首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to determine the chemical distribution and plant availability of Cd, Zn and Ni in eight metal-polluted soils in southern Ontario, Canada. There were altogether 30 different soil samples because two of the soils had received various sewage sludge treatments. The soils were sequentially extracted with 1 m ammonium acetate to remove soluble plus exchangeable metals, with 0.125 m Cu(II) acetate to remove complexed metals, and with 1 m HNO3 to dissolve chemisorbed or occluded metals and precipitates such as oxides and carbonates. Expressed as a percentage of the metal so extracted, exchangeable Cd and Zn and Ni; complexed Cd and Zn>Ni and Ni>Zn>Cd in the acid-soluble pool. With a few exceptions (soils with high organic matter content or low pH) at least 50 per cent of the extracted metal was in the acid-soluble pool. The percentage of metal complexed was significantly correlated with organic matter content. The percentage of metal in the acid-soluble fraction was significantly correlated with soil pH. Preliminary findings based on the results with two soils suggested that for Cd and Zn plant availability was correlated with the concentrations of exchangeable, complexed or acid-soluble pools of Cd and Zn.  相似文献   

2.
采用根际土壤溶液采样器(Rhizon-SMS)原位采集河南平原耕地土壤溶液.用土壤溶液中重金属浓度对数作为因变量、土壤溶液理化性质作为自变量,进行多元线性逐步回归,结果表明:只有有机碳进入Cu的相关方程,pH进入Cd的相关方程.土壤溶液pH和土壤中的Zn都作为自变量进入Zn的相关方程.土壤溶液中的Cu与pH没有线性关系,而Cd和Zn与土壤溶液pH有显著的线性关系(p<0.01).计算了土壤中Cu、Cd、Zn在土壤与土壤溶液中的分配系数Kd.本研究中,3种重金属的Kd大小顺序为:Cu>Zn>Cd.根据Freeze 和Cherry模型,联合log(Kd-Cd)、log(Kd-Zn)与pH的线性关系,估计了Cd和Zn在土壤中的迁移速度.  相似文献   

3.
The adsorption characteristics of heavy metals: cadmium(II), chromium(III), copper(II), nickel(II), lead(II), and zinc(II) ions by kaolin (kaolinite) and ballclay (illite) from Thailand were studied. This research was focussed on the pH, adsorption isotherms of single-metal solutions at 30–60 °C by batch experiments, and on ion selectivityin mixed and binary combination solutions. It was found that, except Ni, metal adsorption increased with increased pH of the solutions and their adsorption followed both Langmuir and Freundlich isotherms. Adsorption of metals in the mixture solutions by kaolin was: Cr > Zn > Cu ≈ Cd ≈ Ni > Pb, and for ballclay was: Cr > Zn > Cu > Cd ≈ Pb > Ni. The adsorption of metals was endothermic, with the exception of Cd, Pb and Zn for kaolin, Cu and Zn for ballclay. Kaolin and ballclay exhibited relatively hard Lewis base adsorption site. The presence of other metals may reduce or promote the adsorption of heavy metals. The presence of Cr3+ induced the greatest reduction of metal adsorptiononto kaolin, as did the presence of Cu2+ for ballclay.  相似文献   

4.
Soil/solution partitioning of trace metals (TM: Cd, Co, Cr, Cu, Ni, Sb, Pb and Zn) has been investigated in six French forest sites that have been subjected to TM atmospheric inputs. Soil profiles have been sampled and analysed for major soil properties, and CaCl2‐extractable and total metal content. Metal concentrations (expressed on a molar basis) in soil (total), in CaCl2 extracts and soil solution collected monthly from fresh soil by centrifugation, were in the order: Cr > Zn > Ni > Cu > Pb > Co > Sb > Cd , Zn > Cu > Pb = Ni > Co > Cd > Cr and Zn > Ni > Cu > Pb > Co > Cr > Cd > Sb , respectively. Metal extractability and solubility were predicted by using soil properties. Soil pH was the most significant property in predicting metal partitioning, but TM behaviour differed between acid and non‐acid soils. TM extractability was predicted significantly by soil pH for pH < 6, and by soil pH and Fe content for all soil conditions. Total metal concentration in soil solution was predicted well by soil pH and organic carbon content for Cd, Co, Cr, Ni and Zn, by Fe content for Cu, Cr, Ni, Pb and Sb and total soil metal content for Cu, Cr, Ni, Pb and Sb, with a better prediction for acidic conditions (pH < 6). At more alkaline pH conditions, solute concentrations of Cu, Cr, Sb and Pb were larger than predicted by the pH relationship, as a consequence of association with Fe colloids and complexing with dissolved organic carbon. Metal speciation in soil solutions determined by WHAM‐VI indicated that free metal ion (FMI) concentration was significantly related to soil pH for all pH conditions. The FMI concentrations of Cu and Zn were well predicted by pH alone, Pb by pH and Fe content and Cd, Co and Ni by soil pH and organic carbon content. Differences between soluble total metal and FMI concentrations were particularly large for pH < 6. This should be taken into account for risk and critical load assessment in the case of terrestrial ecosystems.  相似文献   

5.
淮南煤矿复垦区土壤重金属含量分布及潜在生态风险评价   总被引:2,自引:1,他引:1  
以淮南矿区煤矸石充填复垦地为研究对象,对该复垦区不同土地利用方式(小麦地、桃林、蔬菜大棚、油菜地)下土壤Cd,Zn,As,Ni,Cu,Pb,Cr,Mn共8种重金属含量进行了分析和评价。结果表明,相对土壤背景值,该复垦区土壤中Zn,Cr,Mn,As污染较为严重相对未复垦区,复垦区土壤中的Zn,Cd,As分别是未复垦区的4.38,2.57和2.20倍,具有明显的累积现象。不同土地利用方式土壤重金属含量差异较大,小麦地和桃林地的Zn,Cd,As含量远大于油菜地和蔬菜大棚,Cr含量则表现为桃林地、蔬菜地远大于小麦地和油菜地,Ni,Cu,Mn,Pb在4种土地利用类型下的差异不显著。土地利用方式、施肥以及受采矿活动的影响程度不同是导致土壤重金属含量差异的主要原因。淮南煤矿复垦土壤中各重金属的生态风险顺序为:Cd>Zn>As>Ni>Cu>Pb>Cr>Mn。Cd的潜在生态风险值最大(89.71),属于强生态风险,其余元素均为轻微风险。不同土地利用方式的风险顺序为:小麦地>桃林地>蔬菜大棚>油菜地。  相似文献   

6.
为了解浙江龙游硫铁矿区农田重金属污染状况,采集矿区265件农田土壤样品,分析8种重金属Cu、As、Hg、Zn、Cd、Ni、Pb、Cr元素全量,利用地统计学软件GS+9.0对研究区土壤各元素指标进行半变异函数拟合,并利用普通克里格法进行插值并绘制空间分布图。采集30件水稻籽粒样品,分析重金属在研究区中水稻籽粒的累积特征,并进行了健康风险评价。结果表明:矿区土壤中8种重金属元素的变异系数从0.72到1.76,离散程度较高。8种重金属的土壤空间半变异函数Cu、As、Hg元素符合指数模型,Zn、Cd、Ni、Pb符合球状模型,Cr符合高斯模型。元素Cu、Pb、Zn、Cr、Ni的块金值与基台值的比值C0/C0+C都小于0.25,说明空间变化主要受地质背景等因素影响;元素Cd、Hg和As的块金值与基台值的比值C0/C0+C在0.25~0.75之间,说明除了地质背景因素,人为活动等随机因素也有影响。矿区水稻籽粒中重金属Ni和Cd的变异系数最高,分别为0.95和0.87,说明Ni和Cd元素可能存在异常积累。矿区水稻籽粒对重金属的富集能力由大到小依次为Cd、Zn、Cu、Ni、As、Hg、Cr、Pb。健康风险评价结果表明矿区农田水稻籽粒中元素As、Cd的风险商大于1,存在潜在健康风险;而其他6种重金属Cu、Hg、Zn、Ni、Pb和Cr基本属于安全范围。  相似文献   

7.
新乡市环宇大道工业区周边土壤重金属的污染特征和评价   总被引:2,自引:0,他引:2  
通过实地采样及室内化学分析的方法,研究了新乡市环宇大道工业区周边土壤Pb、Cd、Ni、Zn、Cu和Cr 6种重金属污染特征和风险评价,并应用Tessier五步连续萃取的方法对土壤中超标的Cd,Ni和Zn进行形态分析。结果表明:(1)土壤中Pb、Cd、Ni、Zn、Cu和Cr的平均含量分别是63.08 mg kg-1、176.85 mg kg-1、307.2 mg kg-1、485.6 mg kg-1,38.7 mg kg-1和47.9 mg kg-1,Pb、Cu、Cr平均含量达标,Cd、Ni、Zn平均含量均超标,分别是国家土壤环境质量二级标准的176.85、5.12、1.62倍。(2)Ni和Zn主要以铁锰氧化物结合态和残渣态存在,Cd主要以铁锰氧化物结合态存在,其次为碳酸盐结合态,3种重金属的迁移能力依次为:Cd>Zn>Ni。(3)每种重金属都存在不同程度的潜在生态风险,Cd的潜在生态风险最大并构成了很强的危害。  相似文献   

8.
Pot experiments were carried out with two soils from long-term field experiments to examine heavy metal distribution in spring wheat. The soils (Luvisol pH 6.5 and Cambisol pH 5.5) were manured with sewage sludge for 18 ys and now show heavy metal contamination. The Cd-, Zn-, Pb- and Cr-contents of the grain were appreciably lower than those of straw. Nickel and Cu levels in the grain, however, exceeded those of the straw. In the unpolluted control the grain was enriched in Zn. Grain with a Cd-content lower than the German guide value was produced only with Cd concentrations of the soil lower than 0.5 mg kg–1 and a pH value greater than 5.7. Higher Ni and Pb contents were found in the chaff than in the straw. Roots were enriched in Cd, Zn, Ni and Cu, as compared with the soil. However, Pb and Cr were hardly taken up by the roots. Liming decreased the Cd-, Zn- and Ni-content in the plant. pH variation was found to have a negligible effect on the uptake of Cu, Pb and Cr.  相似文献   

9.
为了研究珠三角滩涂围垦农田土壤和农作物重金属污染状况,采集了广州南沙、中山一带围垦农田农作物及其根际土壤样品,测定重金属的质量分数。结果表明,围垦农田土壤样品中Cu、Ph、Cd、Ni、Cr和Zn含量均大于广东省相应土壤环境背景值,其中Cu(56.06mg·kg^-1)、Pb(48.30mg·kg^-1)、Cd(0.72mg·kg^-1)、Ni(41.15mg·kg^-1)、Cr(115.1mg·kg^-1)和Zn(200.1mg·kg^-1)分别为背景值的3.30、1.34、12.82、2.26、2.28和4.23倍。与《土壤环境质量标准》(GB15618-1995)中Ⅱ级标准(pH〈6.5)比较,土壤样品中Cu、Cd、Ni和Zn的超标率分别为73.7%、88.6%、59.6%和28.9%。以GB15618-1995中Ⅱ级标准为评价标准,采用Nemerow指数法进行评价,土壤重金属平均综合污染指数为1.86,属3级轻污染。与《食品中污染物限量》(GB2762-2005)等相关标准比较,农作物中Cu、Pb、Cd、Ni、Cr和Zn含量的样品超标率分别为0、28.9%、2.6%、48.3%、12.3%和6.1%。由此可见,珠三角滩涂围垦农田土壤和农作物重金属污染问题已经比较突出,土壤污染以Cd为主,而农作物污染则以Ni、Ph、Cr为主。  相似文献   

10.
农业废弃物中重金属含量特征及农用风险评估   总被引:8,自引:2,他引:8  
为了解江西省主要农业废弃物中重金属污染状况和评估其再利用产物农用的安全性,在江西省内采集了水稻秸秆、蔬菜废弃物、猪粪和牛粪等样品,对样品中铬、镍、铜、锌、砷、镉、汞和铅重金属含量进行了测定与风险评估。结果表明,动物性废弃物中重金属含量和超标率明显高于植物性废弃物,其中猪粪属于重度污染,牛粪为轻度污染,植物性废弃物尚处于安全水平。若以江西省农业废弃物为原料制成有机肥,并长期施用于设施菜地,猪粪有机肥施用8.4、15.3和23.9 a后土壤中Cu、Cd和Zn将陆续超标,牛粪有机肥施用23.3 a后土壤中Cu将超标,水稻秸秆、蔬菜废弃物有机肥施用约29a后土壤中Cd将超标,故农业废弃物有机肥须严格控制原料中重金属含量,其农用的长期安全性有待加强监测。  相似文献   

11.
[目的]了解潍坊市土壤重金属污染现状及其在空间上的分布规律,为该区土壤重金属污染防治和农业生产的合理安排提供指导。[方法]在土壤重金属污染调查的基础上,以ArcGIS为操作平台,采用地质积累指数分析潍坊市土壤重金属污染状况,并绘制空间分布图。[结果]潍坊市大部分地区土壤重金属未产生污染,但在某些地区镍的污染等级达到3级;8种重金属污染程度依次为:HgNiZnCrPbCdCuAs;土壤中Cd,Ni,Pb,Hg受土壤质地影响,Cd,Ni,Pb易在砂土中富集,Hg易在黏土中富集;重金属元素浓度与土壤pH值相关性较差;Hg的浓度与土壤有机质有着非常显著的正相关关系(p0.01);Ni污染存在着复合现象;重金属元素中,Cu,Cr,Ni在空间的分布主要集中于青州—临朐—昌乐交界处和安丘—诸城交界处。[结论]土壤重金属污染分布与人类活动有关,应加强地区交界处的环境管理力度。  相似文献   

12.
Abstract

In a field experiment conducted during three years in a sandy‐loam, calcareous soil, one aerobically digested sewage sludge (ASL) and another anaerobically digested sewage sludge (ANSL) were applied at rates of 400, 800, and 1,200 kg N/ha/year, and compared with mineral nitrogen fertilizer at rates of 0, 200, 400, and 600 kg N/ha/year in a cropping sequence of potato‐corn, potato‐lettuce, and potato, the first, second, and third year, respectively. Results showed that the highest values of soil extractable metals were obtained with aqua regia, whereas the lowest levels with DTPA. All metal (Zn, Cu, Cd, Ni, Pb, and Cr) gave significant correlations between metal extracted with the different extractants and metal loading applied with the sludges. The metal extractable ion increased over the control for Zn, Cu, Cd, Ni, Pb, and Cr extracted with DTPA, EDTA (pH 8.6) and 0.1 N HC1, for Zn, Cd, Ni, Pb, and Cr extracted with EDTA (pH 4.65) and AB‐DTPA, and for Zn, Cd, Ni, and Cr extracted with aqua regia. The level of metal‐DTPA extractable resulted highly correlated with that obtained by the other methods, except the Ni‐aqua regia extractable. The soil extractable elements which showed significant correlations with metals in plant were: Zn, Cu, Cd, and Ni in potato leaves, Cd, Ni, and Pb in corn grain, and Zn and Cd for lettuce wrapper leaves. In general, all the chelate based extractants (DTPA, EDTA pH 4.6, EDTA pH 8.6, AB‐DTPA) were equally useful as indicator of plant available metals in the soil amended with sludge.  相似文献   

13.
A greenhouse experiment was conducted to evaluate the availability of metals from sewage sludge and inorganic salts, and the effect of pH and soil type on yield and metal (Zn, Cu, Cd and Ni) uptake by wheat (Triticum aestivum L. var. ‘holly’). Soils used in this study were Hartsells sandy loam (fine-loamy, siliceous Thermic Typic Hapludult) and Decatur silty clay loam (Clayey, kaolinitic, Thermic Rhodic Paleudult). Two treatments of sewage sludge containing metals were applied at the rate of 20 and 100 mt ha?1. Inorganic Salts of Zn, Cu, Cd, and Ni were applied (as sulfate salts) at concentrations equivalent to those found in the 20 and 100 mt ha?1 sludge. One treatment consisted of inorganic metals plus sewage at the 20 Mg ha?1 rate. Two soil pH levels, one at field pH (below 6.0) and another pH adjusted between 6.5 and 7.0 were used. Wheat plants were harvested four weeks after germination. Two more subsequent harvests were made at four week intervals. For each harvest, dry matter yield increased as the rate of sludge application increased for both soil types. The soil pH also influenced the dry matter yield. High yield was observed when the pH was adjusted between 6.5 to 7.0 for both soils. An increase in yield was also observed at each subsequent harvest for most of the treatments. Inorganic salt treatments produced lower dry matter yields when compared with the sludge. Both sludge application and metal salts increased plant tissue concentration of Zn, Cu, Cd, and Ni at field pH for both soils. However, increasing the pH of the soil for both sludge and inorganic salt treatments generally decreased the tissue concentration of the above metals.  相似文献   

14.
Environmental damages like forest decline in Northern Slovakia could be a result of long-distance transport of pollutants with the dominating north-west winds. On 10 sites, primarily in the northbound upper slopes of west-east oriented mountain ranges in Northern Slovakia, the extent of the heavy metal contamination in soils along a north-south transect was examined. Oi, Oe, Oa, A, and B horizons were sampled and the total concentrations of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined. The ranges of heavy metal concentrations in the forest floor were higher than reported for comparable samples from Bavarian soils except for Zn (Cd: 0.65–1.77; Cr: 12–40; Cu: 19–41; Ni: 8–24; Pb: 70–187; Zn: 31–92 mg kg?1), in the mineral soil the concentrations were lower. The depth distribution of the metal concentrations indicated a contamination with Cd, Cr, Cu, Ni, Pb, and Zn. The concentration differences between forest floor and mineral soil tended to be higher at the northern than at the southern sites for Cu, Ni, Pb, and Zn, indicating a long-distance transport from the north. Correlation and principal component analyses of the total metal concentrations revealed three groups: Cu, Pb, and Zn inputs mainly seemed to result from long-distance transport from the north, Cr and Ni inputs additionally from local sources. Cd probably had its origin mainly in local sources. This result was further confirmed by the grouping of the sites when clustered.  相似文献   

15.
The β-thiol group containing amino acids L-cysteineand L-penicillamine were tested for their ability to releaseheavy metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) from bondings ontotypical soil components (peat, bentonite, illite) at neutral pHformed by batch adsorption procedure. Following equilibrationthe metal loaded sorbents were extracted by aqueous amino acidsolutions under various physico-chemical conditions.The extractability of metals from peat (metal contents between62.0 and 6170 mg kg-1) increased in thepresence of L-penicillamine following the order Cr < Hg < Pb <Ni ≈ Zn ≈ Cd, ranging from 9% (Cr) to 97% (Cd).The extractability by L-cysteine was slightly lower, followingthe sequence Cr < Pb < Cd < Ni < Zn. In both cases the sequencesdid not correlate with the order of the stability constants ofthe corresponding amino acid complexes. The recovery of metalsfrom bentonite was higher generally. The extent of removal increased with increasing molar excess of the amino acids and,to a lower extent, with increasing extraction volume.Presumably initiated by oxidation of amino acids or by theformation of sparingly soluble polymeric metal complexes, theconcentrations of dissolved metals dropped after an agitationperiod of 2 to 24 hr in most of the extracts. Aspects of thisprocess were discussed in detail.  相似文献   

16.
Fischer  K.  Bipp  H.-P. 《Water, air, and soil pollution》2002,138(1-4):271-288
Aqueous solutions of the natural chelatingagents D-gluconic acid and D-glucaric acid (D[+]-saccharic acid) were tested for their ability to remove heavy metals (Cd, Cr, Cu,Ni, Pb, Zn) from a soil polluted by long-term application of sewage sludge. Batch equilibrium experiments were performed undervariation of fundamental process parameters, i.e. pH value, sugaracid concentration, batch solution volume, solid:liquid ratioand number of treatment cycles.The extractability of heavy metals was low under near-neutral andslightly basic pH conditions. It increased drastically between pH12.0 and 13.0. Pb and Cu were preferentially extracted metals.Compared with the extraction efficiency of pH adequate puresodium hydroxide solutions, the sugar acids enhanced thesolubilisation of Pb and Cr especially. The metal depletion fromsoil was the highest when applying 20 or 50 g L-1 solutionsof the chelating agents. Under strongly basic conditions solid:liquid ratios of 1:10 or 1:20 were proofed to be advantageous.Except Ni, multi-step extraction improved the metal removalstrongly. This effect was the greatest for Cr extraction. Underoptimised conditions the following metal extraction degrees wereachieved with strongly alkaline D-gluconic acid solutions: Ni 43%%, Cr 60%%, Cd 63%%,Zn 70%%, Pb 80%%, and Cu 84%%.  相似文献   

17.
Zhang  Zhaoxue  Zhang  Nan  Li  Haipu  Lu  Yi  Wang  Qiang  Yang  Zhaoguang 《Journal of Soils and Sediments》2019,19(12):4042-4051
Purpose

This study aimed to reveal spatial distribution of As, Cd, Cr, Cu, Mn, Ni, Pb, Sb, V, and Zn in paddy soils in the Zijiang River basin and to evaluate its pollution status and potential ecological risks, and thus to provide basic information for rational utilization of paddy soils in the study area.

Materials and methods

The heavy metal(loid) concentrations in one hundred and thirty-five paddy soil samples (these samples were collected from the top 0–20 cm layer) were measured by inductively coupled plasma-optical emission spectrometry. The spatial distribution characteristics of the heavy metal(loid)s were depicted by the Ordinary Kriging interpolation analysis. The contamination degree and potential ecological risks of the heavy metal(loid)s in paddy soils were assessed by Nemerow’s comprehensive index, geoaccumulation index, potential ecological risk factor, and potential ecological risk index. The potential sources of the heavy metal(loid)s were deduced by Pearson’s correlation analysis, hierarchical cluster analysis, and principal component analysis.

Results and discussion

The mean concentrations of the heavy metal(loid)s decreased in the order of Mn?>?V?≈?Zn?>?Cr?>?Ni?≈?Pb?>?Cu?≈?Sb?>?As?>?Cd. Except for Cd and Sb, the mean concentrations of As, Cr, Cu, Mn, Ni, Pb, V, and Zn were close to the background reference values. The concentration of Cd in 94.8% of samples exceeded the soil quality standard value (grade II, 5.5?<?pH?<?6.5, GB 15618–1995). According to the assessments of pollution and potential ecological risks for the heavy metal(loid)s, 45.2% and 46.7% of samples were severely polluted and moderately polluted, respectively. The potential sources analysis indicated that Cd, Sb, and Zn mainly originated from agricultural, mining, and smelting activities; As, Cu, and Pb mainly originated from agricultural activities, while coal combustion by-products was another major source of these heavy metal(loid)s in paddy soils near the thermal power plant in the southwest corner of the study area; Cr, V, Mn, and Ni mainly originated from natural source.

Conclusions

Cadmium and Sb are the main contaminants in paddy soils in the study area, and there are hot-spot pollution areas.

  相似文献   

18.
新疆奎屯垦区土壤重金属风险评价   总被引:9,自引:0,他引:9  
采用网格法采样,对新疆奎屯垦区3个团场土壤中As、Pb、Cu、Cd、Cr和Ni含量进行了测定,系统分析了该地区土壤重金属的含量水平、潜在生态风险程度、主要污染因子和污染来源。结果表明:奎屯垦区土壤重金属As、Pb、Cd、Cu、Cr、Ni的平均值分别为20.21 mg kg-1、35.91 mg kg-1、0.40 mg kg-1、27.18 mg kg-1、77.02 mg kg-1、39.31 mg kg-1,均没有超过国家土壤环境质量二级标准,但As、Cd有个别样点超标。各元素平均含量值均超过新疆土壤背景值,其中Cd、As、Pb最为显著,呈现出累积趋势。各重金属潜在生态风险由高至低顺序为Cd>As>Pb>Ni>Cu>Cr,其中Cd为主要潜在生态风险因子。进一步相关分析和因子分析结果显示,各元素的来源可分为两类,Cd、Pb和As为一类,来源主要受各种人为活动影响,Cu、Cr、Ni为一类,来源主要与成土母质有关。  相似文献   

19.
The objective of this study was to test the suitability of a simple approach to identify the direction from where airborne heavy metals reach the study area as indication of their sources. We examined the distribution of heavy metals in soil profiles and along differently exposed transects. Samples were taken from 10 soils derived from the same parent material along N-, S-, and SE-exposed transects at 0—10, 10—20, and 20—40 cm depth and analyzed for total Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations. The heavy metal concentrations at 0—10 cm were larger than background concentrations in German arable soils except for Cr (Cd: 0.6—1.8 mg kg—1; Cr: 39—67; Cu: 40—77; Ni: 87—156; Pb: 48—94; Zn: 71—129; Fe: 26—34 g kg—1; Mn: 1.1—2.4). Decreasing Cd, Cu, Mn, and Pb concentrations with increasing soil depth pointed at atmospheric inputs. Aluminum and Ni concentrations increased with soil depth. Those of Fe, Cr, and Zn did not change with depth indicating that inputs at most equalled leaching losses. The Pb accumulation in the surface layer (i.e. the ratio between the Pb concentrations at 0—10 to those at 20—40 cm depth) was most pronounced at N-exposed sites; Pb obviously reached Mount Križna mainly by long-range transport from N where several industrial agglomerations are located. Substantial Cd, Cu, and Mn accumulations at the S- and SE-exposed sites indicated local sources such as mining near to the study area which probably are also the reason for slight Cr and Zn accumulations in the SE-exposed soils. Based on a principal component analysis of the total concentrations in the topsoils four metal groups may be distinguished: 1. Cr, Ni, Zn; 2. Mn, Cd; 3. Pb (positive loading), Cu (negative loading); 4. Al, Fe, indicating common sources and distribution patterns. The results demonstrate that the spatial distribution of soil heavy metal concentrations can be used as indication of the location of pollution sources.  相似文献   

20.
水稻子实对不同形态重金属的累积差异及其影响因素分析   总被引:3,自引:0,他引:3  
在分析成都平原核心区土壤重金属(Cd、Cr、Pb、Cu、Zn)全量、各形态含量及相应点位种植的水稻子实重金属含量的基础上,通过统计分析、空间插值及线性回归方程的模拟,研究了土壤Cd、Cr、Pb、Cu、Zn全量的空间分布状况、各形态重金属含量统计特征,以及水稻子实对重金属各形态的累积差异及其影响因素。结果表明,成都平原水稻土重金属污染较轻,除Cd外,均低于国家土壤环境质量二级标准。土壤中重金属的可交换态含量均较低,Cd主要以铁锰氧化态存在,Cr、Cu、Zn、Pb主要以残渣态存在。水稻子实对5种重金属的累积效应顺序为:Cd>Zn>Cu>Pb>Cr。与水稻重金属累积关系密切的重金属活性形态(可交换态、碳酸盐结合态、铁锰氧化物结合态和有机物结合态)主要有:Cd的碳酸盐结合态、Cr的可交换态、Pb的有机物结合态和Cu的碳酸盐结合态含量;Zn各活性形态对水稻子实含量的影响不明显。土壤理化性质对不同活性形态重金属元素的影响效应各不相同。活性态Cd主要受有机质、pH和容重的影响;活性态Cr与pH、有机质、CEC和容重密切相关;活性态Pb与有机质、容重、中细粉粒、砂粒等均有密切的关系;Cu的活性主要受粘粒、有机质含量的影响;Zn的有效性主要受pH、有机质、砂粒、容重的影响。总的看来,对土壤Cd、Cr、Pb、Cu、Zn各活性形态含量影响效应较强的是有机质、pH、容重,而与土壤吸附性能密切相关的颗粒组成、CEC的影响不甚明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号