years old), where no silvicultural treatments (e.g., thinning) have been conducted since the initial planting. The analysis focused on understanding individual growth under a long-term self-thinning process, and the stand-level stemwood production at the mature stage was evaluated. Nine canopy-layer trees and one suppressed tree were used for the analysis of annual increments in stem diameters, heights, and stemwood volumes for a given past year using the ring-width data. Both the diameter (at basal portion) and height of all the canopy-layer trees increased at similar rates during the early stage (i.e., 60–70 years after planting); however, after this period, only the height growth rates declined sharply. The annual growth rates of stemwood volume also simultaneously leveled off at the stand age of 40–60 years. Subsequently, the patterns diverged conspicuously, e.g., the growth rates were maintained or increased in some individuals, while it gradually decreased in the case of others until the present year. The divergence of growth pattern was likely to be triggered by intertree competition at several decades after the onset of canopy closure. The current stemwood production of the sample trees, including the suppressed one, was positively correlated with certain size parameters such as stem diameter at breast height and sapwood area at a height of 4 m. Based on the diameter-base allometry, the total stand stemwood production was estimated to be about 12.8 m3 ha−1 year−1. This estimate was higher than those of some old natural T. dolabrata forests (2.0–8.6 m3 ha−1 year−1) that have been well managed by repetitive selection thinning. Furthermore, individual mean stemwood production of the study plantation (0.03 m3 tree−1 year−1) was within the range of these natural stands (0.01–0.05 m3 tree−1 year−1). These comparisons suggested that the old T. dolabrata plantation still maintained a relatively high stemwood production potential despite the absence of artificial controls of tree density in the past. In terms of timber production, this fact implied that a rather long rotation (>100 years) can be applicable in the management of T. dolabrata plantations.  相似文献   

19.
The Warner Mountains of northeastern California on the Modoc National Forest experienced a high incidence of tree mortality (2001–2007) that was associated with drought and bark beetle (Coleoptera: Curculionidae, Scolytinae) attack. Various silvicultural thinning treatments were implemented prior to this period of tree mortality to reduce stand density and increase residual tree growth and vigor. Our study: (1) compared bark beetle-caused conifer mortality in forested areas thinned from 1985 to 1998 to similar, non-thinned areas and (2) identified site, stand and individual tree characteristics associated with conifer mortality. We sampled ponderosa pine (Pinus ponderosa var ponderosa Dougl. ex Laws.) and Jeffrey pine (Pinus jeffreyi Grev. and Balf.) trees in pre-commercially thinned and non-thinned plantations and ponderosa pine and white fir (Abies concolor var lowiana Gordon) in mixed conifer forests that were commercially thinned, salvage-thinned, and non-thinned. Clusters of five plots (1/50th ha) and four transects (20.1 × 100.6 m) were sampled to estimate stand, site and tree mortality characteristics. A total of 20 pre-commercially thinned and 13 non-thinned plantation plot clusters as well as 20 commercially thinned, 20 salvage-thinned and 20 non-thinned mixed conifer plot clusters were established. Plantation and mixed conifer data were analyzed separately. In ponderosa pine plantations, mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB) caused greater density of mortality (trees ha−1 killed) in non-thinned (median 16.1 trees ha−1) compared to the pre-commercially thinned (1.2 trees ha−1) stands. Percent mortality (trees ha−1 killed/trees ha−1 host available) was less in the pre-commercially thinned (median 0.5%) compared to the non-thinned (5.0%) plantation stands. In mixed conifer areas, fir engraver beetles (Scolytus ventralis LeConte) (FEN) caused greater density of white fir mortality in non-thinned (least square mean 44.5 trees ha−1) compared to the commercially thinned (23.8 trees ha−1) and salvage-thinned stands (16.4 trees ha−1). Percent mortality did not differ between commercially thinned (least square mean 12.6%), salvage-thinned (11.0%), and non-thinned (13.1%) mixed conifer stands. Thus, FEN-caused mortality occurred in direct proportion to the density of available white fir. In plantations, density of MPB-caused mortality was associated with treatment and tree density of all species. In mixed conifer areas, density of FEN-caused mortality had a positive association with white fir density and a curvilinear association with elevation.  相似文献   

20.
Agroforestry systems based on poplar (Populus deltoides) are becoming popular in eastern and northern parts of India. Therefore studies on the structure and function of the systems are important. The investigations included allometric equations for above- and belowground tree components, crop and plantation floor biomass and litter fall estimation at Pusa, Bihar, India. Biomass, floor litter mass, litter fall and net primary productivity (NPP) of plantations increased with an increase in age of trees whereas, crop biomass for any specific crop interplanted with poplar decreased with the age of the plantation. The total plantation biomass increased from 12.08 to 90.59 Mg ha−1 and NPP varied from 5.69 to 27.9 Mg ha−1 year−1. The biomass accumulation ratio ranged from 2.1 to 3.2. Total annual litter fall was in between 1.95 and 10.00 Mg ha−1 year−1, of which 92–94% was contributed by leaf litter. Compartmental models were developed for dry matter distribution in agroforestry systems involving young (3-year-old) and mature (9-year-old) poplar trees interplanted with various crops, the crops being grown in two rotations maize (Zea mays) – wheat (Triticum aestivum) – turmeric (Curcuma domestica) and pigeonpea (Cajanus cajan) – turmeric. This study substantiates the potential of Populus deltoides G3 under agroforestry combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号