首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protection against water pollution by agricultural wastes makes decomposition of organic effluents necessary. The problem of oxidation of liquid animal wastes in soil filters is described. The theory of oxygen diffusion in soil in which the oxygen consumption rates vary with time, was applied to determine the aerobic and anaerobic zones in the irrigated soil profile. The results of calculations for different biochemical oxygen demands (BOD) of pig slurry and for different soil air-filled porosity (ng) allow the determination of maximum BOD loads for the given air porosity of soils. The permissible amount of organic pollutants as BOD5 in wastewater is 0.2 kg m−3 for ng = 0.10 m3 m−3, BOD5 = 0.9 kg m−3 for ng = 0.20 m3 m−3, and BOD5 = 2.75 kg m−3 for ng = 0.30 m3 m−3. These limits were obtained under several assumptions, such as uniform distribution of air-filled porosity in the upper part of soil, oxygen respiration of soil similar to that of pig slurry, aerobic zone present in the upper 50 cm of the soil profile, and irrigation every 5 days.  相似文献   

2.
Deficit irrigation occurrence while maintaining acceptable yield represents a useful trait for sunflower production wherever irrigation water is limited. A 2-year experiment (2003–2004) was conducted at Tal Amara Research Station in the Bekaa Valley of Lebanon to investigate sunflower response to deficit irrigation. In the plots, irrigation was held at early flowering (stage F1), at mid flowering (stage F3.2) and at early seed formation (stage M0) until physiological maturity. Deficit-irrigated treatments were referred to as WS1, WS2 and WS3, respectively, and were compared to a well-irrigated control (C). Reference evapotranspiration (ETrye-grass) and crop evapotranspiration (ETcrop) were measured each in a set of two drainage lysimeters of 2 m × 2 m × 1 m size cultivated with rye grass (Lolium perenne) and sunflower (Helianthus annuus L., cv. Arena). Crop coefficients (Kc) in the different crop growth stages were derived as the ratio (ETcrop/ETrye-grass).

Lysimeter measured crop evapotranspiration (ETcrop) totaled 765 mm in 2003 and 882 mm in 2004 for total irrigation periods of 139 and 131 days, respectively. Daily ETcrop achieved a peak value of 13.0 mm day−1 at flowering time (stage F3.2; 80–90 days after sowing) when LAI was >6.0 m2 m−2. Then ETcrop declined to 6.0 mm day−1 during seed maturity phase. Average Kc values varied from 0.3 at crop establishment (sowing to four-leaf stage), to 0.9 at late crop development (four-leaf stage to terminal bud), to >1.0 at flowering stage (terminal bud to inflorescence visible), then to values <1.0 at seed maturity phase (head pale to physiological maturity). Measured Kc values were close to those reported by the FAO.

Average across years, seed yield at dry basis on the well-irrigated treatment was 5.36 t ha−1. Deficit irrigation at early (WS1) and mid (WS2) flowering stages reduced seed yield by 25% and 14% (P < 0.05), respectively, in comparison with the control. However, deficit irrigation at early seed formation was found to increase slightly seed yield in WS3 treatment (5.50 t ha−1). We concluded that deficit irrigation at early seed formation (stage M0) increased the fraction of assimilate allocation to the head, compensating thus the lower number of seeds per m2 through increased seed weight. In this experiment, while deficit irrigation did not result in any remarkable increase in harvest index (HI), water use efficiency (WUE) was found to vary significantly (P < 0.05) among treatments, where the highest (0.83 kg m−3) and the lowest (0.71 kg m−3) values were obtained from WS3 and WS1 treatments, respectively. Finally, results indicate that irrigation limitation at early flowering (stage F1) and mid flowering (stage F3.2) should be avoided while it can be acceptable at seed formation (stage M0).  相似文献   


3.
The amount of water used by any crop largely depends on the extent to which the soil water depletion from the root zone is being recharged by appropriate depth of irrigation. To test this hypothesis a field study was carried out in November–March of 2002–2003 and 2003–2004 on a sandy loam (Aeric haplaquept) to quantify the effect of depth of irrigation applied through micro-sprinklers on onion (Allium cepa L.) bulb yield (BY) and water use patterns. Seven irrigation treatments consisted of six amounts of sprinkler applied water relative to compensate crop (Kc) and pan (Kp) coefficient-based predicted evapotranspiration loss from crop field (ETp) (i) 160% of ETp (1.6ETp); (ii) 1.4ETp; (iii) 1.2ETp; (iv) 1.0ETp; (v) 0.8ETp; (vi) 0.6ETp; (vii) 40 mm of surface applied water whenever cumulative pan evaporation equals to 33 mm. Water use efficiency (WUE), net evapotranspiration efficiency (WUEET) and irrigation water use efficiency (WUEI) were computed. Marginal water use efficiency (MWUE) and elasticity of water productivity (EWP) of onion were calculated using the relationship between BY and measured actual evapotranspiration (ETc). Yield increased with increasing sprinkler-applied water from 0.6 to 1.4ETp. Relative to the yield obtained at 0.6ETp, yield at 1.0ETp increased by 23–25% while at 1.4ETp it was only 3–9% greater than that at 1.0ETp. In contrast, yield at 1.6ETp was 9–12% less than that at 1.4ETp. Maximum WUE (7.21 kg m−3) and WUEET (13.87 kg m−3) were obtained under 1.0ETp. However, the highest WUEI (3.83 kg m−3) was obtained with 1.2ETp. The ETc associated with the highest WUE was 20% less than that required to obtain the highest yields. This study confirmed that critical levels of ETc needed to obtain maximum BYs, or WUE, could be obtained more precisely from the knowledge of MWUE and EWP.  相似文献   

4.
为探究不同微咸水水质对土壤水力特性和作物生长的影响,在日光温室条件下,以生菜为供试作物开展2季盆栽试验.以CaSO4的饱和溶液为对照(CK),向去离子水中添加不同氯化盐形成电导率相同而阳离子组成不同的微咸水处理(分别为Na+∶TNa;Na+/K+比为1∶1:TNa-K;K+∶TK),研究连续灌溉下土壤容重、持水性能、水盐运移,以及生菜生长响应,并采用van Genuchten模型对水分特征曲线相关参数进行拟合分析.结果表明:与CK相比,微咸水灌溉均增加了土壤容重,降低了土壤孔隙度;随着微咸水持续灌溉,土壤孔隙分布明显改变,微小孔隙比例增加,土壤持水能力显著提高,以处理TNa最为显著.连续微咸水灌溉下,灌溉水钠吸附比、土壤结构稳定性阳离子比与土壤进气值参数存在负相关关系(R2均为0.78).土壤中盐分逐渐积累,表现为第2季生菜生长季末(播后80 d)各处理0~20 cm土壤饱和提取液电导率较第1季显著升高,其中CK显著低于其他处理(P<0.05),且表层土壤(0~10 cm)中盐分积累更为明显.生长季末土壤表层含水量较高,与盐分分布基本一致.与CK相比,处理TNa,TNa-K和TK显著降低了生菜生物量的积累(P<0.05),其中TNa最低.  相似文献   

5.
Soil alkalinisation generally constitutes a major threat to irrigated agriculture in the semi-arid regions of west Africa. The improvement of sodic soils is generally difficult and expensive. However, a recent study in the Niger valley in Niger, reveals that a natural de-alkalinisation is possible under natural conditions in a semi-arid climate. Transformation of non-saline sodic soil into brown steppe soil type was recorded. On the same site, the cultivation of a Sahelian fodder grass, locally known as ‘Burgu’ was used on the sodic soil/brown steppe soil transition zone to accelerate this natural de-alkalinisation and characterise its mechanisms. The geochemical properties of both soil types were monitored before cultivation and 1 year after continuous crop cultivation. After cultivation and regular irrigation, the chemical properties of the former sodic soils were close to those of the surrounding brown steppe soils, which are better suited for agriculture. This modification of the sodic soil properties can be attributed to (i) the large amount of water supplied during cultivation that induced salt leaching. This is the main phenomenon responsible for the changes observed; (ii) the root activity that modified the acid–base equilibrium and consumes alkalinity.

The residual alkalinity (RA) concept was used to select chemical tracers of the concentration/dilution of the soil solution. Here, sodium amount and calcite+fluorite residual alkalinity (RAcalcite+fluorite) were the most adequate ones. These two tracers decreased proportionally under the influence of leaching, but the exchanges between cations and protons changed the RAcalcite+fluorite, without modifying the sodium amount. Their combined use allowed us to separate and quantify the uptake of the plant from the leaching in the de-alkalinisation process. This study highlighted that reclamation of this type of sodic soils is feasible. The use of the RA concept is advisable to design a sustainable management system for irrigated sodic or saline soils.  相似文献   


6.
High levels of soil sodicity, resulting from intensive irrigation with saline-sodic waters, lead to an increased soil susceptibility to seal formation and to severe problems of runoff and soil erosion. The objective of this study was to investigate the efficacy of the addition of small amounts of an anionic polyacrylamide (PAM) to the irrigation water in controlling seal formation, runoff and soil erosion. Two predominantly montmorillonitic soils were studied, a grumusol (Typic Haploxerert) and a loess (Calcic Haploxeralf), having naturally occurring exchangeable sodium percentage (ESP)>12. The soils were exposed to 60 mm of simulated irrigation with commonly used tap water (TW, electrical conductivity=0.8 dS m–1; sodium adsorption ratio (SAR)=2), or saline water (SW, electrical conductivity=5.0 dS m–1; SAR>12). PAM effectiveness in controlling runoff and erosion from the sodic soils was compared with runoff and erosion levels obtained from untreated soils having low ESPs (<4). For both soils and for both water qualities and polymer concentrations in the irrigation water, PAM was efficient in controlling runoff at low ESP levels and inefficient at high ESP levels. At moderate ESP levels, PAM's efficacy in controlling runoff was inconsistent and varied with water quality and polymer concentration. Conversely, in general, soil loss originating from rill erosion, was significantly and effectively reduced in moderate and high ESP soils by addition of PAM to the irrigation water, irrespective of water quality and polymer concentration. PAM was more effective in reducing rill erosion than in reducing runoff in the moderate and high ESP samples, because the energy involved in generating runoff is much higher than that involved in rill erosion. PAM treated surface aggregates were not stable against the distructive forces leading to seal formation and runoff production; but they were stable enough to resist the hydraulic shear exerted by the runoff flow.  相似文献   

7.
Establishing and implementing management practices that limit N leaching from agricultural and horticultural land is a priority internationally. Movement of N through soil to surface and ground waters can degrade aquatic systems and compromise water used for drinking, industry and recreation. Reported annual rates of N leaching from turfgrass range from 0 to 160 kg N ha−1 year−1, representing up to 30% of applied N. Irrigation rate, fertiliser regime and turfgrass growth phase influence the amounts of N leached. Nitrogen losses tend to be low (<5% of applied fertiliser N) from established turfgrass that is not over-irrigated, and has received N fertiliser at 200–300 kg N ha−1 year−1. Efficient irrigation management is critical for efficient N use. Irrigation scheduling that does not cause water to move beyond the active rooting zone decreases the amount of N leached from established turfgrass, without being detrimental to, and in some instances enhancing, turfgrass growth and quality. Applying N fertilisers at rates and frequencies that match N requirements decreases N leaching from established turfgrass. Soil disturbance, such as during preparation of areas for planting turfgrass, can increase N leaching. Therefore, the main strategies for minimising N leaching from turfgrass are (i) optimise irrigation regimes, and (ii) ensure N is applied at rates and frequencies that match turfgrass demand. These strategies are particularly important during turfgrass establishment. Further work is required on turfgrass-soil N cycling and partitioning of N applied to turfgrass. Research needs to be conducted for a broad range of turfgrass species, turfgrass ages, soil types and climates.  相似文献   

8.
In this paper, daily ET0 estimates at two semiarid locations, Zaragoza and Córdoba, were obtained from the Penman–Monteith equation using either fixed (70 s m−1) or variable rc values. Variable rc values were computed with two models, Katerji and Perrier, and Todorovic. Daily ET0 estimates were computed from 24-h meteorological averages or from the sum of hourly estimates. Daily ET0 measured values were obtained from a weighing lysimeter (Zaragoza) and an eddy covariance system (Córdoba). There was a good agreement at both locations between estimated and measured ET0 values using a fixed rc value and 24-h meteorological averages. Estimates obtained from the sum of hourly estimates were somewhat worse. When 24-h meteorological averages were used, the Katerji and Perrier model for variable rc slightly improved ET0 estimates at both locations. But that improvement does not support the effort to locally calibrate that model. When daily ET0 estimates were obtained from the sum of hourly estimates, the Todorovic model improved the estimation at Zaragoza and, at a lesser degree, at Córdoba. Under the semiarid conditions of the two studied locations, the use of the Todorovic model is recommended to get hourly ET0 estimates from which daily estimates can be obtained. If 24-h meteorological averages are used, a fixed rc value as proposed by Allen et al. [Crop evapotranspiration: guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper No. 56, FAO, Rome, 1998] should be enough for accurate ET0 estimates.  相似文献   

9.
Irrigation return flows may induce salt and nitrate pollution of receiving water bodies. The objectives of this study were to perform a salt and nitrogen mass balance at the hydrological basin level and to quantify the salt and nitrate loads exported in the drainage waters of three basins located in a 15,500 ha irrigation district of the Ebro River Basin (Spain). The main salt and nitrogen inputs and outputs were measured or estimated in these basins along the 2001 hydrological year. Groundwater inflows in the three basins and groundwater outflow in one basin were significant components of the measured mass balances. Thus, the off-site impact ascribed solely to irrigation in these basins was estimated in the soil drainage water. Salt concentrations in soil drainage were low (TDS of around 400–700 mg/l, depending on basins) due to the low TDS of irrigation water and the low presence of salts in the geologic materials, and were inversely related to the drainage fractions (DF = 37–57%). However, due to these high DF, salt loads in soil drainage were relatively high (between 3.4 and 4.7 Mg/ha), although moderate compared to other areas with more saline geological materials. Nitrate concentrations and nitrogen loads in soil drainage were highest (77 mg NO3/l and 195 kg N/ha) in basin III, heavily fertilized (357 kg N/ha), with the highest percentage of corn and with shallow, low water retention flood-irrigated soils. In contrast, the lowest nitrate concentrations and nitrogen loads (21 mg NO3/l and 23 kg N/ha) were found in basin II, fertilized with 203 kg N/ha and preponderant in deep, alluvial valley soils, crops with low N requirements (alfalfa and pasture), the highest non-cropped area (26% of total) and with fertigation practices in the sprinkler-irrigated fields (36% of the irrigated area). Thus, 56% of the N applied by fertilization was lost in soil drainage in basin III, as compared to only 16% in basin II. In summary, a low irrigation efficiency coupled to an inadequate management of nitrogen fertilization are responsible for the low-salt, high-nitrate concentrations in soil and surface drainage outflows from the studied basins. In consequence, higher irrigation efficiencies, optimized nitrogen fertilization and the reuse for irrigation of the low-salt, high-nitrate drainage waters are key management strategies for a better control of the off-site pollution from the studied irrigation district.  相似文献   

10.
Coal bed natural gas (CBNG) extraction in the Powder River (PR) Basin of Wyoming and Montana produces modestly saline-sodic wastewater, which may have electrical conductivity (EC) and sodium adsorption ratios (SAR) exceeding accepted thresholds for irrigation (EC = 3 dS m−1, SAR = 12 (mmolc l−1)1/2. As an approach to managing large volumes of CBNG-produced water, treatment processes have been developed to adjust produced water salinity and sodicity to published irrigation guidelines and legislated in-stream standards. The objective of this laboratory study was to assess acute and chronic soil solution EC and SAR responses to various wetting regimes simulating repeated flood irrigation with treated CBNG product water, followed by single rainfall events. Fifty-four soil samples from irrigated fields in southeast Montana were subjected to simulated PR water or CBNG water treated to EC and SAR values accepted as thresholds for designation of saline × sodic water, in a single wetting event, five wetting–drying events, or five wetting–drying events, followed by leaching with distilled water. Resultant saturated paste extract EC (ECe) and SAR of soils having <33% clay did not differ from one another, but resulting ECe and SAR were all less than those for soil having >33% clay. Repeated wetting with PR water having EC of 1.56 dS m−1 and SAR of 4.54 led to SAR <12, but brought ECe near 3 dS m−1. Repeated wetting with water having salinity = 3.12 dS m−1 and SAR = 13.09 led to ECe >3 dS m−1 and SAR near 12. Subsequent inundation and drainage with distilled water, simulating rainfall-quality leaching, reduced ECe and SAR more often in coarse-textured, high salt content soils than in finer-textured, lower salt content soils. Decreases in ECe upon leaching with distilled water were of greater magnitude than corresponding decreases in SAR, reinforcing supposition of sodium-induced dispersion of fine-textured soils as a consequence of rainfall following irrigation with water having salinity and sodicity levels equal to previously published thresholds.  相似文献   

11.
A plastic-covered ridge and furrow rainfall harvesting (PRFRH) system combined with mulches was designed to increase water availability to crops for improving and stabilizing agricultural production in the semiarid Loess region of northwest China. The system was built by shaping the soil surface with alternate ridges and furrows along the contour. The plastic-covered ridges served as a rainfall harvesting zone and furrows as a planting zone. Some materials were also used to mulch the furrows to increase the effectiveness of the harvested water. This system can make better utilization of light rain by harvesting rainwater through the plastic-covered ridge. The field experiment (using corn as an indicator crop) showed that grain yields in the PRFRH system with mulches in 1998 and 1999 were significantly higher than the controls, with an increase of 4010–5297 kg per ha (108–143%). In most treatments, the water use efficiencies (WUE) were in excess of 2.0 kg m−3. The WUE values of corn in this system were 1.9 times greater than the controls in 1998 and 1.4 times greater than the controls in 1999. The plastic-covered ridge led to a yield increase of 3430 kg per ha (92%) in 1998 and of 1126 kg per ha (21%) in 1999 compared with the uncovered ridge. On average, the additional mulches in the furrow brought about a yield increase of 8–25%. Based on the results of this study and other researches, this technique can increase corn grain yield by 60–95% in drought and average years, 70–90% in wet years, and 20–30% in very wet years. The PRFRH system had the potential to increase crop yield and produced greater economic benefit, therefore it could be used in regions dominated by light rainfall of low intensity where crops generally fail due to water stress.  相似文献   

12.
Studies were conducted during 4 months of each growing season in 1994 and 1995 to measure water use of young apple trees (Malus domestica Borkh. cv ‘Fuji’) growing under different soil moisture regimes in temperate climate conditions and to evaluate monthly crop coefficients of such conditions. To do so, double pot lysimeters under a transparent rain shield were designed and installed. The three soil moisture regimes in three replicates each were: (A) drip-irrigation at −50 kPa of soil matric potential (IR50); (B) drip-irrigation at −80 kPa of soil matric potential (IR80); and (C) constant shallow water table at 0.45 m below the soil surface (WT45). In each treatment, soil surface was maintained with or without turf grasses. Monthly water use was not different in drip-irrigated treatments (IR50 and IR80), but greatest in the WT45 treatment. Monthly crop coefficients increased linearly in time for drip-irrigated apple trees (r2 values of 0.76*** for IR50 and of 0.77*** for IR80), while those obtained in the WT45 treatment fluctuated. Leaf water potential (LWP) of drip-irrigated trees was similar until 63 days after treatment (DAT), but the values for IR80 trees began to decline thereafter. The LWP of WT45 trees decreased from 48 DAT. Temporal variations in leaf water content (LWC) was similar to that of LWP, except for two abrupt decreases in IR80 trees. The LWC of WT45 trees began to decrease from 59 DAT, and this occurred 2 weeks after the reduction in LWP. Average shoot length of IR50 trees was greater than that of IR80 and WT45 trees. The results of this study provided water use and crop coefficients for apple trees in relation to soil moisture regimes under temperate climate.  相似文献   

13.
Summary Loess and grumusol soils with sodicity levels of 2.5, 6.5 and 17–21 percent were spread over with 3, 5 and 10 t/ha of powdered phosphogypsum (PG) and were rained with distilled water (DW). Phosphogypsum at the rate of 5 t/ha increased the final infiltration rate (FIR) of the loess with ESP of 2.5, 6.5 and 21.0, from 3.0, 1.1 and 0.9 mm/h, respectively in the control to 13.4, 8.5 and 8.3 mm/h, respectively.The final infiltration rate of the same soils with the same ESP levels, rained on with saturated gypsum solutions was lower than that obtained by the PG powder treatment. It was suggested that, besides their effect on the electrolyte concentration of the percolating water, PG particles on the soil surface interfere with the continuity of the crust and may act also as a mulch, and thus increase the IR of the soil.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 1024-E, 1984 series  相似文献   

14.
Summary Tolerance of crops to soil sodicity as represented by high exchangeable sodium has been examined utilizing data from field and greenhouse studies. A piecewise linear model has been utilized for describing the crop response curves. Salt tolerance indices including the threshold ESP, slope which represents yield decline per unit increase in ESP and the value of ESP at which yield is reduced by 50% are reported for 20 crops. In respect to threshold ESP, Sesbania is the most tolerant of the crops tested followed by rice (transplanted) and wheat. These are the only three crops in which threshold ESP exceeds 15. Genotypic differences for sodicity tolerance have been examined for rice and wheat, with CSR 3 — a natural selection among the rice genotypes — and Kharchia 65 among the wheat genotypes appear to be the most tolerant. The cumulative effect of ionic imbalance and water uptake are found to be the factors governing tolerance differences. The sodicity tolerance indices reported herein represent the relative sodicity tolerance of crops to high exchangeable sodium and could be used in management and crop planning in amended sodic soils and/or management of sodic waters.Principal Scientist (Soil and Water Conservation Engg.) and Senior Scientist (Plant Physiology) respectively  相似文献   

15.
为研究新疆绿洲区盐碱地应用膜下滴灌技术是否对荒地土壤盐分质量比及组成产生影响,以新疆典型盐碱绿洲区域(玛纳斯河流域下野地灌区)膜下滴灌棉田之间荒地为例,通过2009—2013年的定点监测,分析了年际间0~140 cm土层盐分及盐分离子变化.研究结果表明受滴灌棉田灌溉影响,地下水位提升以及地下水矿化度增加,造成新疆绿洲盐碱滴灌区域荒地土壤盐分在4月中旬至10月中旬的增加量大于10月中旬至翌年4月中旬的降低值,盐分和SO2-4,Cl-,Mg2+,Ca2+,Na+以及Cl-/SO2-4和钠离子吸附比都在逐年递增;荒地土壤碱度逐年提升,阴阳离子组成也在逐年变化,但试验期间内研究区域荒地盐碱土类型一直属于氯化物-硫酸盐盐土.滴灌技术在绿洲区推广后,区域内的荒地成为农田排出盐分重要的聚集场所之一.  相似文献   

16.
Rice–wheat (RW) systems are critical to food security and livelihoods of rural and urban poor in south Asia and China, and to regional economies in southeast Australia. The sustainability of RW systems in south Asia is, however, threatened by yield stagnation or decline, and declining partial factor productivity, soil organic C and water availability. Crop models potentially offer a means to readily explore management options to increase yield, and to determine trade-off between yield, resource-use efficiency and environmental outcomes. This paper reviews the performance of CERES-Rice and CERES-Wheat in Asia and Australia in relation to their potential application towards increasing resource use efficiency and yield of RW systems.

The performance of the models was evaluated using simulated and observed data on anthesis and maturity dates, in-season LAI and growth, final grain yield and its components, and soil water and N balances from published studies across Asia and Australia, and then by computing the statistical parameters for the major characters. Over the four data sets examined for anthesis and six for maturity dates, CERES-Rice predicted those dates fairly well (normalised RMSE = 4–5%; D-index = 0.94–0.95), but over the 11 sets for grain and 4 for biomass yield, the predictions were more variable (normalised RMSE = 23% for both; D-index 0.90 and 0.76, for grain and biomass, respectively). Model performance was poorer under conditions of low N, water deficit, and low temperatures during the reproductive stages. Over the three data sets examined, CERES-Wheat predicted the anthesis and maturity dates quite well (normalised RMSE = 4–5%; D-index = 0.94–0.99), and over eight sets for grain and two sets for biomass yield the model predicted them also reasonably well (RMSE = 13–16%; D-index = 0.86–0.97). Only one study evaluated the DSSAT RW sequence model with fairly satisfactory predictions of rice and wheat yields over 20 years with adequate N, but not the long-term change in soil organic C and N. Predictions of in-season LAI and crop growth, and soil and water processes were quite limited to investigate the robustness of model processes.

Application of models to evaluate options to increase water and N use efficiency requires the ability to perform well at the margin where deficit stress begins. While both models generally perform satisfactorily under water and N non-limiting conditions, the little evidence available suggests that they do not perform well under resource-limiting situations. We recommend that the models’ key processes under the water and N limiting conditions be further evaluated urgently. The DSSAT sequence model also needs to be further evaluated against observations for a range of locations and management using data from long-term experiments in RW systems.  相似文献   


17.
The effects of water deficit in different fruit growth stages on the variation of stem sap flux of 6-year old greenhouse-grown pear-jujube trees were investigated. Treatments included sufficient water supply during the whole fruit-growing period (T1), mild water deficit during the flowering–fruit setting stage (T2), moderate water deficit during the fruit rapid growth stage (T3) and severe water deficit during the fruit maturing stage (T4). Results showed that significant compensation effect on stem sap flux after re-watering was observed in T2, but not in T3 and T4 stages. At the end of rapid growth stage, the diurnal variation of stomatal conductance generally had a similar trend as that of stem sap flux, but with a distinct midday depression from 12:00 to 14:00 p.m. In addition, a linear relationship between the relative available soil water content (RAWC) and the ratio of daily stem sap flux to that of sufficient water treatment was observed (R2 = 0.4489).  相似文献   

18.
Summary The effect of levelling uniformity measured in terms of mean deviation from the desired plane and designated as levelling index (L.1.), on some irrigation quality parameters, such as water application and distribution efficiencies, and economic factors, including the cost of levelling and crop yield, has been investigated in sodic soils irrigated by graded borders. Increases in L. I. which reflects decreases in levelling quality, resulted in higher system water application depth, the values being 4.2 cm and 9.5 cm at L.1. values of 0–1.5 cm and 6.0–7.5 cm, respectively. Higher application depths were associated with low water application efficiencies and the relationship was logarithmic in nature. Higher application depths in poorly levelled plots not only resulted in reduced irrigation frequencies, but also caused water inundation over the field surface because of the low infiltration rates in sodic soils. With wheat grain yield of 3,128 kg/ha at L. I.=0-1.5 cm as compared to only 2,246 kg/ha at L.1.=6–7.5 cm, the effect of levelling quality on crop yield appears to be significant. The reduction in crop yield may be attributed to low irrigation frequencies which were associated with higher system water application depth that caused waterlogging. The results show that crop yields were likely to decrease for a depth of infiltration of 40 cm or more, which is indicative of surface water inundation for longer duration. The economic analysis of income from crop production and levelling cost at different L.I. values showed that improving the levelling quality to a fairly high uniformity level was profitable in sodic soils of the Indo-Gangetic plain.  相似文献   

19.
The Murrumbidgee River catchment is a major region of both dryland and irrigated agricultural production in eastern Australia. The salinity of water in the lower reaches of the river is the subject of concern; changing land management upstream is one option to minimise accessions of salt to the river but this must be done in a way that provides an adequate quantity of water for downstream users and the environment.

We examined 30 years of sporadic data on the ionic composition of water for 7 subcatchments contributing to the mid-Murrumbidgee River and for 2 gauging stations on the river itself. Despite the common local presumption that salinity, measured as electrical conductivity (EC), is primarily due to NaCl from cyclic marine salt, we found that NaCl was the dominant salt in only some streams. The presence of HCO3's of Ca2+ and Mg2+ in all streams, and their dominance in 2 streams, indicates that mineral weathering is also a major contributor to the salt load of water in the catchment. However, Ca2+ and Mg2+ bicarbonates have limited solubility and so their concentrations will not become a cause of osmotic stress when the water is used for drinking or irrigation. Therefore, in our efforts to prioritise lower order catchments of the Murrumbidgee River for changed land management, it will be necessary to examine the nature of the salts they discharge, not just EC. By distinguishing between Cl/Na+ dominated streams and Ca2+, Mg2+/HCO3 dominated streams we can refine our search for sources of osmotic stress which might potentially worsen with time. This will enable us to target particular land management units so as to obtain the maximum reduction in downstream salinity with a minimal decrease in flow volume and minimal area of land undergoing changed landuse.  相似文献   


20.
Groundwater is being mined in much of the irrigated area of the central and southern High Plains of the USA. Profits and risks inherent in irrigation management depend on the association between crop yield and level of water application. Research was conducted over a 14 year period (1974–1987) to establish the yield vs. water application relationships of corn, grain sorghum, and sunflower. The research was located near Tribune, Kansas, USA on a Ulysses silt loam soil. Plots were level-basins to which water was added individually through gated pipe. Irrigation studies of the three crops were located adjacent to each other. Irrigation treatments were arranged in completely randomized blocks with three replications. As total irrigation amount increased from 100 to 200, 200 to 300, and 300 to 400 mm, sunflower yield increased by 0.53 Mg ha−1, 0.43 Mg ha−1, and 0.37 Mg ha−1, respectively. Corn outyielded grain sorghum at total irrigation amounts of 345 mm and above. Yield increase over continuous dryland was greater in corn than in grain sorghum at total irrigation amounts above 206 mm. Therefore, if grain mass is the consideration, grain sorghum is a better choice than corn at less than 206 mm of irrigation, whereas corn is a better choice than grain sorghum at more than 206 mm of irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号