首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forest soil organic carbon (SOC) and forest floor carbon (FFC) stocks are highly variable. The sampling effort required to assess SOC and FFC stocks is therefore large, resulting in limited sampling and poor estimates of the size, spatial distribution, and changes in SOC and FFC stocks in many countries. Forest SOC and FFC stocks are influenced by tree species. Therefore, quantification of the effect of tree species on carbon stocks combined with spatial information on tree species distribution could improve insight into the spatial distribution of forest carbon stocks.We present a study on the effect of tree species on FFC and SOC stock for a forest in the Netherlands and evaluate how this information could be used for inventory improvement. We assessed FFC and SOC stocks in stands of beech (Fagus sylvatica), Douglas fir (Pseudotsuga menziesii), Scots pine (Pinus sylvestris), oak (Quercus robur) and larch (Larix kaempferi).FFC and SOC stocks differed between a number of species. FFC stocks varied between 11.1 Mg C ha−1 (beech) and 29.6 Mg C ha−1 (larch). SOC stocks varied between 53.3 Mg C ha−1 (beech) and 97.1 Mg C ha−1 (larch). At managed locations, carbon stocks were lower than at unmanaged locations. The Dutch carbon inventory currently overestimates FFC stocks. Differences in carbon stocks between conifer and broadleaf forests were significant enough to consider them relevant for the Dutch system for carbon inventory.  相似文献   

2.
The objective of this study was to quantify and compare the amount and distribution of soil organic carbon (SOC) under a linear simultaneous agroforestry system with different tree species treatments. Field work was conducted at Kifu National Forestry Resources Research Institute in Mukono District, Central Uganda, in a linear agroforestry system established in 1995 with four different tree species and a crop only control treatment. Soil samples were collected in 2006 at three depths; 0–25, 25–50, and 50–100 cm, before planting and after harvesting a maize crop. The results indicate that an agroforestry system has significant potential to increase SOC as compared to the crop only control. There was no significant difference in the amount of SOC under exotic and indigenous tree species. Among the exotic species, Grevillea robusta had higher SOC than Casuarina equisetifolia across the entire depth sampled. There is significant difference in SOC among the indigenous species, where Maesopsis eminii has more SOC than Markhamia lutea. Distance from the tree row did not significantly influence SOC concentration under any of the tree species. In selecting a tree species to integrate with crops that will sequester reasonable quantities of carbon as well as boost the performance of the crops, a farmer can either plant an exotic species or an indigenous. In this study, the soil under Grevillea robusta and Maesopsis eminii have the highest potential to store organic carbon compared to soil under other tree species.  相似文献   

3.
This study quantified tree and soil C stocks and their response to different tree species and clay contents in improved fallows in eastern Zambia. From 2002 to 2003, soil, and destructively harvested two-year old tree, samples were analysed for C. There were significant differences (P < 0.05) in aboveground tree C stocks, and in net organic C (NOC) intake rates across coppicing tree species at Msekera and Kalunga. Aboveground C stocks ranged from 2.9 to 9.8 t ha-1, equivalent to NOC intakes of 0.8–4.9 t ha-1 year-1. SOC stocks in non-coppiced fallows at Kalichero and Msekera significantly differed (P < 0.05) across treatments. SOC stocks to 200 cm depth ranged from 64.7 t C ha-1 under non-coppicing fallows at Kalunga to 184.0 t ha-1 in 10-year-old coppicing fallows at Msekera. Therefore, tree and soil C stocks in improved fallows can be increased by planting selected tree species on soils with high clay content.  相似文献   

4.
Kanzler  Michael  Böhm  Christian  Freese  Dirk 《New Forests》2021,52(1):47-68

The aim of this study was to evaluate the potential of short rotation alley cropping systems (SRACS) to improve the soil fertility of marginal post-mining sites in Brandenburg, Germany. Therefore, we annually investigated the crop alleys (AC) and black locust hedgerows (ABL) of a SRACS field trail under initial soil conditions to identify the short-term effects of tree planting on the storage of soil organic carbon (SOC) and its degree of stabilization by density fractionation. We detected a significant increase in SOC and hot-water-extractable organic C (HWEOC) at ABL, which was mainly restricted to the uppermost soil layer (0–10 cm). After 6 years, the SOC and HWEOC accumulation rates at ABL were 0.6 Mg and 46 kg ha?1 year?1, which were higher than those in the AC. In addition, comparatively high stocks of approximately 4.6 Mg OC and 182 kg HWEOC ha?1 were stored in the ABL litter layer. Density fractionation of the 0–3 cm soil layer at ABL revealed that the majority of the total SOC (47%) was stored in the free particulate organic matter fraction, which was more than twice that of the AC. At the same time, a higher and steadily increasing amount of SOC was stored in the occluded particulate organic matter fraction at ABL, which indicated a high efficiency for SOC stabilization. Overall, our findings support the suitability of black locust trees for increasing the soil fertility of the reclaimed mining substrate and, consequently, the high potential for SRACS to serve as an effective recultivation measure at marginal sites.

  相似文献   

5.
Agroforestry systems can play a major role in the sequestration of carbon (C) because of their higher input of organic material to the soil compared to sole crop agroecosystems. This study quantified C input in a 19-year old tropical alley cropping system with E. poeppigiana (Walp.) O.F Cook in Costa Rica and in a 13-year old hybrid poplar (Populus deltoides × nigra DN-177) alley cropping system in southern Canada. Changes in the level of the soil organic carbon (SOC) pool, residue decomposition rate, residue stabilization efficiency, and the annual rate of accumulation of SOC were also quantified in both systems. Carbon input from tree prunings in Costa Rica was 401 g C m−2 y−1 compared to 117 g C m−2 y−1 from litterfall at the Canadian site. In southern Canada, crop residue input from maize (Zea mays L.) was 212 g C m−2 y−1, 83 g C m−2 y−1 from soybeans (Glycine max L.) and 125 g C m−2 y−1 for wheat (Triticum aestivum L.), and was not significantly different (p < 0.05) from the sole crop. The average yearly C input from crop residues in Costa Rica was significantly greater (p < 0.05) in the alley crop for maize (134 g C m−2 y−1) and Phaseolus vulgaris L. bean crops (35 g C m−2 y−1) compared to the sole crop. The SOC pool was significantly greater (p < 0.05) in the Costa Rican alley crop (9536 g m−2) compared to its respective sole crop (6143 g m−2) to a 20 cm depth, but no such difference was found for the southern Canadian system. Residue stabilization, defined as the efficiency of the stabilization of added residue (crop residues, tree prunings, litterfall) that is added to the soil C pool, is more efficient in southern Canada (31%) compared to the alley cropping system in Costa Rica (40%). This coincides with a lower organic matter decomposition rate (0.03 y−1) to a 20 cm depth in Canada compared to the Costa Rican system (0.06 y−1). However, the average annual accumulation rate of SOC is greater in Costa Rica (179 g m−2 y−1) and is likely related to the greater input of organic material derived from tree prunings, compared to that in southern Canada (30 g m−2 y−1) to a 20 cm depth.  相似文献   

6.
The effect of hybrid poplar (Populus spp. clone DN 177) leaf biomass distribution on soil nitrification was investigated in two experiments during the 1993, 1994 and 1995 growing seasons in a poplar-barley (Hordeum vulgare cv. OAC Kippen) intercropping experiment established at Guelph, Ontario, Canada. In experiment 1, poplar was intercropped with barley during all three years and the poplar leaves shed during the fall season were removed from the soil surface during 1993 and 1994. In experiment 2, poplar was intercropped with barley in 1993 and with corn (Zea mays cv. Pioneer 3917) in 1994 an 1995, respectively, and the shed poplar leaves were not removed. In experiment 1, the nitrification rates were lower during 1994 and 1995 when the dropped leaves were removed from the field. The total above-ground biomass of barley within 2.5 m of the tree row was 517, 500 and 450 g×m−2, respectively during the three years, whereas in the middle of the crop row (4–11 m), the corresponding figures were 491, 484 and 464 g×m–2. Mean nitrification rates, N availability and carbon content were higher in soils close to the poplar tree rows (2.5 m) compared to the corresponding values in the middle of the crop alley (4–11 m from the tree row). In experiment 2, where poplar leaves were not removed from the field, nitrification rates in soils within 2.5 m distance from the poplar row were fairly constant (range 100 to 128 μg 100 g−1 dry soil day−1) during the three years. Results suggest that soil nitrification rates, soil carbon content and plant N uptake adjacent to the poplar tree rows are influenced by poplar leaf biomass input in the preceding year. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Abstract

The impact of tree species on soil carbon stocks and acidity in southern Sweden was studied in a non-replicated plantation with monocultures of 67-year-old ash (Fraxinus excelsior L.), beech (Fagus silvatica L.), elm (Ulmus glabra Huds.), hornbeam (Carpinus betulus L.), Norway spruce (Picea abies L.) and oak (Quercus robur L.). The site was characterized by a cambisol on glacial till. Volume-determined soil samples were taken from the O-horizon and mineral soil layers to 20?cm. Soil organic carbon (SOC), total nitrogen (TN), pH (H2O), cation-exchange capacity and base saturation at pH 7 and exchangeable calcium, magnesium, potassium and sodium ions were analysed in the soil fraction?<?2 mm. Root biomass (<5 mm in diameter) and its proportion in the forest floor and mineral soil varied between tree species. There was a vertical gradient under all species, with the highest concentrations of SOC, TN and base cations in the O-horizon and the lowest in the 10–20?cm layer. The tree species differed with respect to SOC, TN and soil acidity in the O-horizon and mineral soil. For SOC and TN, the range in the O-horizon was spruce?>?hornbeam?>?oak?>?beech?>?ash?>?elm. The pH in the O-horizon ranged in the order elm?>?ash?>?hornbeam?>?beech?>?oak?>?spruce. In the mineral soil, SOC and TN ranged in the order elm?>?oak?>?ash?=?hornbeam?>?spruce?>?beech, i.e. partly reversed, and pH ranged in the same order as for the O-horizon. It is suggested that spruce is the best option for fertile sites in southern Sweden if the aim is a high carbon sequestration rate, whereas elm, ash and hornbeam are the best solutions if the aim is a low soil acidification rate.  相似文献   

8.
Greater organic matter inputs in agroforestry systems contribute to the long-term storage of carbon (C) in the soil, and the use of simulation models provides an opportunity to evaluate the dynamics of the long-term trends of soil organic carbon (SOC) stocks in these systems. The objective of this study was to apply the Century model to evaluate the long-term effect of agroforestry alley crop and sole crop land management practices on SOC stocks and soil C fractions. This study also evaluated the accuracy between measured field data obtained from a 19-year old tropical (TROP) and 13-year old temperate (TMPRT) alley crop and their respective sole cropping systems and simulated values of SOC. Results showed that upon initiation of the TROP and TMPRT alley cropping systems, levels of SOC increased steadily over a ~100 year period. However, the sole cropping systems in both tropical and temperate biomes showed a decline in SOC. The active and passive C fractions increased in the TROP agroforestry system, however, in the TMPRT agroforestry system the active and slow fractions increased. The input of organic matter in the TROP and TMPRT agroforestry systems were 83 and 34% greater, respectively, compared to the sole crops, which likely contributed to the increased SOC stock and the C fractions in the alley crops over the 100 year period. Century accurately evaluated levels of SOC in the TROP (r 2 = 0.94; RMSE = 226 g m−2) and TMPRT (r 2 = 0.94; RMSE = 261 g m−2) alley crops, and in the TROP (r 2 = 0.82; RMSE = 101 g m−2) and TMPRT (r 2 = 0.83; RMSE = 64 g m−2) sole crops. Century underestimated simulated values in the alley cropping systems compared to measured values due to the inability of the model to account for changes in soil bulk density with increasing organic matter inputs with tree age from prunings or litterfall.  相似文献   

9.
Carbon sequestration in the woody biomass of shelterbelts has been investigated but there have been no measurements of the C stocks in soil and tree litter under this agroforestry practice. The objective of this study was to quantify C stored in surface soil layers and tree litter within and adjacent to a 35-year-old shelterbelt in eastern Nebraska, USA. The 2-row shelterbelt was composed of eastern red cedar (Juniperus virginiana) and scotch pine (Pinus sylvestris). A sampling grid was established across a section of the shelterbelt on Tomek silt loam (fine, smectitic, mesic Pachic Argiudolls). Four soil cores were collected at each grid point, divided into 0–7.5 and 7.5–15 cm depth increments, and composited by depth. Soil samples were analyzed for total, organic, and inorganic C, total N, texture, pH, and nutrient content. Under the shelterbelt, all surface litter in a 0.5 × 0.5 m2 area at each grid point was collected prior to soil sampling, dried, weighed, sorted, and analyzed for total C and N. Average soil organic carbon (SOC) in the 0–15 cm layer within the shelterbelt (3,994 g m−2) was significantly greater than in the cultivated fields (3,623 g m−2). The tree litter contained an additional ∼1,300 g C m−2. Patterns of litter mass and soil pH and texture suggested increased organic inputs by tree litter and deposition of wind-blown sediment may be responsible for greater SOC beneath the shelterbelt. Further research is needed to identify the mechanism(s) responsible for the observed patterns of SOC within and adjacent to the shelterbelt and to quantify the C in biomass and deeper soil layers.
Thomas J. SauerEmail:
  相似文献   

10.
The conversion of forests to agroecosystems or agroforests comes with many changes in biological and chemical processes. Agroforestry, a tree based agroecosystem, has shown promise with respect to enhanced system nutrient accumulation after land conversion as compared to sole cropping systems. Previous research on tropical agroforestry systems has revealed increases in soil organic matter and total organic nitrogen in the short term. However, research is lacking on long-term system level sustainability of nutrient cycles and storage, specifically in traditional multi-strata agroforestry systems, as data on both the scope and duration of nutrient instability are inconclusive and often conflicting. This study, conducted in Ghana, West Africa, focused on carbon and nitrogen dynamics in a twenty-five year chronosequence of cacao (Theobroma cacao Linn.) plantations. Three treatments were selected as on-farm research sites: 2, 15 and 25-year-old plantations. Soil carbon (C, to a depth of 15 cm) varied between treatments (2 years: 22.6 Mg C ha−1; 15 years: 17.6 Mg C ha−1; 25 years: 18.2 Mg C ha−1) with a significant difference between the 2- and 15- and the 2- and 25-year-old treatments (p < 0.05). Total soil nitrogen in the top 15 cm varied between 1.09 and 1.25 Mg N ha−1 but no significant differences were noted between treatments. Soil nitrification rates and litter fall increased significantly with treatment age. However, photosynthetically active radiation (PAR) and soil temperature showed a significant decrease with age. No difference was found between decay rates of litter at each treatment age. By 25 years, system carbon sequestration rates were 3 Mg C ha−1 y−1, although results suggest that even by 15 years, system-level attributes were progressing towards those of a natural system.  相似文献   

11.
Tree-based intercropping (TBI) systems, combining agricultural alley crops with rows of hardwood trees, are largely absent in Canada. We tested the hypothesis that the roots of 5–8 years old hybrid poplars, growing in two TBI systems in southern Québec, would play a “safety-net” role of capturing nutrients leaching below the rooting zone of alley crops. TBI research plots at each site were trenched to a depth of 1 m on each side of an alley. Control plots were left with tree roots intact. In each treatment at each site, leachate at 70 cm soil depth was repeatedly sampled over two growing seasons using porous cup tension lysimeters, and analyzed for nutrient concentrations. Daily water percolation rates were estimated with the forest hydrology model ForHyM. Average nutrient concentrations for all days between consecutive sampling dates were multiplied by water percolation rates, yielding daily nutrient leaching loss estimates for each sampling step. We estimated that tree roots in the TBI system established on clay loam soil decreased subsoil NO3 leaching by 227 kg N ha−1 and 30 kg N ha−1 over two consecutive years, and decreased dissolved organic N (DON) leaching by 156 kg N ha−1 year−1 in the second year of the study. NH4 + leaching losses at the same site were higher when roots were present, but were 1–2 orders of magnitude lower than NO3 or DON leaching. At the sandy textured site, the safety net role of poplar roots with respect to N leaching was not as effective, perhaps because N leaching rates exceeded root N uptake by a wider margin than at the clay loam site. At the sandy textured site, significant and substantial reductions of sodium leaching were observed where tree roots were present. At both sites, tree roots reduced DON concentrations and the ratio of DON to inorganic N, perhaps by promoting microbial acquisition of DON through rhizodeposition. This study demonstrated a potential safety-net role by poplar roots in 5–8 year-old TBI systems in cold temperate regions.  相似文献   

12.
This study assessed the use of agroforestry to improve soil nutrient properties in plantations containing Ilex paraguariensis St. Hilaire (yerba mate). Intercropping within tree plantation systems is widely practiced by farmers around the World, but the influence of different species combinations on system performance still requires further investigation. I. paraguariensis is a major South American crop commonly cultivated in intensive monocultures on low activity clay soils, which are highly prone to nutrient deficiencies. Study plots were established in 20 plantations in Misiones, Argentina. These involved two species combinations (I. paraguariensis monoculture and I. paraguariensis intercropped with the native tree species Araucaria angustifolia) and two age classes (30 and 50 years old). Chemical soil samples were analysed to determine Ca, Mg, K, P, N, C and Al concentrations, effective CEC (eCEC) and pH at two soil depths (0–5 cm and 5–10 cm). In the younger plantations, the agroforestry sites had lower nutrient levels than I. paraguariensis monoculture sites. However, the monoculture plantations were more susceptible than agroforestry sites to a decline in soil nutrient status over time, particularly with respect to Ca, eCEC, N and C for both soil depths. P concentrations were below detection limits for all sites, potentially reflecting the high P-fixing capacity of the kaolinic soils of this region. While agroforestry systems may be better at maintaining soil quality over time, significant growth increase of I. paraguariensis was apparent only for the monoculture sites.  相似文献   

13.
本文利用土壤培养实验和双指数模型(把土壤有机碳划分为活性碳和缓效性碳库)的方法,来分析确定长白山和祁连山的土壤有机碳的动态变化。分析和拟合土壤有机碳矿化释放的CO2的速率。结果表明:活性碳库占总有机碳的1.0%–8.5%,平均驻留时间的平均值为24天;缓效性碳库占总有机碳的91%–99%,平均驻留时间的平均值为179年。根据缓效性碳的大小和平均驻留时间可以得知,祁连山森林土壤的有机碳较长白山的难分解。通过分析影响森林土壤有机碳矿化的因素––土壤粘粒含量、海拔和温度,结果显示两种森林土壤有机碳的分解快慢与其温度正相关,并且长白山和祁连山的累积的土壤有机碳和缓效性碳的含量随土壤粘粒含量的增加而呈线性增加,其相关系数分别为0.7033和0.6575,充分表明温度和土壤粘粒含量对土壤有机碳的矿化有较大的影响。  相似文献   

14.
In a false-time series, the temporal development of cocoa–gliricidia carbon (C) stocks and soil organic carbon (SOC) were investigated in Napu and Palolo Valleys of Central Sulawesi, Indonesia. As a first step, the Functional Branch Analysis (FBA) method was used to develop allometric equations for the above- and below-ground growth of cocoa and gliricidia. FBA resulted in shoot–root ratios of 2.54 and 2.05 for cocoa and gliricidia, respectively. In Napu and Palolo, the trunk diameter and carbon levels per gliricidia tree were always much greater than that of cocoa. The highest aerial carbon levels were attained at year four in Napu (aerial cocoa–gliricidia = 20,745.2 kg C ha−1) and at year five in Palolo (aerial cocoa–gliricidia = 38,857.0 kg C ha−1). After years four or five, however, the reduced stocking density of gliricidia attributed to a loss of aerial C. During the time spans in question, SOC remained fairly stable though slightly decreasing in Napu and slightly increasing in Palolo. The SOC harbored a vastly greater amount of system C (one-half and one-third of SOC in the 0–15 cm stratum in Napu and Palolo, respectively) relative to tree components. Eight years (Napu) or 15 years (Palolo) after conversion of a rainforest to cocoa–gliricidia agroforestry caused an 88% and 87% reduction of aerial C-stocks in Napu and Palolo, respectively.  相似文献   

15.
《Southern Forests》2013,75(3):235-245
Global sustainable development goals include reducing greenhouse gas emissions from land-use change and maintaining biodiversity. Many studies have examined carbon stocks and tree species diversity, but few have studied the humid Guinean savanna ecosystem. This study focuses on a humid savanna landscape in northern Sierra Leone, aiming to assess carbon stocks and tree species diversity and compare their relationships in different vegetation types. We surveyed 160 sample plots (0.1 ha) in the field for tree species, aboveground carbon (AGC) and soil organic carbon (SOC). In total, 90 tree species were identified in the field. Gmelina arborea, an exotic tree species common in the foothills of the Kuru Hills Forest Reserve, and Combretum glutinosum, Pterocarpus erinaceous and Terminaria glaucescens, which are typical savanna trees, were the most common species. At landscape level, the mean AGC stock was 29.4 Mg C ha?1 (SD 21.3) and mean topsoil (0–20 cm depth) SOC stock was 42.2 Mg C ha?1 (SD 20.6). Mean tree species richness and Shannon index per plot were 7 (SD 4) and 1.6 (SD 0.6), respectively. Forests and woodlands had significantly higher mean AGC and tree species richness than bushland, wooded grassland or cropland (p < 0.05). In the forest and bushland, a small number of large diameter trees covered a large portion of the total AGC stocks. Furthermore, a moderate linear correlation was observed between AGC and tree species richness (r = 0.475, p < 0.001) and AGC and Shannon index (r = 0.375, p < 0.05). The correlation between AGC and SOC was weak (r = 0.17, p < 0.05). The results emphasise the role of forests and woodlands and large diameter trees in retaining AGC stocks and tree species diversity in the savanna ecosystem.  相似文献   

16.
We compared soil organic carbon (SOC) stocks and stability under two widely distributed tree species in the Mediterranean region: Scots pine (Pinus sylvestris L.) and Pyrenean oak (Quercus pyrenaica Willd.) at their ecotone. We hypothesised that soils under Scots pine store more SOC and that tree species composition controls the amount and biochemical composition of organic matter inputs, but does not influence physico-chemical stabilization of SOC. At three locations in Central Spain, we assessed SOC stocks in the forest floor and down to 50 cm in the mineral in pure and mixed stands of Pyrenean oak and Scots pine, as well as litterfall inputs over approximately 3 years at two sites. The relative SOC stability in the topsoil (0-10 cm) was determined through size-fractionation (53 μm) into mineral-associated and particulate organic matter and through KMnO4-reactive C and soil C:N ratio.Scots pine soils stored 95-140 Mg ha−1 of C (forest floor plus 50 cm mineral soil), roughly the double than Pyrenean oak soils (40-80 Mg ha−1 of C), with stocks closely correlated to litterfall rates. Differences were most pronounced in the forest floor and uppermost 10 cm of the mineral soil, but remained evident in the deeper layers. Biochemical indicators of soil organic matter suggested that biochemical recalcitrance of soil organic matter was higher under pine than under oak, contributing as well to a greater SOC storage under pine. Differences in SOC stocks between tree species were mainly due to the particulate organic matter (not associated to mineral particles). Forest conversion from Pyrenean oak to Scots pine may contribute to enhance soil C sequestration, but only in form of mineral-unprotected soil organic matter.  相似文献   

17.
An accurate characterization of tree carbon (TC), forest floor carbon (FFC) and soil organic carbon (SOC) in tropical forest plantations is important to estimate their contribution to global carbon stocks. This information, however, is poor and fragmented. Carbon contents were assessed in patula pine (Pinus patula) and teak (Tectona grandis) stands in tropical forest plantations of different development stages in combination with inventory assessments and soil survey information. Growth models were used to associate TOC to tree normal diameter (D) with average basal area and total tree height (HT), with D and HT parameters that can be used in 6–26 years old patula pine and teak in commercial tropical forests as indicators of carbon stocks. The information was obtained from individual trees in different development stages in 54 patula pine plots and 42 teak plots. The obtained TC was 99.6 Mg ha−1 in patula pine and 85.7 Mg ha−1 in teak forests. FFC was 2.3 and 1.2 Mg ha−1, SOC in the surface layer (0–25 cm) was 92.6 and 35.8 Mg ha−1, 76.1 and 19 Mg ha−1 in deep layers (25–50 cm) in patula pine and teak, respectively. Carbon storage in trees was similar between patula pine and teak plantations, but patula pine had higher levels of forest floor carbon and soil organic carbon. Carbon storage in trees represents 37 and 60% of the total carbon content in patula pine and teak plantations, respectively. Even so, the remaining percentage corresponds to SOC, whereas FFC content is less than 1%. In summary, differences in carbon stocks between patula pine and teak trees were not significant, but the distribution of carbon differed between the plantation types. The low FFC does not explain the SOC stocks; however, current variability of SOC stocks could be related to variation in land use history.  相似文献   

18.
Carbon (C) sequestration potential was quantified for five tree species, commonly used in tree-based intercropping (TBI) and for conventional agricultural systems in southern Ontario, Canada. In the 25-year-old TBI system, hybrid poplar (Populus deltoides × Populus nigra clone DN-177), Norway spruce (Picae abies), red oak (Quercus rubra), black walnut (Juglans nigra), and white cedar (Thuja occidentalis) were intercropped with soybean (Glycine max). In the conventional agricultural system, soybean was grown as a sole crop. Above- and belowground tree C Content, soil organic C, soil respiration, litterfall and litter decomposition were quantified for each tree species in each system. Total C pools for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and a soybean sole-cropping system were 113.4, 99.4, 99.2, 91.5, 91.3, and 71.1 t C ha?1, respectively at a tree density of 111 trees ha?1, including mean tree C content and soil organic C stocks. Net C flux for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and soybean sole-crop were 2.1, 1.4, 0.8, 1.8, 1.6 and ?1.2 t C ha?1 year?1, respectively. Results presented suggest greater atmospheric CO2 sequestration potential for all five tree species when compared to a conventional agricultural system.  相似文献   

19.
为桉树人工林的土壤质量评价提供科学依据,研究了不同林龄(1a、2a、3a、5a、7a)尾巨桉林地0~60cm土壤和枯落物的碳含量及碳储量,测算了不同林龄桉树林地叶面积指数,乔木层、灌木层、草本层和枯落物层生物量。结果表明:土壤有机碳含量随土层深度增加而呈降低趋势,不同林龄0~20 cm土层有机碳含量差异显著,不同林龄相同土层之间土壤有机碳储量差异不显著;枯落物碳储量差异显著,大小顺序为:5 a (4.83 t·hm-2)>7 a (3.89 t·hm-2)>3 a (2.66 t·hm-2)>2 a (2.43 t·hm-2)>1 a (1.56 t·hm-2);0~60 cm土层土壤碳储量与叶面积指数呈负相关关系,与林龄、乔木层生物量、灌木层生物量、草本层生物量、枯落物层生物量之间呈正相关性,但相关性都不显著。  相似文献   

20.
[目的]以思茅松人工中龄林为研究对象,探讨不同坡向、坡度和坡位对思茅松人工林SOC储量的影响,为精确评估思茅松人工林碳储量提供科学依据。[方法]对不同坡向、坡度和坡位不同土壤层次的SOC含量、全氮、土壤密度、C:N和SOC储量进行T检验和单因素方差分析,对不同土层的SOC储量和全氮、土壤密度、C:N之间进行Pearson相关分析。[结果]思茅松人工中龄林,SOC含量、全氮和C:N随着土层加深而减少,土壤密度随着土层加深而增加。不同的坡向和坡度显著影响SOC储量大小,阳坡的SOC储量要显著高于阴坡,坡度为20 30°的SOC储量要显著低于10 20°和0 10°,坡位对SOC储量大小无显著影响。在0 100 cm土层中,随着土层深度的增加,不同立地条件的思茅松人工中龄林的SOC储量呈减小趋势,不同坡向、坡位和坡度0 20 cm土层SOC储量均显著高于其它土层。坡向和坡度显著影响0 20 cm土层的SOC储量(P0.05);坡位对各层SOC储量均无显著影响(P0.05)。0 20 cm土层中SOC储量和土壤密度呈极显著负相关,和坡向、坡度呈显著负相关关系;除2040 cm土层外,其它土层的SOC储量与全氮之间呈极显著正相关;SOC储量和坡位与C:N在任一土层均无显著相关关系。[结论]立地条件差异影响SOC储量的大小与分布,尤其是坡向和坡度的不同会造成思茅松人工中龄林SOC储量的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号