首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The delivery of suspended sediment front drainage basins has frequently been quantified in mass terms by use of the sediment budget approach, which identifies sources. Storage and output of mobilised sediment. An attempt is presented here to define the main components of a generalised suspended sediment budget for a drainage basin in Devon, U.K. in teens of particle size characteristics and grain size selectivity, rather than total amounts of sediment. Samples of sediment mobilised from the hillslopes, fluvial suspended sediment and suspended sediment deposited on the river bed were all collected for particle size characterisation. These samples were then treated to remove organic matter and their chemically dispersed (absolute) particle size composition was measured using a Coulter LS130 laser granulometer. Where possible, measurements of the naturalin-situ particle size distribution (effective particle size) were also undertaken. Samples were collected at different times of the year so that temporal variation of hydromcteorolgical and ground conditions was represented. Comparison of the results for the different components of the delivery process shows that significant particle size selectivity occurs in the mobilisation and transfer of sediment from the hillslopes to the basin outlet. This reflects the particle size selectivity of detachment, transport and deposition processes, which is in turn influenced by the aggregation or flocculation (effective particle size) of the sediment.  相似文献   

2.
泾惠渠灌区浑水泥沙输移特征   总被引:1,自引:2,他引:1  
通过对泾惠渠灌区2013年夏秋灌期干支斗渠浑水资料的实时取样分析,探究渠灌区渠系挟沙水流含沙量及泥沙级配的时空变化规律,量化描述不同粒径悬移质泥沙颗粒的输移特征,旨在获得灌渠渠系内挟沙水流历经冲淤过程不同粒径悬沙沿程的垂向分布与输移规律,为渠灌区的运行及泥沙问题的处理提供理论基础。灌区内进行的原型取样测流工作在选定的具有代表性的干-支-斗渠线路上进行,观测分析了灌区渠系含沙量及不同粒径泥沙颗粒沿垂线分布的特征,验证分析了挟沙水流历经淤积过程含沙量分布的变化规律。通过对典型渠系线路不同粒径悬移质泥沙的沿程调整计算分析,表明不同粒径泥沙沿程的输移特征不同,各分组沙的冲淤特征并不都和全沙平均计算结果一致,其中级配曲线左端一定粒径范围(约>0.015 mm)的粗沙与全沙具有同冲同淤的规律。该研究可为泾惠渠灌区泥沙处理利用以及渠灌区浑水调控理论与技术的进一步研究提供依据。  相似文献   

3.

Purpose

Fine sediments are usually collected in situ and air-dried for adsorption experiments, which may lead to particle aggregation and thus have a significant effect on phosphorus (P) adsorption under dynamic conditions. The main purpose of this study was to investigate the changes of aggregates due to drying with shear stress and the effects on the adsorption of P onto air-dried sediments under different shear rates after re-wetting.

Materials and methods

Sediment samples were collected from an alluvial river. Fine wet sediments (<31 μm) were wet-sieved and air-dried, and some air-dried sediments were further sonicated and served as the control. The grain size distribution of the three sediment samples (wet, dried, and sonicated) was measured to evaluate the particle aggregation level. The P sorption capacity of wet and dried sediments was determined by batch equilibrium experiments. The change of aggregate size with shear stress was investigated for dried and sonicated sediments. Sorption equilibrium experiments were performed to investigate the effect of shear stress on the P sorption with and without change of particle aggregation level, respectively.

Results and discussion

Fine particles agglomerated into larger aggregates during the drying process, resulting in a significant increase in the aggregate size. The sorption capacity was lower in aggregated sediment than in original wet sediment. Aggregate size in dried sediment decreased with the increase of shear rate, leading to an increase in the surface area and available adsorption sites, whereas the particle size of sonicated sediment was hardly affected. Accordingly, the P sorption amount of dried sediment increased with increasing shear rate, whereas that of sonicated sediment showed no significant change with shear rate after all sediments were suspended. There was a significant curvilinear correlation between aggregate size and P sorption amount for dried sediments, thus indicating that the P sorption amount increased significantly with decreasing aggregate size.

Conclusions

Sediment aggregation is an important factor affecting P adsorption besides the amount of suspended sediments and the exchange between suspended and bed sediments under dynamic conditions. The P equilibrium adsorption amount increases with shear stress for air-dried sediment. The effect of particle aggregation on the amount of P sorbed onto sediments should not be ignored, and thus, more attention should be paid to the pretreatment of sediment samples in the sorption experiments under dynamic conditions.
  相似文献   

4.
We conducted field monitoring of bedload transport rate associated with experimental sediment release in a natural channel to clarify behavior of the supplied sediment on mixed size bed. Observation of bedload rate at two sites along the 30 m channel reach revealed that downstream migration of finer particles delay compared with coarser particles. Ratio of the bedload sediment that deposited during the migration was higher for finer sediments. These behaviors of the mixed size particles were clear during passage of the sediment wave without changes in water discharge. Flashing peak of discharge that caused artificially by opening of the dam gate did not destroy channel bed structure including steps and pools formed by coarser sediments, and only small amount of bedload was mobilized. Both reach scale channel features including steps, pools, and riffles as well as fine scale features (i.e., armour coat) likely increased critical shear stress of particles and decreased bedload rate during our experiment. Extreme sediment supply induced two types of sediment deposition; (1) filling the pools in reach sales and (2) the intrusion of fine particles into the coarser sediment that formed an armour layer. The all grain size fractions can deposit as type (1) when shear stress of stream water is not enough to entrain bedload particles, while deposition type (2) occurs when finer sediment pass over channel bed on which armour coat is well-developed. Deposition of finer sediment into coarser sediment that forms armour coat is affected by grain size distribution of bed surface sediment. Thus, impact of the sediment supply on downstream channel depends on both bedforms and grain size distribution of bed surface sediment over which the supplied sediment pass.  相似文献   

5.

Purpose

Cohesive sediment is able to flocculate and create flocs, which are larger than individual particles and less dense. The phenomenon of flocculation has an important role in sediment transport processes such as settling, deposition and erosion. In this study, laboratory experiments were performed to investigate the effect of key hydrodynamic parameters such as suspended sediment concentration and salinity on floc size and settling velocity. Results were compared with previous laboratory and field studies at different estuaries.

Materials and methods

Experimental tests were conducted in a 1-L glass beaker of 11-cm diameter using suspended sediment samples from the Severn Estuary. A particle image velocimetry system and image processing routine were used to measure the floc size distribution and settling velocity.

Results and discussion

The settling velocity was found to range from 0.2 to 1.2 mm s?1. Settling velocity changed in the case of increasing suspended sediment concentration and was controlled by the salinity. The faster settling velocity occurred when sediment concentration is higher or the salinity is lower than 2.5. On the other hand, at salinities higher than 20, in addition to increasing SSC, it was found that the situation was reversed, i.e. the lower the sediment concentration, the faster the settling velocity.

Conclusions

Sediment flocculation is enhanced with increasing sediment concentration but not with increasing salinity.
  相似文献   

6.
According to the yearly maximum suspended sediment concentrations (SSC) in the Yellow River and its tributaries, the rivers are divided into three types of more than 300, 20–300, and less than 20 kg/m3. The middle Yellow River basin is located in the transitional zone from subhumid to semiarid climates, and covered by a thick loess mantle. Neighboring on the desert areas to the northwest, the surface material of the Loess Plateau exhibits some marked areal differentiation in grain size and forms three zones covered by sandy loess, (typical) loess and clayey loess from northwest to southeast. Controlled by these physico-geographical conditions, the grain size of river-transported sediment shows some particular characteristics; at small water discharge or SSC, the grain size of suspended sediment abruptly decreases to a minimum with increasing water discharge or SSC. At water discharge of more than ca. 40 m3/s or at SSC of more than ca. 40 kg/m3, the grain size increases with water discharge or SSC.During the low-stage season, the relatively clear baseflow may scour the coarse bed materials, so the suspended sediment is relatively coarse. In the rainy season, rainstorm runoff washes out fine loess materials to the river, making suspended sediment fine. During relatively strong rainstorms, there often occur hyperconcentrated flows at SSC of more than 300 kg/m3. The relatively coarse grains could then remain suspended in the mixture of water and fine suspended sediment.  相似文献   

7.

Purpose

The purpose of the current study was to present a 3D computational fluid dynamics (CFD) model that can be used to predict long-term (11 years) bed changes in a reservoir due to sedimentation and dredging and that can be done with a reasonable computational time (18 h) on a desktop computer.

Materials and methods

The numerical model solved the Navier-Stokes equations on a 3D non-orthogonal unstructured grid to find the water velocities and turbulence. The convection-diffusion equation for suspended sediment transport was solved to find the sediment deposition pattern. Bed changes were computed and used to adjust the grid over time. Thereby, bed elevations over time were computed. The effect of dredging was also included in the model, and how this affected the bed elevation changes. The main feature of the numerical model enabling a reasonable computational time was implicit numerical methods giving the possibility to use long time steps.

Results and discussion

The results were compared with annually measured bed elevation changes in the reservoir over 11 years. This gave 11 figures of bed elevation changes, due to the combined effect of sedimentation and dredging. Comparing the annually computed and measured bed changes, there was a fair agreement for most of the years. The main deposition patterns were reproduced. The amount of sediments removed in three dredging campaigns were also computed numerically and compared with the measured values. Parameter tests were done for the grid size, fall velocity of the sediments, cohesion, and sediment transport formula. The deviation between computed and measured dredged sediment volumes was less than 16% for all these four parameters/formulas.

Conclusions

The 3D CFD numerical model was able to compute water flow, sediment transport, and bed elevation changes in a hydropower reservoir over a time period of 11 years. Field measurements showed reasonable agreement with the computed bed elevation changes. The results were most sensitive to the sediment particle fall velocity and cohesion of the bed material.
  相似文献   

8.
草地植被过滤带对高含沙坡面流泥沙的拦截效应研究   总被引:1,自引:0,他引:1  
To evaluate the effect of vegetative filter strips on sediment trapping, the spatial distribution of deposited sediment, and the size distribution of deposited particles from hyperconcentrated flows, a simulated grass filter strip experiment was conducted with plastic grass using an adjustable slope steel flume. The simulated vegetation cover was 36%, and the inflow sediment concentrations applied were 147, 238, 320, and 429 kg m-3. The sediment concentration in the outflow, and the sediment particle size were determined. The results showed that the grass filter strips trapped most of the sediment from inflow at low sediment concentration. The deposition efficiency decreased with increasing sediment concentration, being 55.2% and 15.7% in the 147 and 429 kg m-3sediment treatments, respectively. Most of the deposited sediments were distributed in the upper flume. In addition, the grass filter strips mainly trapped the coarse sediment (particle size>10 μm).  相似文献   

9.
Suspended sediment load was analyzed in a small, high-gradient stream of the Eastern Italian Alps which was instrumented to measure discharge and sediment transport. The ratio of suspended to total sediment yield and the relations between sediment concentration and water discharge were analyzed for seven floods which occurred from 1991 to 1996 in summer and autumn (from June to October). Different patterns of hysteresis in the relation between suspended sediment and discharge were related to types and locations of active sediment sources. The within-storm variation of particle size of suspended sediment during a major flood indicates a coarsening of transported material for increasing discharge. An analysis of grain size has shown that erosion areas on hillslopes were the main sources of suspended load.  相似文献   

10.
A.P. Belperio   《CATENA》1979,6(3-4)
In hydraulic response terms, the total clastic load of a river is comprised of wash load and bed material load components. Bed material load includes sediment moving as actual bed load and as suspended material originating from the bed. Classical suspended sediment rating curves do not differentiate between wash load and suspended bed material and their indiscriminant use can therefore lead to ambiguous results. Wash load must be delineated from the total suspension when using a rating curve. This is particularly important for rivers draining tropical catchments as these transport a large proportion of fine sediment. For rivers in which a relationship exists between wash load concentration and discharge, an estimate of fine sediment delivery may be obtained from a wash load rating curve. The remaining bed material load may then be calculated from physical principles. This technique is applied to the Burdekin River of northeast Australia.The Burdekin River drains a tropical semi-arid hinterland and transports a predominantly silt and clay wash load. A wash load rating curve is established by applying correction factors for suspended bed material under different flow rates to a classical suspended sediment rating curve. The resulting estimate of mean annual wash load is 3.0 million tonnes of silt and clay. The use of a theoretical bed load equation (ACKERS & WHITE 1973) together with hydraulic parameters on the coastal plain yields an estimate of mean annual bed material load of 0.45 million tonnes of sand.  相似文献   

11.
Urban stormwater can be treated by infiltration at the source using systems like permeable paving. A critical component of such a system is the filtration media. Laboratory experiments were conducted using columns and boxes to evaluate the sediment retention efficiencies of different filtration media—crushed Greywacke, Greywacke mixed with 10% sand, and layered Greywacke and sand-Greywacke mix. Sediments of 0.001–6 mm were applied at concentrations of 460–4,200 mg/l along with water at flow rates of 100–900 ml/min. All columns showed between 96 and 91% sediment retention efficiency for single dry sediment applications, with lowered sediment retentions at higher flow rates. Decreasing the sediment loading, applying particles of <38 μm size, and suspending the particles in inflow as opposed to directly applying sediments to the column surface gave lower sediment retention efficiencies of 55 to 89%. Sediment retention primarily occurred in the top 20 mm of all columns and the 50th percentile value of retained sediments was 100–300 μm. The box tests showed little effect of flow and sediment loading on particle retention, with the tests showing an average retention of 93%. Similar to the column tests, the box tests showed lower sediment retention (84 to 88%) for <38 μm sediments and greater retention (approximately 95%) for larger sediments.  相似文献   

12.
Laser-induced breakdown spectroscopy (LIBS) has been developed as a rapid and easy in situ technique for the analysis of inorganic elements. Qualitative and quantitative determinations of an inorganic element can be achieved by analyzing the wavelength and intensity of the light emitted from the excited atoms arising from breakdown phenomena. Because the energy threshold of breakdown phenomena increases in the order of solid相似文献   

13.

Purpose

Zebra mussels (Dreissena polymorpha) alter the transport dynamics and fate of particulate matter in aquatic systems by intercepting, retaining, and recycling suspended materials. This study examines the effect of particle processing by dressenids on the nature (grain size distribution, settling velocity, porosity  and density) and transport properties (critical shear stress for erosion, erosion rates, and bed stability) of suspended particulate matter in lakes.

Materials and methods

The bed stability, erosion rate, and critical shear stress for erosion of dreissenid biodeposits were measured in an annular flume. The particle size distribution, settling rate, density, and porosity were measured to characterize the physical nature of the biodeposits. Materials studied in the flume include (1) a combination of biodeposits and surface sediments collected from dreissenid beds and (2) biodeposits harvested in a weir box populated with dreissenids.

Results and discussion

The settling rates of both biodeposit/sediment mixtures and pure biodeposits were lower than natural sediment in lacustrine environments. Erosion characteristics and transport properties of biodeposits were strongly influenced by bed age and the presence of mussels. Bed stability increased after 7 days, with a τcrit of 0.26 Pa compared to the 2- and 14-day consolidation periods (τcrit?=?0.13 and 0.15 Pa), respectively. The observed changes in bed stability with bed age will modify the transfer of particulate materials to the offshore profundal zone as well as the rates and magnitudes of sediment-associated nutrients in the near shore zone.

Conclusions

Biostabilization of surficial lake-bottom sediments impacted by mussel biodeposits may increase bed stability and reduce the export of particulate matter to the offshore environment. Further, well-developed communities of dreissedid mussels have an armoring effect on deposited sediment, which reduces remobilization of sediment and biodeposits. However, once eroded, the dreissedid modified deposits will likely be transported further due to their low-settling velocity.
  相似文献   

14.
坡面覆沙后侵蚀泥沙颗粒分选特性   总被引:7,自引:5,他引:2  
侵蚀泥沙颗粒大小的分布在一定程度上影响着侵蚀泥沙的搬运和沉积,了解侵蚀泥沙的分选作用将有助于解释泥沙的侵蚀和沉积过程。该文以覆沙坡面为研究对象,采用室内模拟降雨的方法,选取坡度12°、雨强1.5 mm/min的黄土坡面上分别覆盖0.5、1.0、1.5 cm的沙层进行试验。结果表明:坡面覆沙后,坡面粗颗粒物质大部分在产流开始0~10 min内便被冲刷带走;侵蚀泥沙颗粒主要以粉粒为主;坡面覆沙后,在细沟间侵蚀阶段,径流优先搬运大于0.054 mm的颗粒,在细沟侵蚀阶段和细沟侵蚀及细沟间侵蚀的组合阶段,径流搬运的泥沙颗粒以小于0.054 mm的颗粒为主;同时,在产流前期(0~10 min)侵蚀泥沙颗粒主要以大于0.054 mm的颗粒为主;而在产流后期(10 min以后)侵蚀泥沙则主要以小于0.054 mm的颗粒为主。坡面覆沙后,黏粒以团聚体的形式存在,粉粒以单粒的形式存在,而沙粒以细颗粒聚集体的形式存在。该文为进一步研究泥沙沉积后风蚀对水蚀的影响提供数据支撑。  相似文献   

15.
Laser-induced breakdown spectroscopy (LIBS) has been developed as a rapid and easy in situ technique for the analysis of inorganic elements. Qualitative and quantitative determinations of an inorganic element can be achieved by analyzing the wavelength and intensity of the light emitted from the excited atoms arising from breakdown phenomena. Because the energy threshold of breakdown phenomena increases in the order of solid<liquid<gas, preferential breakdown of solid particles in liquid is possible by adjusting the energy of laser radiation. This rapid and easy in situ technique for the selective determination of soil particles or sediments suspended in water may enhance the effectiveness of environmental monitoring systems. In the present study, we applied LIBS to selective analyses of Al particles suspended in water. In addition, particle size effects that limit the performance of LIBS for the application of suspensions in the environment were investigated. Selective quantitative analysis of Al of gibbsite and alumina particles that were suspended in water was performed when the laser pulse energy was lower than that required for the breakdown of aqueous Al ions dissolved in water. When the Al concentration in the suspension was identical, the intensity of atomic emission from an Al particle increased with the particle size. This result was ascribed to the fact that larger particles contain more Al atoms per particle. There was a linear relationship between the cross-section area of the alumina particles and the intensity of the atomic emission per particle when the particles were small enough to exceed the threshold of breakdown. This suggested that both the particle size and Al concentration could be roughly estimated when simultaneous counting of the number of particles was accomplished by the use of laser-induced breakdown detection (LIBD).  相似文献   

16.
Desorption of Dieldrin from field aged sediments: Simulating flood events   总被引:4,自引:4,他引:0  

Background, Aim and Scope

With the predicted climate change, it is expected that the chances of flooding may increase. During flood events, sediments will resuspend and when the sediments are polluted, contaminants can be transferred to the surrounding water. Mass transfer of organic compounds like Persistent Organic Pollutants (POPs) from soils and sediments to the surrounding aqueous phase are essential regarding fate and transport of these chemicals in the aqueous environment. The distribution of POPs between sorbed and aqueous phases and the time needed to obtain equilibrium are required to calculate the exposure to potential receptors. A reactor was designed in which the water flow is controlled and low POP concentrations could be measured by tenax extraction outside the reactor vessel. This reactor design named SPEED (Solid Phase Extraction with External Desorption) was used to study desorption from aged contaminated sediment in relation to sediment particle size.

Materials and Methods

In the newly developed SPEED (Solid Phase Extraction with External Desorption) reactor, the water flow rate was set and controlled, and low aqueous POP concentrations were measured by sorption to Tenax® outside the reaction vessel. The effect of particle size on desorption rate was studied using a widely used Tenax® solid phase extraction method.

Results

The experiments, by specific measurement of the aqueous dieldrin concentration at different HRT, show that desorption of dieldrin in time is faster when short HRTs were applied. However, the mass of dieldrin desorbed per liter refreshed water is higher for longer HRTs. Therefore, the mass transfer of dieldrin within the sediment particles is the rate determining process in contaminant desorption. This observation was confirmed by Tenax® solid phase extractions which were applied for different particle size fractions. Desorption rates of POPs from the sediment fraction with small particles were faster than desorption rates from the sediment fraction with large particles. Organic matter was present as separate particles in the sediment sample. All experiments demonstrated biphasic desorption. The fluxes calculated for both phases are supportive of non-stationary diffusion as the main process of mass transfer.

Discussion

In the literature, the relation between particle size and desorption of organic contaminants from soils and sediments is contradictory. Most often this seems to be due to overlooking the spatial configuration of organic matter in the soils and sediments. In several papers the presence of organic matter as a thin coating around mineral particles has been overlooked. There-fore, milling had no effect on desorption behavior of contaminants, as the diffusion length will not be affected. In our opinion, both the particle size and spatial configuration of organic matter are rate determining parameters of the desorption process.

Conclusions

Flood events will result in an increase of desorption rate of POPs from sediments to the surrounding water. HRT and particle size determine the concentration gradient and, thereby, the desorption rate. Furthermore, the diffusion length will be smaller when sediment particles are suspended and more water is present to decrease the aqueous concentration. We conclude that non-stationary diffusion within organic matter is the main process of mass transfer. The combination of simulated in-situ measurements of desorption from sediments with generic measurable parameters like flow rate and particle size distribution results in a quantitative measurable flux of contaminants, which resembles the in-situ (bio)availability as the result of dynamic processes in the sediment/water system.

Recommendations and Perspectives

The results obtained provided a sound basis for mechanistic modeling of POP mass transfer from sediment to water. The modeling results will be presented in a separate paper. Besides the HRT, also mixing conditions can be changed to assess the desorption from sediment layers. The possibility to combine flow rate and mixing intensity enables the study of the effect of hydraulically different river systems on desorption of contaminants. In a long term perspective we foresee a link with hydrology and sediment transport with desorption in water bodies.  相似文献   

17.
Enhanced Hg deposition to productive marine systems may result in concurrent increases in monomethyl Hg (MMHg) concentrations of marine fish. Consequently, it is important to understand what effects an increasing Hg supply may have on the marine food chain. A simple ocean model is employed to estimate the fraction of total Hg inputs which is required to sustain “average” marine fish MMHg concentrations annually. Calculations show that upwelling zones require 20% of total annual Hg inputs, coastal zones 5%, and open-ocean regions only 0.02%. The value for coastal areas is similar to that calculated for the acidified basin of Little Rock Lake, Wisconsin, a small fresh water seepage lake. These calculations point to Hg source strength and rates of particle scavenging as being key factors in controlling the rate of transport to sites of methylation (and subsequent entry into the marine food chain). If biological variables (scavenging rates, primary productivity) remain constant while anthropogenically-derived Hg deposition increases, it is likely that concentrations in marine biota (including fish) will rise in accord.  相似文献   

18.
[目的]研究在风水两相侵蚀条件下流域泥沙粒径分布分形维数特征,为风水两相侵蚀产沙和高含沙水流侵蚀产沙的治理等问题的研究提供理论和试验依据。[方法]选取位于黄河上游内蒙古段的西柳沟流域为例,采集沉积物表层样,利用激光粒度仪对43个样点的泥沙粒度组成进行分析,采用分形理论,结合方差分析以及K均值聚类法进行分析和研究。[结果](1)不同沉积环境下泥沙粒径分布分形维数不同,以水力侵蚀为主的丘陵沟壑区分形维数平均值最大,为2.48;以风力侵蚀为主的沙漠区分形维数平均值最小,为1.95。(2)对于西柳沟流域,泥沙颗粒组成中粒径在0.05mm以下的含量越高,粒径越离散,分维值越高;粒径在0.05~1mm之间的颗粒含量越高,分形维数越低;粒径在1mm以上的颗粒含量与分形维数关系不明显。相对来说,粉粒含量对于分形维数的影响大于黏粒含量。[结论]地貌条件主要影响的是河床样的泥沙粒径组成,产沙层土样的颗粒组成不受地貌条件的影响,河滩样的泥沙粒径组成受地貌条件和沉积环境的双重影响。  相似文献   

19.

Purpose

There is a growing interest in the characterization of the particle size of sediment due to its impact on particle dynamics, especially for connectivity purpose. This study determined the particle size distribution of suspended sediment in a mountainous catchment, with the aim to evaluate the variability of particle size during floods, the main controlling factors, and if indirect information from hillslopes was useful for the interpretation of particle size measured at the catchment outlet. This work involved the development of a measurement protocol.

Material and methods

Samples were collected automatically from streamwater during flood events using an ISCO 3700 sampler. Five events were analyzed for their particle size distributions using a Malvern Mastersizer 2000. Because the samples were too concentrated, two different protocols were tested to address the errors made during the subsampling step: using a pipette and a home-made device with successive dilution phases.

Results and discussion

High errors occurred when using a pipette to extract particles within a stirred sample. The maximum errors were reduced from 1,600 to 30?% using the device described within this study. Particles were found to be aggregated at various levels regardless of the discharge they were sampled at. Their size was found to be either variable or stable at the event scale, and statistical analyses revealed that discharge was the factor that best correlated with particle size. The results obtained in this study are in agreement with the few other studies in comparable environments. Some hypothesis are put forward and discussed to explain the positive relationship between particle size and discharge. Input from hillslopes seems to have a measureable effect in this headwater catchment.

Conclusions

While the need for in situ measurements has long been stressed in lowland rivers, estuaries, and coastal environments, it was shown that the use of an accurate dilution protocol could provide some physically interpretable measurements on the particle size distributions of suspended sediment transported in a mountainous catchment. It also appears that hillslope information has to be considered when studying particle size measured at the catchment outlet.  相似文献   

20.
The use of tile drains for subsurface drainage in agricultural watersheds It as created concern for the delivery of sediment to receiving waters and potential undesirable effects on surface and subsurface water quality. In this study, transport characteristics of sediment from the drains in an agricultural watershed of the Thames River, near Kintore, Ontario, Canada were tested in a 5 m diameter. rotating circular flume located at the National Water Research Institute in Burlington. Ontario. Tile drain sediments were collected and mixed with river water at different speeds in the flume to study transport processes such as deposition, erosion and flocculation as a function of bed shear stress. During deposition and erosion experiments. water samples were collected to detennine changes in the concentrations of rations, anions and dissolved organic carbon. The results show that tile drain sediments have a tendency to flocculate when subjected to a range of shear stresses. The median diameter (D50) of the floc size distribution reached a maximum value at a shear stress of 0.169 Nn2 which can be considered an optimum shear stress for flocculation for this sediment. The critical shear stress at which all of the initially suspended sediment deposited to the flume bed was measured as 0.056 Nm2. The pH and cation concentrations remained relatively constant during erosion and deposition experiments. Anion concentrations were more variable, most likely due to the presence of bacteria which could have also played a role in the flocculation mechanism oftile drain sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号