共查询到19条相似文献,搜索用时 102 毫秒
1.
2.
对土壤背景进行有效分割是玉米苗期田间杂草识别的前提和基础。本研究利用颜色分量G-R和G-B与灰度直方图来实现玉米苗期图像与背景图像的分割,解决了玉米苗期田间杂草识别中受影响及环境适应性差等问题。通过对不同环境下苗期玉米图像的植被颜色和背景颜色分量的统计分析表明,采用G-R和G-B双阈值颜色特征分割,进行土壤背景分离取得了很好的效果。 相似文献
3.
基于HSI颜色模型的杂草与 土壤背景分割方法研究 总被引:3,自引:0,他引:3
杨转 《河北农业大学学报》2011,34(4):124-127
针对杂草识别中如何将杂草与土壤背景分离问题,提出了利用HSI颜色模型中的H分量分割杂草和土壤背景的方法:该方法首先把RGB彩色空间转换到HSI彩色空间,然后根据色度分量(H)确定阈值将灰度图像转化为二值图像,并在此基础上进行适当腐蚀、膨胀,实现了杂草和土壤背景的准确分割.实验结果表明,该方法的准确率达到90%,验证了该... 相似文献
4.
图像分割是苹果采摘机器准确识别和定位苹果的关键步骤.本研究首先采用线剖面方法对采集的苹果图像针对颜色特征进行分析,提出了利用颜色特征R-B的色差法对青果期苹果图像进行初步分割.在利用分割后的图像提取图像区域的形状特征(面积、周长、圆形度、离心率等).然后将得到的8个形状特征作为BP神经网络的输入量,随机选取一定数量的样本图像作为BP神经网络的训练样本图像和验证样本图像.样本图像经过BP神经网络训练后,建立了绿色苹果图像的分割模型.通过BP神经网络分割后的苹果图像,果实识别率高达89.3%,分割效果良好. 相似文献
5.
自然光或白炽灯照射下的猪肉图像会因反光作用导致亮斑噪声,且猪肉大理石纹纹理具有细小、分布较散等特点,不利于大理石纹识别。针对上述问题,通过对比多种光源条件,找到最佳拍摄环境,避免图像出现亮斑噪声。提取猪背最长肌横截面图的RGB颜色空间的R、G、B 3个颜色分量图,分别用阈值分割法、模糊C均值聚类分割算法(FCM)和基于高斯核的模糊C均值聚类分割算法(KFCM),对R、G、B分量图进行分割试验,通过图像处理技术自动识别出猪肉大理石纹,研究结果表明KFCM算法在R分量图上的分割结果最优。 相似文献
6.
作物病害叶片图像分割是病害类型识别方法的一个重要步骤,其分割效果直接影响后续的识别结果。病害叶片图像的复杂多样性使得很多现有的图像分割方法不能有效应用于作物病害叶片图像分割中。针对复杂的自然病害叶片图像分割难题,提出一种基于颜色均值显著点聚类的作物病害叶片图像分割方法。该方法建立在HIS颜色空间,首先构造基于像素点HIS模型的带权无向图,然后计算病害叶片图像像素点的邻域的颜色均值,再计算该点前后两个邻域的颜色均值差作为该点的颜色跳跃度,当跳跃度大于设置的一个阈值时,该像素点为病斑点。结果表明,该算法具有较高的分割精确度和较好的抗噪声性能。 相似文献
7.
解决大豆苗期图像中的土壤背景分割是大豆田间杂草识别的前提和基础.为了解决大豆苗期田间杂草识别中受光照影响及环境适应性差等问题,通过对400幅不同环境下苗期大豆图像的植被颜色和背景颜色分量的统计分析,得出用3基色红(R)绿(G)蓝(B)合成的同一像素点,绿色植被图像的颜色分量G值都大于R和B值,而背景则恰恰相反.研究表明,采用G-R和G-B双阈值颜色特征分割进行土壤背景分离取得了很好的效果,此方法较2G-R-B颜色特征分割法对绿色植物和土壤背景的分离更为有效,可广泛应用于处于各种农作物田间杂草识别及其它绿色植被分割中受光照变化影响较大的领域. 相似文献
8.
分水岭算法作为彩色图像分割手段的一种方法,具有运算简单,性能优良,能较好提取运动对象轮廓和准确得到运动物体边缘等优点。应用分水岭算法研究了绿色作物及其背景的分割,首先通过数码相机拍摄的一幅640×480田间青菜真彩色图像,在matlab中采用分水岭分割算法处理图像后提取其绿色分量,再用数学形态学闭运算处理后可以较好地分割绿色作物与背景。针对结果中存在的过分割现象,采用先计算图像的形态学梯度,再用分水岭算法分割可以使结果得到有效改善。 相似文献
9.
为系统、全面地分析不同颜色指数对南方稻田图像分割的适应性,以分蘖期、拔节期稻田图像为研究对象,选择36种常用的颜色指数,采用Otsu阈值法开展基于颜色指数和阈值的图像分割研究,通过比较各颜色指数的分割结果,明确分蘖期和拔节期图像分割的主要干扰因素,筛选最适宜稻田图像分割的颜色指数。结果表明:水稻倒影、浮萍是分蘖期稻田图像分割的主要干扰因素,叶片镜面反射、浮萍和土壤阴影是拔节期稻田图像分割的主要干扰因素;组合指数COM2、MxEG、CIVE和GMR在分蘖期图像和拔节期图像均具有较好的分割精度。因此,基于颜色指数COM2、MxEG、CIVE、GMR和Otsu阈值的稻田图像分割方法对稻田图像分割的干扰要素具有较强的区分能力,分割精度较高,更适宜于南方稻田图像处理研究。 相似文献
10.
11.
基于支持向量机的水稻稻瘟病图像分割研究 总被引:2,自引:0,他引:2
水稻稻瘟病图像的分割是水稻稻瘟病自动分析与识别的关键环节,其分割效果直接影响后续处理。提出一种基于支持向量机的水稻稻瘟病病害彩色图像分割方法。首先选取叶子正常部分的像素点以及颜色相对复杂的病斑像素点作为负训练样本和正训练样本,提取像素R、G、B彩色分量作为特征向量,对支持向量机进行训练,然后在RGB空间利用训练好的支持向量机对待分割图像的所有像素点进行分类,实现水稻稻瘟病彩色图像的分割。为了获得最佳的分割效果,采用网格搜索法对径向基核函数下的不同核参数分割效果和性能进行比较与分析,确定最佳模型参数。利用此模型进行水稻稻瘟病图像分割实验,获得较好的分割精度,结果优于最大类间方差分割算法。 相似文献
12.
RGB与HSI色彩空间下预测叶绿素相对含量的研究 总被引:1,自引:0,他引:1
为探明RGB与HSI两种色彩空间下水稻叶色图像参数与叶绿素相对含量(SPAD)之间的关系,应用支持向量机的方法预测水稻叶片的SPAD值,为快速精准获取植物SPAD值提供理论基础,同时为科学施肥提供理论指导。水稻田间试验于2015—2017年在江西农业大学农学试验站和江西省成新农场进行,供试水稻品种为金优458(JY458)、中早35(ZZ35)和两优培九(LYP9),每个水稻品种均设计4组不同的氮素水平。通过对获取的水稻图像进行叶色参数提取以及叶绿素仪测量的SPAD值来分析水稻叶色图像参数与SPAD值之间的关系,并用支持向量机的方法建立相关模型预测SPAD值。结果显示,较RGB色彩空间下三种水稻品种在HSI色彩空间上预测值的均方根误差分别减少了0.067 5(JY458)、0.020 0(ZZ35)和0.154 2(LYP9),平均相对误差比RGB色彩空间下分别减少了0.084 2(JY458)、0.133 5(ZZ35)和0.238 2百分点(LYP9)。水稻叶片在两种不同色彩空间下的叶色图像参数和水稻叶片SPAD值之间存在显著性相关(P<0.05),利用改进的网格搜索算法优化支持向量机的方法建立水稻叶片SPAD值预测模型,其预测结果误差小,为快速准确无损获取植物SPAD值的预测提供了一种新方法。 相似文献
13.
一种基于图像特征值算法的叶面积测定方法 总被引:1,自引:0,他引:1
提出一种基于图像特征值算法的叶面积测定简化方法。应用扫描图像RGB三原色灰度值分离理论,根据植物叶片扫描图像像素点的分布特征,选用蓝色灰度值作为特征值,以扫描图像灰度中间值127作为叶面积图像与背景图像灰度值的判读指标,通过叶片像素点的分布比例计算叶片面积。将已知面积的矩形绿纸片分别随机裁剪成多个碎片,用本文方法测定碎片面积,并分别计算每个叶片的碎片面积之和进行系统精度验证,测定结果与标准面积的相对误差小于0.5%。采集60个水稻叶片分别采用本文方法和复印称重法测定叶片面积,对本文方法进行进一步验证,相关性分析结果表明,二者相关系数r=0.997 1,达极显著水平。本文方法具有较高测定精度,满足叶面积测定要求。 相似文献
14.
针对双季稻区水稻过量施肥带来环境污染和成本提高问题,设计不同品种氮肥梯度大田试验,应用数码相机获取早稻冠层数字图像,研究不同色彩参数及早稻氮素营养指标的时空变化特征,以期确立双季早稻氮素营养预测模型。结果表明:不同品种同一氮肥处理下图像色彩参数差异不大;拔节期数字图像参数对氮素营养指标敏感;模型构建结果显示,图像参数INT与水稻氮素营养指标构建的模型决定系数(R2)最大,模型预测效果最佳,R2分别为0.895 7和0.924 7;进一步采用多元回归分析和BP神经网络分析法进行预测,预测效果均较好。对预测结果进行检验,发现品种对于模型的构建影响不大,以BP神经网络分析法构建的叶片氮浓度(LNC)模型和以INT为敏感色彩参数构建的叶片氮积累量(LNA)回归模型效果最优,而多元回归分析方法则效果不佳。早稻冠层RGB颜色空间敏感参数与氮素营养指标间相关性较好,可以实现氮素营养的无损监测诊断。 相似文献
15.
基于Lab颜色空间下的小麦赤霉病图像分割 总被引:2,自引:1,他引:2
针对智能识别小麦赤霉病方法中分割患病麦穗图像效果不佳的问题,运用中值滤波方法对患赤霉病麦穗图像进行降噪预处理,采用基于阈值的最大类间方差算法(OTSU)、基于聚类的k-means算法在RGB、HSV和Lab颜色空间中对小麦扬花期到黄熟期感染赤霉病的麦穗图像进行分割,提取出麦穗的病害部分。采用试验田环境下扬花期到黄熟期200张患赤霉病的麦穗图像进行分割试验,结果表明:将图像从RGB颜色空间转化为Lab颜色空间并对a分量采用最大类间方差算法(OTSU)进行分割的效果最佳,误分率仅有1.11%。 相似文献
16.
基于RGB颜色相似度的成熟草莓图像分割 总被引:1,自引:0,他引:1
针对复杂背景下的成熟草莓图像,提出了一种基于RGB颜色相似度的成熟草莓图像分割算法(CS\|BASED RSIS)。首先提取成熟草莓区域,确定成熟草莓的主颜色,然后遍历待分割的图像,求出每个像素点相对于主颜色的颜色比和相似度,进行颜色相似度的阈值分类,最后经多次膨胀和去除小面积对象的数学形态学处理,输出分割结果。试验结果表明,在无粘连无遮挡、无粘连有遮挡、有粘连有遮挡3种复杂环境下,与OTSU等图像分割算法相比,CS\|BASED RSIS算法不仅能达到更好的分割效果,而且平均分割时间仅为0965 s,能满足成熟草莓机械化采摘的实时性要求。 相似文献
17.
CAFTA背景下广西农产品贸易竞争力研究 总被引:2,自引:0,他引:2
广西农产品贸易竞争力增强的根源在于提升农产品贸易主体的核心竞争能力,产业政策的调整、政府的支持等因素是外因,居于客观地位,竞争主体核心能力的提升是内因,居于主导地位。在中国—东盟自贸区建立的背景下,提升广西农产品贸易竞争力变得十分迫切,新经济形势要求作为主要竞争者的农产品经营主体从软、硬环境的建设入手创造核心竞争优势,取得地区贸易的优势地位。 相似文献
18.
19.
在基于叶片图像进行植物识别和生长状态监控时,植物目标叶片的准确分割和识别是前提和基础,但复杂背景给叶片的分割和识别带来了极大的挑战。本研究提出基于Mask-RCNN深度学习网络分割和识别复杂背景下多目标叶片的算法,共拍摄自然生长状态下常见的植物叶片图像7 357张,标注3 000张作为训练数据库,这3 000张图像共包含4种植物,分别为孔雀竹芋(Calathea makoyana)、珊瑚树(Viburnum odoratissinum)、洋常春藤(Hedera helix L.)和黄花羊蹄甲(Bauhinia tomentosa)。选择这4种植物的80个测试样本图像进行分割、识别与错分率分析。结果表明:Mask-RCNN深度学习网络对这4种植物的识别效果良好,未出现误识别的情况;分割的平均图像错分率为0.93%,最大值不超过2.49%,即分割准确率达97.51%;同时该算法具有强大的迁移能力。 相似文献